Dynamic similarity and the peculiar allometry of maximum running speed.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 Mar 2024
11 Mar 2024
Historique:
received:
25
09
2023
accepted:
20
02
2024
medline:
12
3
2024
pubmed:
12
3
2024
entrez:
12
3
2024
Statut:
epublish
Résumé
Animal performance fundamentally influences behaviour, ecology, and evolution. It typically varies monotonously with size. A notable exception is maximum running speed; the fastest animals are of intermediate size. Here we show that this peculiar allometry results from the competition between two musculoskeletal constraints: the kinetic energy capacity, which dominates in small animals, and the work capacity, which reigns supreme in large animals. The ratio of both capacities defines the physiological similarity index Γ, a dimensionless number akin to the Reynolds number in fluid mechanics. The scaling of Γ indicates a transition from a dominance of muscle forces to a dominance of inertial forces as animals grow in size; its magnitude defines conditions of "dynamic similarity" that enable comparison and estimates of locomotor performance across extant and extinct animals; and the physical parameters that define it highlight opportunities for adaptations in musculoskeletal "design" that depart from the eternal null hypothesis of geometric similarity. The physiological similarity index challenges the Froude number as prevailing dynamic similarity condition, reveals that the differential growth of muscle and weight forces central to classic scaling theory is of secondary importance for the majority of terrestrial animals, and suggests avenues for comparative analyses of locomotor systems.
Identifiants
pubmed: 38467620
doi: 10.1038/s41467-024-46269-w
pii: 10.1038/s41467-024-46269-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2181Subventions
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 851705
Organisme : Human Frontier Science Program (HFSP)
ID : RGY0073/2020
Informations de copyright
© 2024. The Author(s).
Références
Thompson, D. W. On Growth and Form, Vol. 2 (Cambridge University Press, 1917).
Hill, A. V. The dimensions of animals and their muscular dynamics. Science Progress 38, 209–230 (1950).
Heglund, N. C., Taylor, C. R. & McMahon, T. A. Scaling stride frequency and gait to animal size: Mice to horses. Science 186, 1112–1113 (1974).
pubmed: 4469699
doi: 10.1126/science.186.4169.1112
McMahon, T. A. Using body size to understand the structural design of animals: quadrupedal locomotion. J. Appl. Physiol. 39, 619–627 (1975).
pubmed: 1194153
doi: 10.1152/jappl.1975.39.4.619
Alexander, R. M. & Jayes, A. S. A dynamic similarity hypothesis for the gaits of quadrupedal mammals. J. Zool. 201, 135–152 (1983).
doi: 10.1111/j.1469-7998.1983.tb04266.x
Garland, T. The relation between maximal running speed and body mass in terrestrial mammals. J. Zool. 199, 157–170 (1983).
doi: 10.1111/j.1469-7998.1983.tb02087.x
McMahon, T. A., Bonner, J. T. & Freeman, W. On Size and Life (Scientific American Library New York, 1983).
Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? (Cambridge University Press, 1984).
Farley, C. T., Glasheen, J. & McMahon, T. A. Running springs: speed and animal size. J. Exp. Biol. 185, 71–86 (1993).
pubmed: 8294853
doi: 10.1242/jeb.185.1.71
Iriarte-Díaz, J. Differential scaling of locomotor performance in small and large terrestrial mammals. J. Exp. Biol. 205, 2897 (2002).
pubmed: 12177154
doi: 10.1242/jeb.205.18.2897
Bejan, A. & Marden, J. H. Unifying constructal theory for scale effects in running, swimming and flying. J Exp Biol. 209, 238–248 (2006).
pubmed: 16391346
doi: 10.1242/jeb.01974
Clemente, C. J., Thompson, G. G. & Withers, P. C. Evolutionary relationships of sprint speed in australian varanid lizards. J. Zool. 278, 270–280 (2009).
doi: 10.1111/j.1469-7998.2009.00559.x
Clemente, C. J., Withers, P. C. & Thompson, G. Optimal body size with respect to maximal speed for the yellow-spotted monitor lizard (varanus panoptes; varanidae). Physiol. Biochem. Zool. 85, 265–273 (2012).
