Neat plasma proteomics: getting the best out of the worst.

DIA-NN Extracellular vesicles (EVs) Neat plasma Plasma proteomics diaPASEF

Journal

Clinical proteomics
ISSN: 1542-6416
Titre abrégé: Clin Proteomics
Pays: England
ID NLM: 101184586

Informations de publication

Date de publication:
12 Mar 2024
Historique:
received: 11 01 2024
accepted: 29 02 2024
medline: 13 3 2024
pubmed: 13 3 2024
entrez: 13 3 2024
Statut: epublish

Résumé

Plasma proteomics holds immense potential for clinical research and biomarker discovery, serving as a non-invasive "liquid biopsy" for tissue sampling. Mass spectrometry (MS)-based proteomics, thanks to improvement in speed and robustness, emerges as an ideal technology for exploring the plasma proteome for its unbiased and highly specific protein identification and quantification. Despite its potential, plasma proteomics is still a challenge due to the vast dynamic range of protein abundance, hindering the detection of less abundant proteins. Different approaches can help overcome this challenge. Conventional depletion methods face limitations in cost, throughput, accuracy, and off-target depletion. Nanoparticle-based enrichment shows promise in compressing dynamic range, but cost remains a constraint. Enrichment strategies for extracellular vesicles (EVs) can enhance plasma proteome coverage dramatically, but current methods are still too laborious for large series. Neat plasma remains popular for its cost-effectiveness, time efficiency, and low volume requirement. We used a test set of 33 plasma samples for all evaluations. Samples were digested using S-Trap and analyzed on Evosep One and nanoElute coupled to a timsTOF Pro using different elution gradients and ion mobility ranges. Data were mainly analyzed using library-free searches using DIA-NN. This study explores ways to improve proteome coverage in neat plasma both in MS data acquisition and MS data analysis. We demonstrate the value of sampling smaller hydrophilic peptides, increasing chromatographic separation, and using library-free searches. Additionally, we introduce the EV boost approach, that leverages on the extracellular vesicle fraction to enhance protein identification in neat plasma samples. Globally, our optimized analysis workflow allows the quantification of over 1000 proteins in neat plasma with a 24SPD throughput. We believe that these considerations can be of help independently of the LC-MS platform used.

Identifiants

pubmed: 38475715
doi: 10.1186/s12014-024-09477-6
pii: 10.1186/s12014-024-09477-6
doi:

Types de publication

Journal Article

Langues

eng

Pagination

22

Informations de copyright

© 2024. The Author(s).

