Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing.
Adult neurotoxicity
Adverse outcome pathways
Developmental neurotoxicity
New approach methodologies
Journal
Archives of toxicology
ISSN: 1432-0738
Titre abrégé: Arch Toxicol
Pays: Germany
ID NLM: 0417615
Informations de publication
Date de publication:
13 Mar 2024
13 Mar 2024
Historique:
received:
29
11
2023
accepted:
06
02
2024
medline:
14
3
2024
pubmed:
14
3
2024
entrez:
14
3
2024
Statut:
aheadofprint
Résumé
Adult neurotoxicity (ANT) and developmental neurotoxicity (DNT) assessments aim to understand the adverse effects and underlying mechanisms of toxicants on the human nervous system. In recent years, there has been an increasing focus on the so-called new approach methodologies (NAMs). The Organization for Economic Co-operation and Development (OECD), together with European and American regulatory agencies, promote the use of validated alternative test systems, but to date, guidelines for regulatory DNT and ANT assessment rely primarily on classical animal testing. Alternative methods include both non-animal approaches and test systems on non-vertebrates (e.g., nematodes) or non-mammals (e.g., fish). Therefore, this review summarizes the recent advances of NAMs focusing on ANT and DNT and highlights the potential and current critical issues for the full implementation of these methods in the future. The status of the DNT in vitro battery (DNT IVB) is also reviewed as a first step of NAMs for the assessment of neurotoxicity in the regulatory context. Critical issues such as (i) the need for test batteries and method integration (from in silico and in vitro to in vivo alternatives, e.g., zebrafish, C. elegans) requiring interdisciplinarity to manage complexity, (ii) interlaboratory transferability, and (iii) the urgent need for method validation are discussed.
Identifiants
pubmed: 38480536
doi: 10.1007/s00204-024-03703-8
pii: 10.1007/s00204-024-03703-8
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Horizon 2020 Framework Programme
ID : H2020/952404/2020
Informations de copyright
© 2024. The Author(s).
Références
Abdulla EM, Campbell IC (1993) In vitro tests of neurotoxicity. J Pharmacol Toxicol Methods 29(2):69–75. https://doi.org/10.1016/1056-8719(93)90053-h
doi: 10.1016/1056-8719(93)90053-h
pubmed: 8318716
Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, Caraway CA, Fote GM, Madany AM, Agrawal A, Kayed R, Gylys KH, Cahalan MD, Cummings BJ, Antel JP, Mortazavi A, Carson MJ, Poon WW, Blurton-Jones M (2017) iPSC-Derived Human Microglia-like Cells to Study Neurological Diseases. Neuron. https://doi.org/10.1016/j.neuron.2017.03.042
doi: 10.1016/j.neuron.2017.03.042
pubmed: 29268096
pmcid: 5806703
Alimohammadi M, Meyburg B, Ückert AK, Holzer AK, Leist M (2023) EFSA Pilot Project on New Approach Methodologies (NAMs) for Tebufenpyrad Risk Assessment. Part 2. Hazard characterization and identification of the Reference Point. EFSA support Publ. EN-7794. 56 pp. https://doi.org/10.2903/sp.efsa.2023.EN-7794
American Psychiatric Association (2013) Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Arlington, VA, American Psychiatric Association
Atkins JT, George GC, Hess K, Marcelo-Lewis KL, Yuan Y, Borthakur G, Khozin S, LoRusso P, Hong DS (2020) Pre-clinical animal models are poor predictors of human toxicities in phase 1 oncology clinical trials. Br J Cancer 123(10):1496–1501. https://doi.org/10.1038/s41416-020-01033-x
doi: 10.1038/s41416-020-01033-x
pubmed: 32868897
pmcid: 7652903
Balls M (2002) Future improvements: replacement in vitro methods. ILAR J 43(Suppl):S69-73. https://doi.org/10.1093/ilar.43.suppl_1.s69
doi: 10.1093/ilar.43.suppl_1.s69
pubmed: 12388855
Bal-Price A, Crofton KM, Sachana M, Shafer TJ, Behl M, Forsby A, Hargreaves A, Landesmann B, Lein PJ, Louisse J, Monnet-Tschudi F, Paini A, Rolaki A, Schrattenholz A, Suñol C, van Thriel C, Whelan M, Fritsche E (2015) Putative adverse outcome pathways relevant to neurotoxicity. Crit Rev Toxicol 45(1):83–91. https://doi.org/10.3109/10408444.2014.981331
doi: 10.3109/10408444.2014.981331
pubmed: 25605028
pmcid: 5072123
Bal-Price A, Hogberg HT, Crofton KM, Daneshian M, FitzGerald RE, Fritsche E, Heinonen T, Hougaard Bennekou S, Klima S, Piersma AH, Sachana M, Shafer TJ, Terron A, Monnet-Tschudi F, Viviani B, Waldmann T, Westerink RHS, Wilks MF, Witters H, Zurich MG, Leist M (2018) Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. Altex 35(3):306–352
doi: 10.14573/altex.1712081
pubmed: 29485663
pmcid: 6545888
Barbosa DJ, Capela JP, de Lourdes BM, Carvahlo F (2015) In vitro models for neurotoxicology research. Toxicol Res 4(4):801–842. https://doi.org/10.1039/c4tx00043a
doi: 10.1039/c4tx00043a
Bargmann CI (1998) Neurobiology of the Caenorhabditis elegans genome. Science NY. https://doi.org/10.1126/science.282.5396.2028
doi: 10.1126/science.282.5396.2028
Bayir E, Sendemir A, Missirlis YF (2019) Mechanobiology of cells and cell systems, such as organoids. Biophys Rev 11(5):721–728. https://doi.org/10.1007/s12551-019-00590-7
doi: 10.1007/s12551-019-00590-7
pubmed: 31502190
pmcid: 6815306
Bell S, Abedini J, Ceger P, Chang X, Cook B, Karmaus AL, Lea I, Mansouri K, Phillips J, McAfee E, Rai R, Rooney J, Sprankle C, Tandon A, Allen D, Casey W, Kleinstreuer N (2020) An integrated chemical environment with tools for chemical safety testing. Toxicol in Vitro. https://doi.org/10.1016/j.tiv.2020.104916
doi: 10.1016/j.tiv.2020.104916
pubmed: 33075489
pmcid: 7877221
Bertotto LB, Catron TR, Tal T (2020) Exploring interactions between xenobiotics, microbiota, and neurotoxicity in zebrafish. Neurotoxicology 76:235–244. https://doi.org/10.1016/j.neuro.2019.11.008
doi: 10.1016/j.neuro.2019.11.008
pubmed: 31783042
Blum J, Masjosthusmann S, Bartmann K, Bendt F, Dolde X, Dönmez A, Förster N, Holzer AK, Hübenthal U, Keßel HE, Kilic S, Klose J, Pahl M, Stürzl LC, Mangas I, Terron A, Crofton KM, Scholze M, Mosig A, Leist M, Fritsche E (2023) Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.137035
doi: 10.1016/j.chemosphere.2022.137035
pubmed: 36328314
Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA (2017) Diverse Requirements for Microglial Survival, Specification, and Function Revealed by Defined-Medium Cultures. Neuron. https://doi.org/10.1016/j.neuron.2017.04.043
doi: 10.1016/j.neuron.2017.04.043
pubmed: 28521131
pmcid: 5523817
Boissart C, Poulet A, Georges P, Darville H, Julita E, Delorme R, Bourgeron T, Peschanski M, Benchoua A (2013) Differentiation from human pluripotent stem cells of cortical neurons of the superficial layers amenable to psychiatric disease modeling and high-throughput drug screening. Transl Psychiatry. https://doi.org/10.1038/tp.2013.71
doi: 10.1038/tp.2013.71
pubmed: 23962924
pmcid: 3756296
Byun JS, Lee CO, Oh M, Cha D, Kim WK, Oh KJ, Bae KH, Lee SC, Han BS (2020) Rapid differentiation of astrocytes from human embryonic stem cells. Neurosci Lett. https://doi.org/10.1016/j.neulet.2019.134681
doi: 10.1016/j.neulet.2019.134681
pubmed: 31836568
C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C elegans: a platform for investigating biology. Science NY. https://doi.org/10.1126/science.282.5396.2012
doi: 10.1126/science.282.5396.2012
Capela JP, Carvalho FD (2022) A review on the mitochondrial toxicity of “ecstasy” (3,4-methylenedioxymethamphetamine, MDMA). Curr Res Toxicol. https://doi.org/10.1016/j.crtox.2022.100075
doi: 10.1016/j.crtox.2022.100075
pubmed: 35651589
pmcid: 9149009
Catron TR, Keely SP, Brinkman NE, Zurlinden TJ, Wood CE, Wright JR, Phelps D, Wheaton E, Kvasnicka A, Gaballah S, Lamendella R, Tal T (2019a) Host Developmental Toxicity of BPA and BPA Alternatives Is Inversely Related to Microbiota Disruption in Zebrafish. Toxicol Sci 167(2):468–483. https://doi.org/10.1093/toxsci/kfy261
doi: 10.1093/toxsci/kfy261
pubmed: 30321396