pubmed: 22494982
doi: 10.1086/665275
Meyer-Vernet, N. & Rospars, J.-P. Maximum relative speeds of living organisms: why do bacteria perform as fast as ostriches? Phys. Biol. 13, 066006 (2016).
pubmed: 27848928
doi: 10.1088/1478-3975/13/6/066006
Fuentes, M. A. Theoretical considerations on maximum running speeds for large and small animals. J. Theoret. Biol. 390, 127–135 (2016).
doi: 10.1016/j.jtbi.2015.10.039
Dick, T. J. & Clemente, C. J. Where have all the giants gone? how animals deal with the problem of size. PLoS Biol. 15, e2000473 (2017).
pubmed: 28076354
pmcid: 5226675
doi: 10.1371/journal.pbio.2000473
Hirt, M. R., Jetz, W., Rall, B. C. & Brose, U. A general scaling law reveals why the largest animals are not the fastest. Nat. Ecol. Evol. 1, 1116–1122 (2017).
pubmed: 29046579
doi: 10.1038/s41559-017-0241-4
Usherwood, J. R. & Gladman, N. W. Why are the fastest runners of intermediate size? contrasting scaling of mechanical demands and muscle supply of work and power. Biol. Lett. 16, 20200579 (2020).
pubmed: 33023380
pmcid: 7655479
doi: 10.1098/rsbl.2020.0579
Günther, M. et al. Rules of nature’s formula run: Muscle mechanics during late stance is the key to explaining maximum running speed. J. Theoret. Biol. 523, 110714 (2021).
doi: 10.1016/j.jtbi.2021.110714
Stahl, W. R. Similarity and dimensional methods in biology. Science 137, 205–212 (1962).
pubmed: 13916096
doi: 10.1126/science.137.3525.205
Gunther, B. Dimensional analysis and theory of biological similarity. Physiol. Rev. 55, 659–699 (1975).
pubmed: 1103169
doi: 10.1152/physrev.1975.55.4.659
Alexander, R. M. Estimates of speeds of dinosaurs. Nature 261, 129–130 (1976).
doi: 10.1038/261129a0
Cavagna, G. A., Heglund, N. C. & Taylor, C. R. Mechanical work in terrestrial locomotion: two basic mechanisms for minimizing energy expenditure. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 233, R243–R261 (1977).
doi: 10.1152/ajpregu.1977.233.5.R243
Blickhan, R. The spring-mass model for running and hopping. J. Biomech. 22, 1217–1227 (1989).
pubmed: 2625422
doi: 10.1016/0021-9290(89)90224-8
Borelli, G. A. De Motu Animalium (Rome, 1680).
Labonte, D. A theory of physiological similarity for muscle-driven motion. PNAS 120, e2221217120 (2023).
pubmed: 37285395
pmcid: 10268211
doi: 10.1073/pnas.2221217120
Bennet-Clark, H. Scale effects in jumping animals. In Pedley, T. J. (ed.) Scale Effects in Animal Locomotion, 185–201 (Academic Press London/New York, 1977).
Gabriel, J. M. The effect of animal design on jumping performance. J. Zool. 204, 533–539 (1984).
doi: 10.1111/j.1469-7998.1984.tb02385.x
Scholz, M. N., Bobbert, M. F. & Van Soest, A. K. Scaling and jumping: gravity loses grip on small jumpers. J. Theoret. Biol. 240, 554–561 (2006).
doi: 10.1016/j.jtbi.2005.10.015
Bobbert, M. F. Effects of isometric scaling on vertical jumping performance. PLOS One 8, e71209 (2013).
pubmed: 23936494
pmcid: 3731318
doi: 10.1371/journal.pone.0071209
Marsh, R. & John-Alder, H. Jumping performance of hylid frogs measured with high-speed cine film. J. Exp. Biol. 188, 131–141 (1994).
pubmed: 7964379
doi: 10.1242/jeb.188.1.131
Meyer-Vernet, N. & Rospars, J.-P. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales. Am. J. Phys. 83, 719–722 (2015).
doi: 10.1119/1.4917310
Sutton, G. P., Doroshenko, M., Cullen, D. A. & Burrows, M. Take-off speed in jumping mantises depends on body size and a power-limited mechanism. J. Exp. Biol. 219, 2127 (2016).
pubmed: 27284067
pmcid: 4958293
Hawkes, E. W. et al. Engineered jumpers overcome biological limits via work multiplication. Nature 604, 657–661 (2022).
pubmed: 35478234
doi: 10.1038/s41586-022-04606-3
Labonte, D. & Holt, N. Beyond power limits: the kinetic energy capacity of skeletal muscle. bioRxiv 2024.03.02.583090 https://doi.org/10.1101/2024.03.02.583090 (2024).