Références

Ignjatovic V, Geyer PE, Palaniappan KK, Chaaban JE, Omenn GS, Baker MS, et al. Mass spectrometry-based plasma proteomics: considerations from sample collection to achieving translational data. J Proteome Res. 2019;18:4085–97.
doi: 10.1021/acs.jproteome.9b00503 pubmed: 31573204 pmcid: 6898750
Anderson NL. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem. 2010;56:177–85.
doi: 10.1373/clinchem.2009.126706 pubmed: 19884488
Bader JM, Albrecht V, Mann M. MS-Based Proteomics of Body Fluids: The End of the Beginning. Molecular & Cellular Proteomics [Internet]. 2023 [cited 2023 Oct 24];22. Available from: https://www.mcponline.org/article/S1535-9476(23)00088-9/abstract
Lan J, Núñez Galindo A, Doecke J, Fowler C, Martins RN, Rainey-Smith SR, et al. Systematic evaluation of the use of human plasma and serum for mass-spectrometry-based shotgun proteomics. J Proteome Res. 2018;17:1426–35.
doi: 10.1021/acs.jproteome.7b00788 pubmed: 29451788
Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects *. Mol Cell Proteomics. 2002;1:845–67.
doi: 10.1074/mcp.R200007-MCP200 pubmed: 12488461
Gianazza E, Miller I, Palazzolo L, Parravicini C, Eberini I. With or without you—Proteomics with or without major plasma/serum proteins. J Proteomics. 2016;140:62–80.
doi: 10.1016/j.jprot.2016.04.002 pubmed: 27072114
Viode A, van Zalm P, Smolen KK, Fatou B, Stevenson D, Jha M, et al. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. Sci Adv. 2023;9:eadf9717.
doi: 10.1126/sciadv.adf9717 pubmed: 36989362 pmcid: 10058233
Tu C, Rudnick PA, Martinez MY, Cheek KL, Stein SE, Slebos RJC, et al. Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res. 2010;9:4982–91.
doi: 10.1021/pr100646w pubmed: 20677825 pmcid: 2948641
Blume JE, Manning WC, Troiano G, Hornburg D, Figa M, Hesterberg L, et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat Commun. 2020;11:3662.
doi: 10.1038/s41467-020-17033-7 pubmed: 32699280 pmcid: 7376165
Ferdosi S, Tangeysh B, Brown TR, Everley PA, Figa M, McLean M, et al. Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano–bio interactions. Proc Natl Acad Sci USA. 2022;119: e2106053119.
doi: 10.1073/pnas.2106053119 pubmed: 35275789 pmcid: 8931255
Huang T, Wang J, Stukalov A, Donovan MKR, Ferdosi S, Williamson L, et al. Protein Coronas on Functionalized Nanoparticles Enable Quantitative and Precise Large-Scale Deep Plasma Proteomics. bioRxiv. 2023;2023.08.28.555225.
Kverneland AH, Østergaard O, Emdal KB, Svane IM, Olsen JV. Differential ultracentrifugation enables deep plasma proteomics through enrichment of extracellular vesicles. Proteomics. 2023;23:2200039.
doi: 10.1002/pmic.202200039
Wu CC, Tsantilas KA, Park J, Plubell D, Naicker P, Govender I, et al. Mag-Net: Rapid enrichment of membrane-bound particles enables high coverage quantitative analysis of the plasma proteome [Internet]. bioRxiv; 2023 [cited 2023 Oct 24]. p. 2023.06.10.544439. https://doi.org/10.1101/2023.06.10.544439v2
Woo J, Zhang Q. A streamlined high-throughput plasma proteomics platform for clinical proteomics with improved proteome coverage, reproducibility, and robustness. J Am Soc Mass Spectrom. 2023;34:754–62.
doi: 10.1021/jasms.3c00022 pubmed: 36975161 pmcid: 10080683
Geyer PE, Voytik E, Treit PV, Doll S, Kleinhempel A, Niu L, et al. Plasma Proteome Profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol Med. 2019;11: e10427.
doi: 10.15252/emmm.201910427 pubmed: 31566909 pmcid: 6835559
Meier F, Brunner A-D, Frank M, Ha A, Bludau I, Voytik E, et al. diaPASEF: parallel accumulation-serial fragmentation combined with data-independent acquisition. Nat Methods. 2020;17:1229–36.
doi: 10.1038/s41592-020-00998-0 pubmed: 33257825
Meier F, Park MA, Mann M. Trapped ion mobility spectrometry and parallel accumulation-serial fragmentation in proteomics. Mol Cell Proteomics. 2021;20: 100138.
doi: 10.1016/j.mcpro.2021.100138 pubmed: 34416385 pmcid: 8453224
Soni RK. High-Throughput Plasma Proteomic Profiling. In: Garg U, editor. Clinical Applications of Mass Spectrometry in Biomolecular Analysis: Methods and Protocols. New York, NY: Springer US; 2022 [cited 2023 Oct 24]. p. 411–20. https://doi.org/10.1007/978-1-0716-2565-1_36
Saraswat M, Garapati K, Mun D-G, Pandey A. Extensive heterogeneity of glycopeptides in plasma revealed by deep glycoproteomic analysis using size-exclusion chromatography. Mol Omics. 17:939–47.
Chhuon C, Herrera-Marcos LV, Zhang S-Y, Charrière-Bertrand C, Jung V, Lipecka J, et al. Proteomics of plasma and plasma-treated podocytes: application to focal and segmental glomerulosclerosis. Int J Mol Sci. 2023;24:12124.
doi: 10.3390/ijms241512124 pubmed: 37569500 pmcid: 10418338
Harel M, Oren-Giladi P, Kaidar-Person O, Shaked Y, Geiger T. Proteomics of microparticles with SILAC Quantification (PROMIS-Quan): a novel proteomic method for plasma biomarker quantification. Mol Cell Proteomics. 2015;14:1127–36.
doi: 10.1074/mcp.M114.043364 pubmed: 25624350 pmcid: 4390257
Demichev V, Messner CB, Vernardis SI, Lilley KS, Ralser M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat Methods. 2020;17:41–4.
doi: 10.1038/s41592-019-0638-x pubmed: 31768060
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2021;50:D543–52.
doi: 10.1093/nar/gkab1038 pmcid: 8728295
Searle BC, Swearingen KE, Barnes CA, Schmidt T, Gessulat S, Küster B, et al. Generating high quality libraries for DIA MS with empirically corrected peptide predictions. Nat Commun. 2020;11:1548.
doi: 10.1038/s41467-020-15346-1 pubmed: 32214105 pmcid: 7096433
Searle BC, Pino LK, Egertson JD, Ting YS, Lawrence RT, MacLean BX, et al. Chromatogram libraries improve peptide detection and quantification by data independent acquisition mass spectrometry. Nat Commun. 2018;9:5128.
doi: 10.1038/s41467-018-07454-w pubmed: 30510204 pmcid: 6277451
Messner CB, Demichev V, Wendisch D, Michalick L, White M, Freiwald A, et al. Ultra-high-throughput clinical proteomics reveals classifiers of covid-19 infection. Cells. 2020;11:11-24.e4.
Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015. Doi: https://doi.org/10.3402/jev.v4.27066 .
Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727.
doi: 10.3390/cells8070727 pubmed: 31311206 pmcid: 6678302
Valencia K, Montuenga LM. Exosomes in liquid biopsy: the nanometric world in the pursuit of precision oncology. Cancers. 2021;13:2147.
doi: 10.3390/cancers13092147 pubmed: 33946893 pmcid: 8124368

Auteurs

Ines Metatla (I)

Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France.

Kevin Roger (K)

Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France.

Cerina Chhuon (C)

Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France.

Sara Ceccacci (S)

Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France.

Manuel Chapelle (M)

Bruker Daltonique SA, 34 Rue de l'Industrie, 67166, Wissembourg Cedex, France.
Bruker Daltonique SA, 34 Rue de l'Industrie, 67166, Wissembourg Cedex, France.

Vadim Demichev (V)

Department of Biochemistry, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.

Ida Chiara Guerrera (IC)

Proteomics Platform Necker, Université Paris Cité-Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, 75015, Paris, France. chiara.guerrera@inserm.fr.

Classifications MeSH