Catron TR, Swank A, Wehmas LC, Phelps D, Keely SP, Brinkman NE, McCord J, Singh R, Sobus J, Wood CE, Strynar M, Wheaton E, Tal T (2019b) Microbiota alter metabolism and mediate neurodevelopmental toxicity of 17β-estradiol. Sci Rep. https://doi.org/10.1038/s41598-019-43346-9
doi: 10.1038/s41598-019-43346-9
pubmed: 31068624
pmcid: 6506524
Chushak YG, Shows HW, Gearhart JM, Pangburn HA (2018) In silico identification of protein targets for chemical neurotoxins using ToxCast in vitro data and read-across within the QSAR toolbox. Toxicol Res (camb). https://doi.org/10.1039/c7tx00268h
doi: 10.1039/c7tx00268h
pubmed: 30090592
Coecke S, Goldberg AM, Allen S, Buzanska L, Calamandrei G, Crofton K, Hareng L, Hartung T, Knaut H, Honegger P, Jacobs M, Lein P, Li A, Mundy W, Owen D, Schneider S, Silbergeld E, Reum T, Trnovec T, Monnet-Tschudi F, Bal-Price A (2007) Workgroup report: incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ Health Perspect 115(6):924–931. https://doi.org/10.1289/ehp.9427
doi: 10.1289/ehp.9427
pubmed: 17589601
pmcid: 1892131
Costa LG (1998) Neurotoxicity testing: a discussion of in vitro alternatives. Environ Health Perspect. https://doi.org/10.1289/ehp.98106505
doi: 10.1289/ehp.98106505
pubmed: 9703480
pmcid: 1533346
Costa LG, Giordano G (2007) Developmental neurotoxicity of polybrominated diphenyl ether (PBDE) flame retardants. Neurotoxicology 28(6):1047–1067. https://doi.org/10.1016/j.neuro.2007.08.007
doi: 10.1016/j.neuro.2007.08.007
pubmed: 17904639
pmcid: 2118052
Crofton KM (2008) Thyroid disrupting chemicals: mechanisms and mixtures. Int J Androl 31(2):209–223. https://doi.org/10.1111/j.1365-2605.2007.00857.x
doi: 10.1111/j.1365-2605.2007.00857.x
pubmed: 18217984
Crofton KM, Bassan A, Behl M, Chushak YG, Fritsche E, Gearhart JM, Marty MS, Mumtaz M, Pavan M, Ruiz P, Sachana M, Selvam R, Shafer TJ, Stavitskaya L, Szabo DT, Szabo ST, Tice RR, Wilson D, Woolley D, Myatt GJ (2022) Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. Comput Toxicol. https://doi.org/10.1016/j.comtox.2022.100223
doi: 10.1016/j.comtox.2022.100223
pubmed: 35844258
pmcid: 9281386
Crofton KM and Mundy WR (2021) External Scientific Report on the Interpretation of Data from the Developmental Neurotoxicity In Vitro Testing Assays for Use in Integrated Approaches for Testing and Assessment. EFSA support Publ. EN-7794. 18, 6924E. https://doi.org/10.2903/SP.EFSA.2021.EN-6924
Cronin MT (1996) Quantitative structure-Activity relationship (QSAR) analysis of the acute sublethal neurotoxicity of solvents. Toxicol in Vitro 10(2):103–110. https://doi.org/10.1016/0887-2333(95)00109-3
doi: 10.1016/0887-2333(95)00109-3
pubmed: 20650188
Cronin MT, Bajot F, Enoch SJ, Madden JC, Roberts DW, Schwöbel J (2009) The in chemico-in silico interface: challenges for integrating experimental and computational chemistry to identify toxicity. Altern Lab Anim 37(5):513–521. https://doi.org/10.1177/026119290903700508
doi: 10.1177/026119290903700508
pubmed: 20017580
Cronin MTD, Enoch SJ, Mellor CL, Przybylak KR, Richarz AN, Madden JC (2017) In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects. Toxicol Res 33(3):173–182. https://doi.org/10.5487/TR.2017.33.3.173
doi: 10.5487/TR.2017.33.3.173
pubmed: 28744348
pmcid: 5523554
Cronin MTD, Bauer FJ, Bonnell M, Campos B, Ebbrell DJ, Firman JW, Gutsell S, Hodges G, Patlewicz G, Sapounidou M, Spînu N, Thomas PC, Worth AP (2022) A scheme to evaluate structural alerts to predict toxicity: Assessing confidence by characterising uncertainties. Regul Toxicol Pharmacol. https://doi.org/10.1016/j.yrtph.2022.105249
doi: 10.1016/j.yrtph.2022.105249
pubmed: 36103951
pmcid: 9585125
d’Amora M, Giordani S (2018) The Utility of Zebrafish as a Model for Screening Developmental Neurotoxicity. Front Neurosci 12:976. https://doi.org/10.3389/fnins.2018.00976
doi: 10.3389/fnins.2018.00976
pubmed: 30618594
pmcid: 6305331
Dasgupta S, Simonich MT, Tanguay RL (2022) Zebrafish Behavioral Assays in Toxicology. Methods Mol Biol 2474:109–122. https://doi.org/10.1007/978-1-0716-2213-1_11
doi: 10.1007/978-1-0716-2213-1_11
pubmed: 35294760
de Esch C, Slieker R, Wolterbeek A, Woutersen R, de Groot D (2012) Zebrafish as potential model for developmental neurotoxicity testing: a mini review. Neurotoxicol Teratol 34(6):545–553. https://doi.org/10.1016/j.ntt.2012.08.006
doi: 10.1016/j.ntt.2012.08.006
pubmed: 22971930
de Leeuw VC, van Oostrom CTM, Wackers PFK, Pennings JLA, Hodemaekers HM, Piersma AH, Hessel EVS (2022) Neuronal differentiation pathways and compound-induced developmental neurotoxicity in the human neural progenitor cell test (hNPT) revealed by RNA-seq. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.135298
doi: 10.1016/j.chemosphere.2022.135298
pubmed: 35700809
pmcid: 9247748
De Kleijn KMA, Zuure WA, Peijnenborg J, Heuvelmans JM, Martens GJM (2019) Reappraisal of Human HOG and MO313 Cell Lines as a Model to Study Oligodendrocyte Functioning. Cells. https://doi.org/10.3390/cells8091096
doi: 10.3390/cells8091096
pubmed: 31533280
pmcid: 6769895
Delp J, Gutbier S, Cerff M, Zasada C, Niedenführ S, Zhao L, Smirnova L, Hartung T, Borlinghaus H, Schreiber F, Bergemann J, Gätgens J, Beyss M, Azzouzi S, Waldmann T, Kempa S, Nöh K, Leist M (2018a) Stage-specific metabolic features of differentiating neurons: Implications for toxicant sensitivity. Toxicol Appl Pharmacol 354:64–80. https://doi.org/10.1016/j.taap.2017.12.013
doi: 10.1016/j.taap.2017.12.013
pubmed: 29278688
Delp J, Gutbier S, Klima S, Hoelting L, Pinto-Gil K, Hsieh JH, Aichem M, Klein K, Schreiber F, Tice RR, Pastor M, Behl M, Leist M (2018b) A high-throughput approach to identify specific neurotoxicants/ developmental toxicants in human neuronal cell function assays. Altex 35(2):235–253
doi: 10.14573/altex.1712182
pubmed: 29423527
pmcid: 10266261
Delp J, Cediel-Ulloa A, Suciu I, Kranaster P, van Vugt-Lussenburg BM, Munic Kos V, van der Stel W, Carta G, Bennekou SH, Jennings P, Forsby A, Leist M (2021) Neurotoxicity and underlying cellular changes of 21 mitochondrial respiratory chain inhibitors. Arch Toxicol 95(2):591–615. https://doi.org/10.1007/s00204-020-02970-5
doi: 10.1007/s00204-020-02970-5
pubmed: 33512557
pmcid: 7870626
Dezonne RS, Sartore RC, Nascimento JM, Saia-Cereda VM, Romão LF, Alves-Leon SV, de Souza JM, Martins-de-Souza D, Rehen SK, Gomes FC (2017) Derivation of Functional Human Astrocytes from Cerebral Organoids. Sci Rep 27(7):45091. https://doi.org/10.1038/srep45091
doi: 10.1038/srep45091
Dobreniecki S, Mendez E, Lowit A, Freudenrich TM, Wallace K, Carpenter A, Wetmore BA, Kreutz A, Korol-Bexell E, Friedman KP, Shafer TJ (2022) Integration of toxicodynamic and toxicokinetic new approach methods into a weight-of-evidence analysis for pesticide developmental neurotoxicity assessment: A case-study with DL- and L-glufosinate. Regul Toxicol Pharmacol. https://doi.org/10.1016/j.yrtph.2022.105167
doi: 10.1016/j.yrtph.2022.105167
pubmed: 35413399
Douvaras P, Wang J, Zimmer M, Hanchuk S, O’Bara MA, Sadiq S, Sim FJ, Goldman J, Fossati V (2014) Efficient generation of myelinating oligodendrocytes from primary progressive multiple sclerosis patients by induced pluripotent stem cells. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2014.06.012
doi: 10.1016/j.stemcr.2014.06.012
Douvaras P, Sun B, Wang M, Kruglikov I, Lallos G, Zimmer M, Terrenoire C, Zhang B, Gandy S, Schadt E, Freytes DO, Noggle S, Fossati V (2017) Directed Differentiation of Human Pluripotent Stem Cells to Microglia. Stem Cell Rep. https://doi.org/10.1016/j.stemcr.2017.04.023
doi: 10.1016/j.stemcr.2017.04.023
Du ZW, Chen H, Liu H, Lu J, Qian K, Huang CL, Zhong X, Fan F, Zhang SC (2015) Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells. Nat Commun 25(6):6626. https://doi.org/10.1038/ncomms7626
doi: 10.1038/ncomms7626
ECETOC (2014) TR 116 - Category approaches, read-across, (Q)SAR ECETOC Technical Reports https://doi.org/10.1016/B978-0-12-386454-3.00505-4 .