Sutton, G. P. et al. Why do large animals never actuate their jumps with latch-mediated springs? because they can jump higher without them. Integr. Comp. Biol. 59, 1609–1618 (2019).
pubmed: 31399734
pmcid: 6907395
doi: 10.1093/icb/icz145
Boehm, C., Schultz, J. & Clemente, C. Understanding the limits to the hydraulic leg mechanism: the effects of speed and size on limb kinematics in vagrant arachnids. J. Comp. Physiol. A 207, 105–116 (2021).
doi: 10.1007/s00359-021-01468-4
Chappell, R. Fitting bent lines to data, with applications to allometry. J. Theoret. Biol. 138, 235–256 (1989).
doi: 10.1016/S0022-5193(89)80141-9
Heglund, N. C. & Taylor, C. R. Speed, stride frequency and energy cost per stride: how do they change with body size and gait? J. Exp. Biol. 138, 301–318 (1988).
pubmed: 3193059
doi: 10.1242/jeb.138.1.301
Biewener, A. A. Scaling body support in mammals: limb posture and muscle mechanics. Science 245, 45–48 (1989).
pubmed: 2740914
doi: 10.1126/science.2740914
Biewener, A. A. Biomechanical consequences of scaling. J. Exp. Biol. 208, 1665–1676 (2005).
pubmed: 15855398
doi: 10.1242/jeb.01520
Ren, L., Miller, C. E., Lair, R. & Hutchinson, J. R. Integration of biomechanical compliance, leverage, and power in elephant limbs. Proc. Natl Acad. Sci. 107, 7078–7082 (2010).
pubmed: 20351297
pmcid: 2872429
doi: 10.1073/pnas.0911396107
Basu, C. & Hutchinson, J. R. Low effective mechanical advantage of giraffes’ limbs during walking reveals trade-off between limb length and locomotor performance. Proc. Natl Acad. Sci. 119, e2108471119 (2022).
pubmed: 35867765
pmcid: 9282232
doi: 10.1073/pnas.2108471119
Roberts, T. J., Marsh Richard, L., Weyand Peter, G. & Richard, T. C. Muscular force in running turkeys: the economy of minimizing work. Science 275, 1113–1115 (1997).
pubmed: 9027309
doi: 10.1126/science.275.5303.1113
Biewener, A. A., Konieczynski, D. D. & Baudinette, R. V. In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies. J. Exp. Biol. 201, 1681–1694 (1998).
pubmed: 9576879
doi: 10.1242/jeb.201.11.1681
Daley, M. A. & Biewener, A. A. Muscle force-length dynamics during level versus incline locomotion: a comparison of in vivo performance of two guinea fowl ankle extensors. J. Exp. Biol. 206, 2941–2958 (2003).
pubmed: 12878663
doi: 10.1242/jeb.00503
Aerts, P. & Nauwelaerts, S. Environmentally induced mechanical feedback in locomotion: frog performance as a model. J. Theoret. Biol. 261, 372–378 (2009).
doi: 10.1016/j.jtbi.2009.07.042
Richards, C. T. & Sawicki, G. S. Elastic recoil can either amplify or attenuate muscle-tendon power, depending on inertial vs. fluid dynamic loading. J. Theoret. Biol. 313, 68–78 (2012).
doi: 10.1016/j.jtbi.2012.07.033
Clemente, C. J. & Richards, C. Muscle function and hydrodynamics limit power and speed in swimming frogs. Nat. Commun. 4, 2737 (2013).
pubmed: 24177194
doi: 10.1038/ncomms3737
Ruina, A., Bertram, J. E. A. & Srinivasan, M. A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J Theoret. Biol. 237, 170–192 (2005).
doi: 10.1016/j.jtbi.2005.04.004
Galilei, G. Dialogues Concerning Two New Sciences (Lodewijk Elzevir, 1638).