ECHA (2008) Guidance on information requirements and chemical safety assessment: QSARs and grouping of chemicals Guid Implement. Reach 6:134
Edwards MA, Loxley RA, Williams AJ, Connor M, Phillips JK (2007) Lack of functional expression of NMDA receptors in PC12 cells. Neurotoxicology 28(4):876–885. https://doi.org/10.1016/j.neuro.2007.04.006
doi: 10.1016/j.neuro.2007.04.006
pubmed: 17572500
EFSA Panel on Animal Health and Welfare (2005) Opinion of the Scientific Panel on Animal Health and Welfare (AHAW) on a request from the Commission related to the aspects of the biology and welfare of animals used for experimental and other scientific purposes. EFSA J. https://doi.org/10.2903/j.efsa.2005.292
doi: 10.2903/j.efsa.2005.292
EFSA Panel on Plant Protection Products and their Residues (2014) Scientific Opinion on the identification of pesticides to be included in cumulative assessment groups on the basis of their toxicological profile. EFSA J. https://doi.org/10.2903/j.efsa.2013.3293
doi: 10.2903/j.efsa.2013.3293
El Yazal J, Rao SN, Mehl A, Slikker W Jr (2001) Prediction of organophosphorus acetylcholinesterase inhibition using three-dimensional quantitative structure-activity relationship (3D-QSAR) methods. Toxicol Sci 63(2):223–232. https://doi.org/10.1093/toxsci/63.2.223
doi: 10.1093/toxsci/63.2.223
pubmed: 11568366
Estrada E, Molina E, Uriarte E (2001) Quantitative structure-toxicity relationships using TOPS-MODE. 2. Neurotoxicity of a non-congeneric series of solvents. SAR QSAR Environ Res 12(5):445–459. https://doi.org/10.1080/10629360108035384
doi: 10.1080/10629360108035384
pubmed: 11813810
Etemad S, Zamin RM, Ruitenberg MJ, Filgueira L (2012) A novel in vitro human microglia model: characterization of human monocyte-derived microglia. J Neurosci Methods. https://doi.org/10.1016/j.jneumeth.2012.05.025
doi: 10.1016/j.jneumeth.2012.05.025
pubmed: 22659341
Fitzgerald JA, Könemann S, Krümpelmann L, Županič A, Vom Berg C (2021) Approaches to Test the Neurotoxicity of Environmental Contaminants in the Zebrafish Model: From Behavior to Molecular Mechanisms. Environ Toxicol Chem 40(4):989–1006. https://doi.org/10.1002/etc.4951
doi: 10.1002/etc.4951
pubmed: 33270929
Fritsche E, Crofton KM, Hernandez AF, Hougaard Bennekou S, Leist M, Bal-Price A, Reaves E, Wilks MF, Terron A, Solecki R, Sachana M, Gourmelon A (2017) OECD/EFSA workshop on developmental neurotoxicity (DNT): The use of non-animal test methods for regulatory purposes. Altex 34(2):311–315
doi: 10.14573/altex.1701171
pubmed: 28407175
Furihata T, Ito R, Kamiichi A, Saito K, Chiba K (2016) Establishment and characterization of a new conditionally immortalized human astrocyte cell line. J Neurochem 136(1):92–105. https://doi.org/10.1111/jnc.13358
doi: 10.1111/jnc.13358
pubmed: 26365151
Gadaleta D, Spînu N, Roncaglioni A, Cronin MTD, Benfenati E (2022) Prediction of the Neurotoxic Potential of Chemicals Based on Modelling of Molecular Initiating Events Upstream of the Adverse Outcome Pathways of (Developmental) Neurotoxicity. Int J Mol Sci. https://doi.org/10.3390/ijms23063053
doi: 10.3390/ijms23063053
pubmed: 35743059
pmcid: 9224506
Giordano G, Costa LG (2012) Developmental neurotoxicity: some old and new issues. ISRN Toxicol. https://doi.org/10.5402/2012/814795
doi: 10.5402/2012/814795
pubmed: 23724296
pmcid: 3658697
Gladyshev VN (2016) Aging: progressive decline in fitness due to the rising deleteriome adjusted by genetic, environmental, and stochastic processes. Aging Cell 15(4):594–602. https://doi.org/10.1111/acel.12480
doi: 10.1111/acel.12480
pubmed: 27060562
pmcid: 4933668
Goldsmith JR, Jobin C (2012) Think small: zebrafish as a model system of human pathology. J Biomed Biotechnol. https://doi.org/10.1155/2012/817341
doi: 10.1155/2012/817341
pubmed: 22701308
pmcid: 3371824
Goodwin JT, Clark DE (2005) In silico predictions of blood-brain barrier penetration: considerations to “keep in mind.” J Pharmacol Exp Ther 315(2):477–483. https://doi.org/10.1124/jpet.104.075705
doi: 10.1124/jpet.104.075705
pubmed: 15919767
Gosselin D, Skola D, Coufal NG, Holtman IR, Schlachetzki JCM, Sajti E, Jaeger BN, O’Connor C, Fitzpatrick C, Pasillas MP, Pena M, Adair A, Gonda DD, Levy ML, Ransohoff RM, Gage FH, Glass CK (2017) An environment-dependent transcriptional network specifies human microglia identity. Science. https://doi.org/10.1126/science.aal3222
doi: 10.1126/science.aal3222
pubmed: 28546318
pmcid: 5858585
Grabert K, Michoel T, Karavolos MH, Clohisey S, Baillie JK, Stevens MP, Freeman TC, Summers KM, McColl BW (2016) Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 19(3):504–516. https://doi.org/10.1038/nn.4222
doi: 10.1038/nn.4222
pubmed: 26780511
pmcid: 4768346
Grandjean P, Landrigan PJ (2006) Developmental neurotoxicity of industrial chemicals. Lancet 368(9553):2167–2178. https://doi.org/10.1016/S0140-6736(06)69665-7
doi: 10.1016/S0140-6736(06)69665-7
pubmed: 17174709
Grigorev VYu, Raevskaya OE, Yarkov AV, Raevsky OA (2018) QSAR Modeling of Acute Neurotoxicity of Some Organic Solvents with Respect to Rodents. Biomed Chem Res Methods 1(3):00019
doi: 10.18097/BMCRM00019
Guo Y, Wei X, Yan H, Qin Y, Yan S, Liu J, Zhao Y, Jiang F, Lou H (2019) TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson’s disease models. FASEB J 33(11):12164–12174. https://doi.org/10.1096/fj.201900992R
doi: 10.1096/fj.201900992R
pubmed: 31370707
pmcid: 6902667
Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, Cader MZ, Wade-Martins R, James WS, Cowley SA (2017) A Highly Efficient Human Pluripotent Stem Cell Microglia Model Displays a Neuronal-Co-culture-Specific Expression Profile and Inflammatory Response. Stem Cell Reports 8(6):1727–1742. https://doi.org/10.1016/j.stemcr.2017.05.017
doi: 10.1016/j.stemcr.2017.05.017
pubmed: 28591653
pmcid: 5470330
Han Y, Zhang J, Hu CQ, Zhang X, Ma B, Zhang P (2019) In silico ADME and Toxicity Prediction of Ceftazidime and Its Impurities. Front Pharmacol 10:434. https://doi.org/10.3389/fphar.2019.00434
doi: 10.3389/fphar.2019.00434
pubmed: 31068821
pmcid: 6491819
Harry GJ, Billingsley M, Bruinink A, Campbell IL, Classen W, Dorman DC, Galli C, Ray D, Smith RA, Tilson HA (1998) In vitro techniques for the assessment of neurotoxicity. Environ Health Perspect. https://doi.org/10.1289/ehp.98106s1131
doi: 10.1289/ehp.98106s1131
pubmed: 9539010
pmcid: 1533280
Hartfield EM, Yamasaki-Mann M, Ribeiro Fernandes HJ, Vowles J, James WS, Cowley SA, Wade-Martins R (2014) Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS ONE. https://doi.org/10.1371/journal.pone.0087388
doi: 10.1371/journal.pone.0087388
pubmed: 24586273
pmcid: 3931621
Hartung T, McBride M (2011) Food for Thought on mapping the human toxome. Altex 28(2):83–93
doi: 10.14573/altex.2011.2.083
pubmed: 21625825
Hartung T, FitzGerald RE, Jennings P, Mirams GR, Peitsch MC, Rostami-Hodjegan A, Shah I, Wilks MF, Sturla SJ (2017) Systems Toxicology: Real World Applications and Opportunities. Chem Res Toxicol 30(4):870–882. https://doi.org/10.1021/acs.chemrestox.7b00003
doi: 10.1021/acs.chemrestox.7b00003
pubmed: 28362102
pmcid: 5396025
Helman G, Shah I, Williams AJ, Edwards J, Dunne J, Patlewicz G (2019) Generalized Read-Across (GenRA): A workflow implemented into the EPA CompTox Chemicals Dashboard. Altex 36(3):462–465
pubmed: 30741315
pmcid: 6679759
Hemmerich J, Ecker GF (2020) In silico toxicology: From structure-activity relationships towards deep learning and adverse outcome pathways. Wiley Interdiscip Rev Comput Mol Sci 10(4):e1475. https://doi.org/10.1002/wcms.1475
doi: 10.1002/wcms.1475
pubmed: 35866138
pmcid: 9286356
Hendriksen CF (2009) Replacement, reduction and refinement alternatives to animal use in vaccine potency measurement. Expert Rev Vaccines 8(3):313–322. https://doi.org/10.1586/14760584.8.3.313
doi: 10.1586/14760584.8.3.313
pubmed: 19249973
Hernández-Jerez A, Adriaanse P, Aldrich A, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping C, Widenfalk A, Wilks M, Wolterink G, Crofton K, Hougaard Bennekou S, Paparella M, Tzoulaki I (2021) Development of Integrated Approaches to Testing and Assessment (IATA) case studies on developmental neurotoxicity (DNT) risk assessment. EFSA J. https://doi.org/10.2903/J.EFSA.2021.6599
doi: 10.2903/J.EFSA.2021.6599
pubmed: 34987623
pmcid: 8696562
Heyer DB, Meredith RM (2017) Environmental toxicology: Sensitive periods of development and neurodevelopmental disorders. Neurotoxicology 58:23–41. https://doi.org/10.1016/j.neuro.2016.10.017
doi: 10.1016/j.neuro.2016.10.017
pubmed: 27825840
Hogberg HT, Smirnova L (2022) The future of 3D brain cultures in developmental neurotoxicity testing. Front Toxicol 4:808620. https://doi.org/10.3389/ftox.2022.808620
doi: 10.3389/ftox.2022.808620
pubmed: 35295222
pmcid: 8915853
Hopkins AM, DeSimone E, Chwalek K, Kaplan DL (2015) 3D in vitro modeling of the central nervous system. Prog Neurobiol 125:1–25. https://doi.org/10.1016/j.pneurobio.2014.11.003
doi: 10.1016/j.pneurobio.2014.11.003
pubmed: 25461688
Hua Y, Cui X, Liu B, Shi Y, Guo H, Zhang R, Li X (2022) SApredictor: An Expert System for Screening Chemicals Against Structural Alerts. Front Chem. https://doi.org/10.3389/fchem.2022.916614
doi: 10.3389/fchem.2022.916614
pubmed: 35910729
pmcid: 9326022
Huch M, Knoblich JA, Lutolf MP, Martinez-Arias A (2017) The hope and the hype of organoid research. Development 144(6):938–941. https://doi.org/10.1242/dev.150201
doi: 10.1242/dev.150201
pubmed: 28292837
Humpel C (2015) Organotypic brain slice cultures: A review. Neuroscience 305:86–98. https://doi.org/10.1016/j.neuroscience.2015.07.086
doi: 10.1016/j.neuroscience.2015.07.086
pubmed: 26254240
Iliff AJ, Xu XZS (2020) C. elegans: a sensible model for sensory biology. J Neurogenet 34(3–4):347–350. https://doi.org/10.1080/01677063.2020.1823386
doi: 10.1080/01677063.2020.1823386
pubmed: 33191820
pmcid: 7856205
Jackson S, Meeks C, Vézina A, Robey RW, Tanner K, Gottesman MM (2019) Model systems for studying the blood-brain barrier: Applications and challenges. Biomaterials. https://doi.org/10.1016/j.biomaterials.2019.05.028
doi: 10.1016/j.biomaterials.2019.05.028
pubmed: 31146177
pmcid: 6451656
Janabi N, Peudenier S, Héron B, Ng KH, Tardieu M (1995) Establishment of human microglial cell lines after transfection of primary cultures of embryonic microglial cells with the SV40 large T antigen. Neurosci Lett 195(2):105–108. https://doi.org/10.1016/0304-3940(94)11792-h
doi: 10.1016/0304-3940(94)11792-h
pubmed: 7478261
Jiang C, Zhao P, Li W, Tang Y, Liu G (2020) In silico prediction of chemical neurotoxicity using machine learning. Toxicol Res. https://doi.org/10.1093/toxres/tfaa016
doi: 10.1093/toxres/tfaa016
Jin H, Kim B (2020) Neurite Branching Regulated by Neuronal Cell Surface Molecules in Caenorhabditis elegans. Front Neuroanat 14:59. https://doi.org/10.3389/fnana.2020.00059
doi: 10.3389/fnana.2020.00059
pubmed: 32973467
pmcid: 7471659
Kasteel EEJ, Westerink RHS (2021) Refining in vitro and in silico neurotoxicity approaches by accounting for interspecies and interindividual differences in toxicodynamics. Expert Opin Drug Metab Toxicol 17(8):1007–1017. https://doi.org/10.1080/17425255.2021.1885647
doi: 10.1080/17425255.2021.1885647
pubmed: 33586568
Klose J, Pahl M, Bartmann K, Bendt F, Blum J, Dolde X, Förster N, Holzer AK, Hübenthal U, Keßel HE, Koch K, Masjosthusmann S, Schneider S, Stürzl LC, Woeste S, Rossi A, Covaci A, Behl M, Leist M, Tigges J, Fritsche E (2022) Neurodevelopmental toxicity assessment of flame retardants using a human DNT in vitro testing battery. Cell Biol Toxicol 38(5):781–807. https://doi.org/10.1007/s10565-021-09603-2
doi: 10.1007/s10565-021-09603-2
pubmed: 33969458
Kolundzic E, Ofenbauer A, Bulut SI, Uyar B, Baytek G, Sommermeier A, Seelk S, He M, Hirsekorn A, Vucicevic D, Akalin A, Diecke S, Lacadie SA, Tursun B (2018) FACT Sets a Barrier for Cell Fate Reprogramming in Caenorhabditis elegans and Human Cells. Dev Cell 46(5):611-626.e12. https://doi.org/10.1016/j.devcel.2018.07.006
doi: 10.1016/j.devcel.2018.07.006
pubmed: 30078731
pmcid: 6137076
Kuhn M, Letunic I, Jensen LJ, Bork P (2016) The SIDER database of drugs and side effects. Nucleic Acids Res 44(D1):D1075–D1079. https://doi.org/10.1093/nar/gkv1075
doi: 10.1093/nar/gkv1075
pubmed: 26481350
Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, Homfray T, Penninger JM, Jackson AP, Knoblich JA (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379. https://doi.org/10.1038/nature12517
doi: 10.1038/nature12517
pubmed: 23995685
Lee H, Sung EJ, Seo S, Min EK, Lee JY, Shim I, Kim P, Kim TY, Lee S, Kim KT (2021) Integrated multi-omics analysis reveals the underlying molecular mechanism for developmental neurotoxicity of perfluorooctanesulfonic acid in zebrafish. Environ Int. https://doi.org/10.1016/j.envint.2021.106802
doi: 10.1016/j.envint.2021.106802
pubmed: 34991270
pmcid: 8673308
Lein P, Locke P, Goldberg A (2007) Meeting report: alternatives for developmental neurotoxicity testing. Environ Health Perspect 115(5):764–768. https://doi.org/10.1289/ehp.9841
doi: 10.1289/ehp.9841
pubmed: 17520065
pmcid: 1867989
Leist M, Hartung T (2013) Inflammatory findings on species extrapolations: humans are definitely no 70-kg mice. Arch Toxicol 87(4):563–567. https://doi.org/10.1007/s00204-013-1038-0
doi: 10.1007/s00204-013-1038-0
pubmed: 23503654
pmcid: 3604596
Leone C, Le Pavec G, Même W, Porcheray F, Samah B, Dormont D, Gras G (2006) Characterization of human monocyte-derived microglia-like cells. Glia 54(3):183–192. https://doi.org/10.1002/glia.20372
doi: 10.1002/glia.20372
pubmed: 16807899
LePage KT, Dickey RW, Gerwick WH, Jester EL, Murray TF (2005) On the use of neuro-2a neuroblastoma cells versus intact neurons in primary culture for neurotoxicity studies. Crit Rev Neurobiol 17(1):27–50. https://doi.org/10.1615/critrevneurobiol.v17.i1.20
doi: 10.1615/critrevneurobiol.v17.i1.20
pubmed: 16307526
Leventoux N, Morimoto S, Imaizumi K, Sato Y, Takahashi S, Mashima K, Ishikawa M, Sonn I, Kondo T, Watanabe H, Okano H (2020) Human Astrocytes Model Derived from Induced Pluripotent Stem Cells. Cells 9(12):2680. https://doi.org/10.3390/cells9122680
doi: 10.3390/cells9122680
pubmed: 33322219
pmcid: 7763297