Haldane, J. B. S. On being the right size. Harper’s Mag. 152, 424–427 (1926).
McMahon, T. Size and shape in biology: elastic criteria impose limits on biological proportions, and consequently on metabolic rates. Science 179, 1201–1204 (1973).
pubmed: 4689015
doi: 10.1126/science.179.4079.1201
Taylor, C. Energy cost of animal locomotion. In Bolis, L., Schmidt-Nielsen, K. & Maddrell, S. H. P. (eds.) Comparative Physiology, 23–41 (North Holland Publishing Co. Amsterdam, 1973).
Rubin, C. T. & Lanyon, L. E. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J. Theoret. Biol. 107, 321–327 (1984).
doi: 10.1016/S0022-5193(84)80031-4
Taylor, C. R., Caldwell Sandra, L. & Rowntree, V. J. Running up and down hills: Some consequences of size. Science 178, 1096–1097 (1972).
pubmed: 5086836
doi: 10.1126/science.178.4065.1096
Birn-Jeffery, A. V. & Higham, T. E. The scaling of uphill and downhill locomotion in legged animals. Integr. Comp. Biol. 54, 1159–1172 (2014).
pubmed: 24733147
doi: 10.1093/icb/icu015
Halsey, L. G. & White, C. R. A different angle: comparative analyses of whole-animal transport costs when running uphill. J. Exp. Biol. 220, 161–166 (2017).
pubmed: 27802142
Hutchinson, J. R. & Garcia, M. Tyrannosaurus was not a fast runner. Nature 415, 1018 (2002).
pubmed: 11875567
doi: 10.1038/4151018a
Hutchinson, J. R. The evolutionary biomechanics of locomotor function in giant land animals. J. Exp. Biol. 224, jeb217463 (2021).
pubmed: 34100541
pmcid: 8214834
doi: 10.1242/jeb.217463
Bishop, P. J. et al. The influence of speed and size on avian terrestrial locomotor biomechanics: predicting locomotion in extinct theropod dinosaurs. PLOS One 13, e0192172 (2018).
pubmed: 29466362
pmcid: 5821450
doi: 10.1371/journal.pone.0192172
Vogel, S. Modes and scaling in aquatic locomotion. Integr. Comp. Biol. 48, 702–712 (2008).
pubmed: 21669826
doi: 10.1093/icb/icn014
Cieri, R. L., Dick, T. J. M. & Clemente, C. J. Monitoring muscle over three orders of magnitude: Widespread positive allometry among locomotor and body support musculature in the pectoral girdle of varanid lizards (varanidae). J. Anat. 237, 1114–1135 (2020).
pubmed: 32710503
pmcid: 7704238
doi: 10.1111/joa.13273
Bishop, P. J., Wright, M. A. & Pierce, S. E. Whole-limb scaling of muscle mass and force-generating capacity in amniotes. PeerJ 9, e12574 (2021).
pubmed: 34909284
pmcid: 8638577
doi: 10.7717/peerj.12574
Usherwood, J. R. Constraints on muscle performance provide a novel explanation for the scaling of posture in terrestrial animals. Biol. Lett. 9, 20130414 (2013).
pubmed: 23825086
pmcid: 3730652
doi: 10.1098/rsbl.2013.0414
Carballido, J. L. et al. A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc. R. Soc. B Biol. Sci. 284, 20171219 (2017).
doi: 10.1098/rspb.2017.1219
Sánchez-Rodríguez, J., Raufaste, C. & Argentina, M. Scaling the tail beat frequency and swimming speed in underwater undulatory swimming. Nat. Commun. 14, 5569 (2023).
pubmed: 37689714
pmcid: 10492801
doi: 10.1038/s41467-023-41368-6
Alexander, R. M., Langman, V. A. & Jayes, A. S. Fast locomotion of some African ungulates. J. Zool. 183, 291–300 (1977).
doi: 10.1111/j.1469-7998.1977.tb04188.x
Elliott, J. P., Cowan, I. M. & Holling, C. Prey capture by the African lion. Can. J. Zool. 55, 1811–1828 (1977).
doi: 10.1139/z77-235
Miller, P. L. A possible sensory function for the stop–go patterns of running in phorid flies. Physiol. Entomol. 4, 361–370 (1979).
doi: 10.1111/j.1365-3032.1979.tb00628.x
Auffenberg, W. The Behavioral Ecology of the Komodo Monitor University Presses of Florida. (University Presses of Florida: Gainesville, 1981).