Li F, Hu J, Xie K, He TC (2015) Authentication of experimental materials: A remedy for the reproducibility crisis? Genes Dis 2(4):283. https://doi.org/10.1016/j.gendis.2015.07.001
doi: 10.1016/j.gendis.2015.07.001
pubmed: 26900588
Li H, Zhao F, Cao F, Teng M, Yang Y, Qiu L (2019) Mitochondrial dysfunction-based cardiotoxicity and neurotoxicity induced by pyraclostrobin in zebrafish larvae. Environ Pollut 251:203–211. https://doi.org/10.1016/j.envpol.2019.04.122
doi: 10.1016/j.envpol.2019.04.122
pubmed: 31078959
Lin W, Shiomoto S, Yamada S, Watanabe H, Kawashima Y, Eguchi Y, Muramatsu K, Sekino Y (2023) Dendritic spine formation and synapse maturation in transcription factor-induced human iPSC-derived neurons. iScience. https://doi.org/10.1016/j.isci.2023.106285
doi: 10.1016/j.isci.2023.106285
pubmed: 38213625
pmcid: 10783621
Logan S, Arzua T, Canfield SG, Seminary ER, Sison SL, Ebert AD, Bai X (2019) Studying Human Neurological Disorders Using Induced Pluripotent Stem Cells: From 2D Monolayer to 3D Organoid and Blood Brain Barrier Models. Compr Physiol 9(2):565–611. https://doi.org/10.1002/cphy.c180025
doi: 10.1002/cphy.c180025
pubmed: 30873582
pmcid: 6705133
Lu J, Zhong X, Liu H, Hao L, Huang CT, Sherafat MA, Jones J, Ayala M, Li L, Zhang SC (2016) Generation of serotonin neurons from human pluripotent stem cells. Nat Biotechnol 34(1):89–94. https://doi.org/10.1038/nbt.3435
doi: 10.1038/nbt.3435
pubmed: 26655496
Makris SL, Raffaele K, Allen S, Bowers WJ, Hass U, Alleva E, Calamandrei G, Sheets L, Amcoff P, Delrue N, Crofton KM (2009) A retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. Environ Health Perspect 117(1):17–25. https://doi.org/10.1289/ehp.11447
doi: 10.1289/ehp.11447
pubmed: 19165382
Mallon BS, Hamilton RS, Kozhich OA, Johnson KR, Fann YC, Rao MS, Robey PG (2014) Comparison of the molecular profiles of human embryonic and induced pluripotent stem cells of isogenic origin. Stem Cell Res 12(2):376–386. https://doi.org/10.1016/j.scr.2013.11.010
doi: 10.1016/j.scr.2013.11.010
pubmed: 24374290
Malygin VV, Sokolov VB, Richardson RJ, Makhaeva GF (2003) Quantitative structure-activity relationships predict the delayed neurotoxicity potential of a series of O-alkyl-O-methylchloroformimino phenylphosphonates. J Toxicol Environ Health A 66(7):611–625. https://doi.org/10.1080/15287390309353770
doi: 10.1080/15287390309353770
pubmed: 12746136
Mancino S, Serafini MM, Viviani B (2019) Neuron-Glia Interactions Studied with In Vitro Co-Cultures. In: Aschner M, Costa L (eds.) Cell Culture Techniques. Neuromethods, vol 145. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9228-7_5
Marchal I, Tursun B (2021) Induced Neurons From Germ Cells in Caenorhabditis elegans. Front Neurosci. https://doi.org/10.3389/fnins.2021.771687
doi: 10.3389/fnins.2021.771687
pubmed: 34924939
pmcid: 8678065
Marton RM, Pașca SP (2020) Organoid and Assembloid Technologies for Investigating Cellular Crosstalk in Human Brain Development and Disease. Trends Cell Biol 30(2):133–143. https://doi.org/10.1016/j.tcb.2019.11.004
doi: 10.1016/j.tcb.2019.11.004
pubmed: 31879153
Marx-Stoelting P, Solano MLM, Aoyama H, Adams RH, Bal-Price A, Buschmann J, Chahoud I, Clark R, Fang T, Fujiwara M, Gelinsky M, Grote K, Horimoto M, Bennekou SH, Kellner R, Kuwagata M, Leist M, Lang A, Li W, Mantovani A, Makris SL, Paumgartten F, Perron M, Sachana M, Schmitt A, Schneider S, Schönfelder G, Schulze F, Shiota K, Solecki R (2021) 25th anniversary of the Berlin workshop on developmental toxicology: DevTox database update, challenges in risk assessment of developmental neurotoxicity and alternative methodologies in bone development and growth. Reprod Toxicol 100:155–162. https://doi.org/10.1016/j.reprotox.2020.11.003
doi: 10.1016/j.reprotox.2020.11.003
pubmed: 33278556
Masjosthusmann S, Barenys M, El-Gamal M, Geerts L, Gerosa L, Gorreja A, Kühne B, Marchetti N, Tigges J, Viviani B, Witters H, Fritsche E (2018) Literature review and appraisal on alternative neurotoxicity testing methods. EFSA Support Publ 15:1410E. https://doi.org/10.2903/SP.EFSA.2018.EN-1410
doi: 10.2903/SP.EFSA.2018.EN-1410
Masjosthusmann S, Blum J, Bartmann K, Dolde X, Holzer AK, Stürzl LC, Hagen Keßel E, Förster N, Dönmez A, Klose J, Pahl M, Waldmann T, Bendt F, Kisitu J, Suciu I, Hübenthal U, Mosig A, Leist M, Fritsche E (2020) Establishment of an a priori protocol for the implementation and interpretation of an in-vitro testing battery for the assessment of developmental neurotoxicity. EFSA Support Publ 17:1938E. https://doi.org/10.2903/SP.EFSA.2020.EN-1938
doi: 10.2903/SP.EFSA.2020.EN-1938
Maurer LL, Philbert MA (2015) The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites. Handb Clin Neurol 131:61–70. https://doi.org/10.1016/B978-0-444-62627-1.00005-6
doi: 10.1016/B978-0-444-62627-1.00005-6
pubmed: 26563783
McComish SF, Caldwell MA (2018) Generation of defined neural populations from pluripotent stem cells. Philos Trans R Soc Lond B Biol Sci 373(1750):20170214. https://doi.org/10.1098/rstb.2017.0214
doi: 10.1098/rstb.2017.0214
pubmed: 29786550
pmcid: 5974438
Meneghello G, Verheyen A, Van Ingen M, Kuijlaars J, Tuefferd M, Van Den Wyngaert I, Nuydens R (2015) Evaluation of established human iPSC-derived neurons to model neurodegenerative diseases. Neuroscience 301:204–212. https://doi.org/10.1016/j.neuroscience.2015.05.071
doi: 10.1016/j.neuroscience.2015.05.071
pubmed: 26047731
Mertens J, Reid D, Lau S, Kim Y, Gage FH (2018) Aging in a Dish: iPSC-Derived and Directly Induced Neurons for Studying Brain Aging and Age-Related Neurodegenerative Diseases. Annu Rev Genet 52:271–293. https://doi.org/10.1146/annurev-genet-120417-031534
doi: 10.1146/annurev-genet-120417-031534
pubmed: 30208291
pmcid: 6415910
Meyer K, Ferraiuolo L, Miranda CJ, Likhite S, McElroy S, Renusch S, Ditsworth D, Lagier-Tourenne C, Smith RA, Ravits J, Burghes AH, Shaw PJ, Cleveland DW, Kolb SJ, Kaspar BK (2014) Direct conversion of patient fibroblasts demonstrates non-cell autonomous toxicity of astrocytes to motor neurons in familial and sporadic ALS. Proc Natl Acad Sci U S A 111(2):829–832. https://doi.org/10.1073/pnas.1314085111
doi: 10.1073/pnas.1314085111
pubmed: 24379375
Mian P, Nolan B, van den Anker JN, van Calsteren K, Allegaert K, Lakhi N, Dallmann A (2021) Mechanistic Coupling of a Novel in silico Cotyledon Perfusion Model and a Physiologically Based Pharmacokinetic Model to Predict Fetal Acetaminophen Pharmacokinetics at Delivery. Front Pediatr. https://doi.org/10.3389/fped.2021.733520
doi: 10.3389/fped.2021.733520
pubmed: 34631628
pmcid: 8496351
Min EK, Lee H, Sung EJ, Seo SW, Song M, Wang S, Kim SS, Bae MA, Kim TY, Lee S, Kim KT (2023) Integrative multi-omics reveals analogous developmental neurotoxicity mechanisms between perfluorobutanesulfonic acid and perfluorooctanesulfonic acid in zebrafish. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2023.131714
doi: 10.1016/j.jhazmat.2023.131714
pubmed: 38141314
Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, Bakiasi G, Tsai LH, Aubourg P, Ransohoff RM, Jaenisch R (2016) Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med 22(11):1358–1367. https://doi.org/10.1038/nm.4189
doi: 10.1038/nm.4189
pubmed: 27668937
pmcid: 5101156
Naranjo-Galindo FJ, Ai R, Fang EF, Nilsen HL, SenGupta T (2022) C elegans as an Animal Model to Study the Intersection of DNA Repair Aging and Neurodegeneration. Front Aging. https://doi.org/10.3389/fragi.2022.916118
doi: 10.3389/fragi.2022.916118
pubmed: 35821838
pmcid: 9261396
Nayak D, Roth TL, McGavern DB (2014) Microglia development and function. Annu Rev Immunol 32:367–402. https://doi.org/10.1146/annurev-immunol-032713-120240
doi: 10.1146/annurev-immunol-032713-120240
pubmed: 24471431
pmcid: 5001846
Nehme R, Zuccaro E, Ghosh SD, Li C, Sherwood JL, Pietilainen O, Barrett LE, Limone F, Worringer KA, Kommineni S, Zang Y, Cacchiarelli D, Meissner A, Adolfsson R, Haggarty S, Madison J, Muller M, Arlotta P, Fu Z, Feng G, Eggan K (2018) Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission. Cell Rep 23(8):2509–2523. https://doi.org/10.1016/j.celrep.2018.04.066
doi: 10.1016/j.celrep.2018.04.066
pubmed: 29791859
pmcid: 6003669
Nelms MD, Mellor CL, Cronin MT, Madden JC, Enoch SJ (2015) Development of an in Silico Profiler for Mitochondrial Toxicity. Chem Res Toxicol 28(10):1891–1902. https://doi.org/10.1021/acs.chemrestox.5b00275
doi: 10.1021/acs.chemrestox.5b00275
pubmed: 26375963
Nicolotti O, Benfenati E, Carotti A, Gadaleta D, Gissi A, Mangiatordi GF, Novellino E (2014) REACH and in silico methods: an attractive opportunity for medicinal chemists. Drug Discov Today 19(11):1757–1768. https://doi.org/10.1016/j.drudis.2014.06.027
doi: 10.1016/j.drudis.2014.06.027
pubmed: 24998783
Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T (2015) Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom 55(1):1–16. https://doi.org/10.1111/cga.12079
doi: 10.1111/cga.12079
Ockleford C, Adriaanse P, Berny P, Brock T, Duquesne S, Grilli S, Hernandez-Jerez AF, Bennekou SH, Klein M, Kuhl T, Laskowski R, Machera K, Pelkonen O, Pieper S, Smith R, Stemmer M, Sundh I, Teodorovic I, Tiktak A, Topping CJ, Wolterink G, Angeli K, Fritsche E, Hernandez-Jerez AF, Leist M, Mantovani A, Menendez P, Pelkonen O, Price A, Viviani B, Chiusolo A, Ruffo F, Terron A, Bennekou SH (2017) Investigation into experimental toxicological properties of plant protection products having a potential link to Parkinson’s disease and childhood leukaemia. EFSA J. https://doi.org/10.2903/j.efsa.2017.4691
doi: 10.2903/j.efsa.2017.4691
pubmed: 32625393
pmcid: 7009892
OECD (1997) Test No. 424: Neurotoxicity Study in Rodents, OECD Guidelines for the Testing of Chemicals, section conclusion, OECD Publishing, Paris. https://doi.org/10.1787/9789264071025-en
OECD (2007) Test No. 426: Developmental Neurotoxicity Study, OECD Guidelines for the Testing of Chemicals, section conclusion, OECD Publishing, Paris. https://doi.org/10.1787/9789264067394-en
OECD (2014) Guidance on grouping of chemicals. OECD Series on Testing and Assessment, No. 194
OECD (2017) Guidance Document for Describing Non-Guideline In Vitro Test Methods, OECD Series on Testing and Assessment, No. 211, OECD Publishing, Paris. https://doi.org/10.1787/9789264274730-en
OECD (2018) Test No. 443: Extended One-Generation Reproductive Toxicity Study, OECD Guidelines for the Testing of Chemicals OECD Publishing, Paris. https://doi.org/10.1787/9789264185371-en
OECD (2020) Overview of Concepts and Available Guidance related to Integrated Approaches to Testing and Assessment (IATA), OECD Series on Testing and Assessment, No. 329
OECD (2021) Case study on the use of integrated approaches to testing and assessment for identification and characterisation of parkinsonian hazard liability of deguelin by an AOP-based testing and read across approach. OECD Series on Testing and Assessment, No. 326
Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, Kim G, Brown MA, Elkahloun AG, Maric D, Sweeney CL, Gossa S, Malech HL, McGavern DB, Park JK (2017) Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci 20(5):753–759. https://doi.org/10.1038/nn.4534
doi: 10.1038/nn.4534
pubmed: 28253233
pmcid: 5404968
Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. https://doi.org/10.1038/nrn3504
doi: 10.1038/nrn3504
pubmed: 23686171
Park JS, Samanta P, Lee S, Lee J, Cho JW, Chun HS, Yoon S, Kim WK (2021) Developmental and Neurotoxicity of Acrylamide to Zebrafish. Int J Mol Sci 22(7):3518. https://doi.org/10.3390/ijms22073518
doi: 10.3390/ijms22073518
pubmed: 33805345
pmcid: 8037265
Parng C, Roy NM, Ton C, Lin Y, McGrath P (2007) Neurotoxicity assessment using zebrafish. J Pharmacol Toxicol Methods 55(1):103–112. https://doi.org/10.1016/j.vascn.2006.04.004
doi: 10.1016/j.vascn.2006.04.004
pubmed: 16769228
Pașca SP, Arlotta P, Bateup HS, Camp JG, Cappello S, Gage FH, Knoblich JA, Kriegstein AR, Lancaster MA, Ming GL, Muotri AR, Park IH, Reiner O, Song H, Studer L, Temple S, Testa G, Treutlein B, Vaccarino FM (2022) A nomenclature consensus for nervous system organoids and assembloids. Nature 609(7929):907–910. https://doi.org/10.1038/s41586-022-05219-6
doi: 10.1038/s41586-022-05219-6
pubmed: 36171373
pmcid: 10571504
Patterson EA, Whelan MP, Worth AP (2021) The role of validation in establishing the scientific credibility of predictive toxicology approaches intended for regulatory application. Comput Toxicol. https://doi.org/10.1016/j.comtox.2020.100144
doi: 10.1016/j.comtox.2020.100144
pubmed: 33681540
pmcid: 7903516
Pistollato F, Cavanaugh SE, Chandrasekera PC (2015) A human-based Integrated Framework For Alzheimer’s Disease Research. J Alzheimer’s Dis 47(4):857–868. https://doi.org/10.3233/jad-150281
doi: 10.3233/jad-150281
Pistollato F, de Gyves EM, Carpi D, Bopp SK, Nunes C, Worth A, Bal-Price A (2020) Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environ Health 19(1):23. https://doi.org/10.1186/s12940-020-00578-x
doi: 10.1186/s12940-020-00578-x
pubmed: 32093744
pmcid: 7038628
Popova G, Soliman SS, Kim CN, Keefe MG, Hennick KM, Jain S, Li T, Tejera D, Shin D, Chhun BB, McGinnis CS, Speir M, Gartner ZJ, Mehta SB, Haeussler M, Hengen KB, Ransohoff RR, Piao X, Nowakowski TJ (2021) Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 28(12):2153-2166.e6. https://doi.org/10.1016/j.stem.2021.08.015
doi: 10.1016/j.stem.2021.08.015
pubmed: 34536354
Porciúncula LO, Goto-Silva L, Ledur PF, Rehen SK (2021) The Age of Brain Organoids: Tailoring Cell Identity and Functionality for Normal Brain Development and Disease Modeling. Front Neurosci. https://doi.org/10.3389/fnins.2021.674563
doi: 10.3389/fnins.2021.674563
pubmed: 34483818
pmcid: 8414411
Quaak I, Brouns MR, Van de Bor M (2013) The dynamics of autism spectrum disorders: how neurotoxic compounds and neurotransmitters interact. Int J Environ Res Public Health 10(8):3384–3408. https://doi.org/10.3390/ijerph10083384
doi: 10.3390/ijerph10083384
pubmed: 23924882
pmcid: 3774444
Queirós L, Pereira JL, Gonçalves FJM, Pacheco M, Aschner M, Pereira P (2019) Caenorhabditis elegans as a tool for environmental risk assessment: emerging and promising applications for a “nobelized worm.” Crit Rev Toxicol 49(5):411–429. https://doi.org/10.1080/10408444.2019.1626801
doi: 10.1080/10408444.2019.1626801
pubmed: 31268799
pmcid: 6823147
Ransohoff RM (2018) All (animal) models (of neurodegeneration) are wrong. Are they also useful? J Exp Med 215(12):2955–2958. https://doi.org/10.1084/jem.20182042
doi: 10.1084/jem.20182042
pubmed: 30459159
pmcid: 6279414
Reynolds BA, Tetzlaff W, Weiss S (1992) A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J Neurosci 12(11):4565–4574. https://doi.org/10.1523/JNEUROSCI.12-11-04565.1992
doi: 10.1523/JNEUROSCI.12-11-04565.1992
pubmed: 1432110
pmcid: 6575989
Richard AM, Huang R, Waidyanatha S, Shinn P, Collins BJ, Thillainadarajah I, Grulke CM, Williams AJ, Lougee RR, Judson RS, Houck KA, Shobair M, Yang C, Rathman JF, Yasgar A, Fitzpatrick SC, Simeonov A, Thomas RS, Crofton KM, Paules RS, Bucher JR, Austin CP, Kavlock RJ, Tice RR (2021) The Tox21 10K Compound Library: Collaborative Chemistry Advancing Toxicology. Chem Res Toxicol 34(2):189–216. https://doi.org/10.1021/acs.chemrestox.0c00264
doi: 10.1021/acs.chemrestox.0c00264
pubmed: 33140634
Roberts JR, Dawley EH, Reigart JR (2019) Children’s low-level pesticide exposure and associations with autism and ADHD: a review. Pediatr Res 85(2):234–241. https://doi.org/10.1038/s41390-018-0200-z
doi: 10.1038/s41390-018-0200-z
pubmed: 30337670
Rodríguez F, López JC, Vargas JP, Broglio C, Gómez Y, Salas C (2002) Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57(3–4):499–503. https://doi.org/10.1016/s0361-9230(01)00682-7
doi: 10.1016/s0361-9230(01)00682-7
pubmed: 11923018
Russell WMS, Burch RL (1959) The Principles of Humane Experimental Technique. Med J Aust 1:500–500. https://doi.org/10.5694/j.1326-5377.1960.tb73127.x
doi: 10.5694/j.1326-5377.1960.tb73127.x
Ruszkiewicz JA, Pinkas A, Miah MR, Weitz RL, Lawes MJA, Akinyemi AJ, Ijomone OM, Aschner M (2018) C. elegans as a model in developmental neurotoxicology. Toxicol Appl Pharmacol 354:126–135. https://doi.org/10.1016/j.taap.2018.03.016
doi: 10.1016/j.taap.2018.03.016
pubmed: 29550512
pmcid: 6087488
Sabate-Soler S, Nickels SL, Saraiva C, Berger E, Dubonyte U, Barmpa K, Lan YJ, Kouno T, Jarazo J, Robertson G, Sharif J, Koseki H, Thome C, Shin JW, Cowley SA, Schwamborn JC (2022) Microglia integration into human midbrain organoids leads to increased neuronal maturation and functionality. Glia 70(7):1267–1288. https://doi.org/10.1002/glia.24167
doi: 10.1002/glia.24167
pubmed: 35262217
pmcid: 9314680
Sachana M, Shafer TJ, Terron A (2021a) Toward a Better Testing Paradigm for Developmental Neurotoxicity: OECD Efforts and Regulatory Considerations. Biology 10(2):86. https://doi.org/10.3390/biology10020086
doi: 10.3390/biology10020086
pubmed: 33498772
pmcid: 7912397
Sachana M, Willett C, Pistollato F, Bal-Price A (2021b) The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod Toxicol 103:159–170. https://doi.org/10.1016/j.reprotox.2021.06.006
doi: 10.1016/j.reprotox.2021.06.006
pubmed: 34147625
pmcid: 8279093
Sahara S, Yanagawa Y, O’Leary DD, Stevens CF (2012) The fraction of cortical GABAergic neurons is constant from near the start of cortical neurogenesis to adulthood. J Neurosci 32(14):4755–4761. https://doi.org/10.1523/JNEUROSCI.6412-11.2012
doi: 10.1523/JNEUROSCI.6412-11.2012
pubmed: 22492031
pmcid: 3325497
Sammi SR, Jameson LE, Conrow KD, Leung MCK, Cannon JR (2022) Caenorhabditis elegans Neurotoxicity Testing: Novel Applications in the Adverse Outcome Pathway Framework. Front Toxicol. https://doi.org/10.3389/ftox.2022.826488
doi: 10.3389/ftox.2022.826488
pubmed: 35373186
pmcid: 8966687
Sánchez-Martínez JD, Cifuentes A, Valdés A (2023) Omics approaches to investigate the neuroprotective capacity of a Citrus sinensis (sweet orange) extract in a Caenorhabditis elegans Alzheimer’s model. Food Res Int. https://doi.org/10.1016/j.foodres.2023.113128
doi: 10.1016/j.foodres.2023.113128
pubmed: 37689893
Schmidt CW (2014) NTP nonneoplastic lesion atlas: a new tool for toxicologic pathology. Environ Health Perspect 122(3):A76–A79. https://doi.org/10.1289/ehp.122-A76
doi: 10.1289/ehp.122-A76
pubmed: 24583717
pmcid: 3948027
Schultz IR and Watanabe KH (2018) The Development of Quantitative AOPs. In: Garcia-Reyero N, Murphy CA (ed) A Systems Biology Approach to Adverse Outcome Pathways for Risk Assessment, 1st edn. Springer Cham. https://doi.org/10.1007/978-3-319-66084-4
Schultz TW, Cronin MTD (2017) Lessons learned from read-across case studies for repeated-dose toxicity. Regul Toxicol Pharmacol RTP 88:185–191. https://doi.org/10.1016/j.yrtph.2017.06.011
doi: 10.1016/j.yrtph.2017.06.011
pubmed: 28655656
SenGupta T, Palikaras K, Esbensen YQ, Konstantinidis G, Galindo FJN, Achanta K, Kassahun H, Stavgiannoudaki I, Bohr VA, Akbari M, Gaare J, Tzoulis C, Tavernarakis N, Nilsen H (2021) Base excision repair causes age-dependent accumulation of single-stranded DNA breaks that contribute to Parkinson disease pathology. Cell Rep. https://doi.org/10.1016/j.celrep.2021.109668
doi: 10.1016/j.celrep.2021.109668
pubmed: 34496255
pmcid: 8441048
SenGupta T, Lefol Y, Lirussi L, Suaste V, Luders T, Gupta S, Aman Y, Sharma K, Fang EF, Nilsen H (2022) Krill oil protects dopaminergic neurons from age-related degeneration through temporal transcriptome rewiring and suppression of several hallmarks of aging. Aging 14(21):8661–8687
doi: 10.18632/aging.204375
pubmed: 36367773
pmcid: 9699765
Shi Y, Yamada K, Liddelow SA, Smith ST, Zhao L, Luo W, Tsai RM, Spina S, Grinberg LT, Rojas JC, Gallardo G, Wang K, Roh J, Robinson G, Finn MB, Jiang H, Sullivan PM, Baufeld C, Wood MW, Sutphen C, McCue L, Xiong C, Del-Aguila JL, Morris JC, Cruchaga C, Fagan AM, Miller BL, Boxer AL, Seeley WW, Butovsky O, Barres BA, Paul SM, Holtzman DM (2017) ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy. Nature 549(7673):523–527. https://doi.org/10.1038/nature24016
doi: 10.1038/nature24016
pubmed: 28959956
pmcid: 5641217
Smirnova L, Hogberg HT, Leist M, Hartung T (2014) Developmental neurotoxicity - challenges in the 21st century and in vitro opportunities. Altex 31(2):129–156
pubmed: 24687333
pmcid: 4778747
Smirnova L, Harris G, Delp J, Valadares M, Pamies D, Hogberg HT, Waldmann T, Leist M, Hartung T (2016) A LUHMES 3D dopaminergic neuronal model for neurotoxicity testing allowing long-term exposure and cellular resilience analysis. Arch Toxicol 90(11):2725–2743. https://doi.org/10.1007/s00204-015-1637-z
doi: 10.1007/s00204-015-1637-z
pubmed: 26647301
Soares MV, Mesadri J, Gonçalves DF, Cordeiro LM, Franzen da Silva A, Obetine Baptista FB, Wagner R, Dalla Corte CL, Soares FAA, Ávila DS (2022) Neurotoxicity induced by toluene: In silico and in vivo evidences of mitochondrial dysfunction and dopaminergic neurodegeneration. Environ Pollut. https://doi.org/10.1016/j.envpol.2022.118856
doi: 10.1016/j.envpol.2022.118856
pubmed: 36155220
Sombers LA, Patisaul HB (2022) Virtual Issue: Neurotoxicology. ACS Chem Neurosci 13(15):2238–2239. https://doi.org/10.1021/acschemneuro.2c00375
doi: 10.1021/acschemneuro.2c00375
pubmed: 35919966
Speicher AM, Wiendl H, Meuth SG, Pawlowski M (2019) Generating microglia from human pluripotent stem cells: novel in vitro models for the study of neurodegeneration. Mol Neurodegener 14(1):46. https://doi.org/10.1186/s13024-019-0347-z
doi: 10.1186/s13024-019-0347-z
pubmed: 31856864
pmcid: 6921408
Spencer PS, Lein PJ (2024) Neurotoxicity. In: Encyclopedia of Toxicology, 4th edn. Academic Press, pp 727–740 https://doi.org/10.1016/B978-0-12-824315-2.00548-0
Spinu N, Bal-Price A, Cronin MTD, Enoch SJ, Madden JC, Worth AP (2019) Development and analysis of an adverse outcome pathway network for human neurotoxicity. Arch Toxicol 93(10):2759–2772. https://doi.org/10.1007/s00204-019-02551-1
doi: 10.1007/s00204-019-02551-1
pubmed: 31444508
Spînu N, Cronin MTD, Lao J, Bal-Price A, Campia I, Enoch SJ, Madden JC, Mora Lagares L, Novič M, Pamies D, Scholz S, Villeneuve DL, Worth AP (2022) Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network. Comput Toxicol. https://doi.org/10.1016/j.comtox.2021.100206
doi: 10.1016/j.comtox.2021.100206
pubmed: 35224319
pmcid: 8857173
Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024
doi: 10.1016/j.cell.2006.07.024
pubmed: 16904174
Takesono A, Kudoh T, Tyler CR (2022) Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol. https://doi.org/10.3389/fphar.2022.718072
doi: 10.3389/fphar.2022.718072
pubmed: 35264948
pmcid: 8900011
Tal T, Yaghoobi B, Lein PJ (2020) Translational Toxicology in Zebrafish. Curr Opin Toxicol 23–24:56–66. https://doi.org/10.1016/j.cotox.2020.05.004
doi: 10.1016/j.cotox.2020.05.004
pubmed: 32656393
pmcid: 7351119
Tebby C, Gao W, Delp J, Carta G, van der Stel W, Leist M, Jennings P, Bois FY (2022) A quantitative AOP of mitochondrial toxicity based on data from three cell lines. Toxicol in Vitro. https://doi.org/10.1016/j.tiv.2022.105345
doi: 10.1016/j.tiv.2022.105345
pubmed: 35278637
Tigges J, Bielec K, Brockerhoff G, Hildebrandt B, Hübenthal U, Kapr J, Koch K, Teichweyde N, Wieczorek D, Rossi A, Fritsche E (2021) Academic application of Good Cell Culture Practice for induced pluripotent stem cells. Altex 38(4):595–614
pubmed: 33963415
Trujillo CA, Gao R, Negraes PD, Gu J, Buchanan J, Preissl S, Wang A, Wu W, Haddad GG, Chaim IA, Domissy A, Vandenberghe M, Devor A, Yeo GW, Voytek B, Muotri AR (2019) Complex Oscillatory Waves Emerging from Cortical Organoids Model Early Human Brain Network Development. Cell Stem Cell 25(4):558-569.e7. https://doi.org/10.1016/j.stem.2019.08.002
doi: 10.1016/j.stem.2019.08.002
pubmed: 31474560
pmcid: 6778040
Tsuji R, Crofton KM (2012) Developmental neurotoxicity guideline study: issues with methodology, evaluation, and regulation. Congenit Anom 52(3):122–128. https://doi.org/10.1111/j.1741-4520.2012.00374.x
doi: 10.1111/j.1741-4520.2012.00374.x
Tukker AM, Wijnolts FMJ, de Groot A, Westerink RHS (2018) Human iPSC-derived neuronal models for in vitro neurotoxicity assessment. Neurotoxicology 67:215–225. https://doi.org/10.1016/j.neuro.2018.06.007
doi: 10.1016/j.neuro.2018.06.007
pubmed: 29909083
US EPA (1991) Guidelines for developmental toxicity risk assessment (EPA/600/FR-91/001). Fed Reg 56(234):63798–63826. https://www.epa.gov/risk/guidelines-developmental-toxicity-risk-assessment
US EPA (1998) Health effects test guidelines: OPPTS 870.6200 neurotoxicity screening battery (EPA 712–C–98–238). https://nepis.epa.gov/Exe/ZyNET.exe/P100IRWB.TXT?ZyActionD=ZyDocument&Client=EPA&Index=1995+Thru+1999&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C95thru99%5CTxt%5C00000034%5CP100IRWB.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL#
van der Stel W, Carta G, Eakins J, Darici S, Delp J, Forsby A, Bennekou SH, Gardner I, Leist M, Danen EHJ, Walker P, Jennings P (2020) Multiparametric assessment of mitochondrial respiratory inhibition in HepG2 and RPTEC/TERT1 cells using a panel of mitochondrial targeting agrochemicals. Arch Toxicol 94(8):2707–2729. https://doi.org/10.1007/s00204-020-02792-5
doi: 10.1007/s00204-020-02792-5
pubmed: 32607615
pmcid: 7395062
Van der Stel W, Carta G, Eakins J, Delp J, Suciu I, Forsby A, Cediel-Ulloa A, Attoff K, Troger F, Kamp H, Gardner I, Zdrazil B, Moné MJ, Ecker GF, Pastor M, Gómez-Tamayo JC, White A, Danen EHJ, Leist M, Walker P, Jennings P, Hougaard Bennekou S (2021) New approach methods (NAMs) supporting read-across: Two neurotoxicity AOP-based IATA case studies. Altex 38(4):615–635
pubmed: 34114044
Voulgaris D, Nikolakopoulou P, Herland A (2022) Generation of Human iPSC-Derived Astrocytes with a mature star-shaped phenotype for CNS modeling. Stem Cell Rev Rep 18(7):2494–2512. https://doi.org/10.1007/s12015-022-10376-2
doi: 10.1007/s12015-022-10376-2
pubmed: 35488987
pmcid: 9489586
Wang Z, Yan A, Li J (2011) In Silico Prediction of Blood Brain Barrier Permeability. SAR QSAR Environ Res 24(1):61–74. https://doi.org/10.1080/1062936X.2012.729224
doi: 10.1080/1062936X.2012.729224
Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, Maherali N, Studer L, Hochedlinger K, Windrem M, Goldman SA (2013) Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12(2):252–264. https://doi.org/10.1016/j.stem.2012.12.002
doi: 10.1016/j.stem.2012.12.002
pubmed: 23395447
pmcid: 3700553
Wenzel TJ, Le J, He J, Alcorn J, Mousseau DD (2023) Fundamental Neurochemistry Review: Incorporating a greater diversity of cell types, including microglia, in brain organoid cultures improves clinical translation. J Neurochem 164(5):560–582. https://doi.org/10.1111/jnc.15741
doi: 10.1111/jnc.15741
pubmed: 36517959
White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340. https://doi.org/10.1098/rstb.1986.0056
doi: 10.1098/rstb.1986.0056
pubmed: 22462104
Wijeyesakere SJ, Wilson DM, Sue Marty M (2020) Prediction of cholinergic compounds by machine-learning. Comput Toxicol 13:100119. https://doi.org/10.1016/J.COMTOX.2020.100119
doi: 10.1016/J.COMTOX.2020.100119
Worth A, Lapenna F-G, S, Serafimova R, (2011) Applicability of QSAR analysis in the evaluation of developmental and neurotoxicity effects for the assessment of the toxicological relevance of metabolites and degradates of pesticide active substances for dietary risk assessment. EFSA Support Publ 8:169E. https://doi.org/10.2903/SP.EFSA.2011.EN-169
doi: 10.2903/SP.EFSA.2011.EN-169
Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, Ang CE, Tang Y, Flores Q, Mall M, Wapinski O, Li M, Ahlenius H, Rubenstein JL, Chang HY, Buylla AA, Südhof TC, Wernig M (2017) Generation of pure GABAergic neurons by transcription factor programming. Nat Methods 14(6):621–628. https://doi.org/10.1038/nmeth.4291
doi: 10.1038/nmeth.4291
pubmed: 28504679
pmcid: 5567689
Zavala J, Freedman AN, Szilagyi JT, Jaspers I, Wambaugh JF, Higuchi M, Rager JE (2020) New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing. Int J Environ Res Public Health 17(6):2124. https://doi.org/10.3390/ijerph17062124
doi: 10.3390/ijerph17062124
pubmed: 32210027
pmcid: 7143849
Zhou-Yang L, Eichhorner S, Karbacher L, Böhnke L, Traxler L, Mertens J (2021) Direct Conversion of Human Fibroblasts to Induced Neurons. Methods Mol Biol 2352:73–96. https://doi.org/10.1007/978-1-0716-1601-7_6
doi: 10.1007/978-1-0716-1601-7_6
pubmed: 34324181