Forsythe, T. G. Locomotion in ground beetles (coleoptera carabidae): An interpretation of leg structure in functional terms. J. Zool. 200, 493–507 (1983).
doi: 10.1111/j.1469-7998.1983.tb02811.x
Bleckmann, H. & Barth, F. G. Sensory ecology of a semi-aquatic spider (dolomedes triton). Behav. Ecol. Sociobiol. 14, 303–312 (1984).
doi: 10.1007/BF00299502
Evans, M. E. G. & Forsythe, T. G. A comparison of adaptations to running, pushing and burrowing in some adult coleoptera: especially carabidae. J. Zool. 202, 513–534 (1984).
doi: 10.1111/j.1469-7998.1984.tb05049.x
Nicolson, S. W., Bartholomew, G. A. & Seely, M. K. Ecological correlates of locomotion speed, morphometries and body temperature in three namib desert tenebrionid beetles. South Afr. J. Zool. 19, 131–134 (1984).
doi: 10.1080/02541858.1984.11447872
Marsh, A. C. Microclimatic factors influencing foraging patterns and success of the thermophilic desert ant, Ocymyrmex barbiger. Insectes Sociaux 32, 286–296 (1985).
doi: 10.1007/BF02224917
Full, R., Blickhan, R. & Ting, L. Leg design in hexapedal runners. J. Exp. Biol. 158, 369–390 (1991).
pubmed: 1919412
doi: 10.1242/jeb.158.1.369
Gorb, S. N. & Barth, F. G. Locomotor behavior during prey-capture of a fishing spider, dolomedes plantarius (araneae: Araneidae): Galloping and stopping. The J. Arachnol. 22, 89–93 (1994).
Ting, L. H., Blickhan, R. & Full, R. J. Dynamic and static stability in hexapedal runners. J. Exp. Biol. 197, 251–269 (1994).
pubmed: 7852905
doi: 10.1242/jeb.197.1.251
Zollikofer, C. P. E. Stepping patterns in ants: I. influence of speed and curvature. J. Exp. Biol. 192, 95–106 (1994).
pubmed: 9317406
doi: 10.1242/jeb.192.1.95
Kamoun, S. & Hogenhout, S. Flightlessness and rapid terrestrial locomotion in tiger beetles of the cicindela l. subgenus rivacindela van nidek from saline habitats of Australia (coleoptera: Cicindelidae). Coleopterists’ Bull. 50, 221–230 (1996).
Gilbert, C. Visual control of cursorial prey pursuit by tiger beetles (cicindelidae). J. Comp. Physiol. A 181, 217–230 (1997).
doi: 10.1007/s003590050108
Wilson, G. R. Australian Camel Racing. Canberra: Rural Industries Research, (Rural Industries Research and Development Corporation, 1999).
Amaya, C. C., Klawinski, P. D. & Formanowicz, D. R. The effects of leg autotomy on running speed and foraging ability in two species of wolf spider, (lycosidae). Am. Midl. Nat. 145, 201–205 (2001).
doi: 10.1674/0003-0031(2001)145[0201:TEOLAO]2.0.CO;2
Van Damme, R. & Vanhooydonck, B. Origins of interspecific variation in lizard sprint capacity. Funct. Ecol. 15, 186–202 (2001).
doi: 10.1046/j.1365-2435.2001.00513.x
Christiansen, P. Locomotion in terrestrial mammals: the influence of body mass, limb length and bone proportions on speed. Zool. J. Linn. Soc. 136, 685–714 (2002).
doi: 10.1046/j.1096-3642.2002.00041.x
Williams, T. M. et al. Running energetics of the North American river otter: do short legs necessarily reduce efficiency on land? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 133, 203–12 (2002).
doi: 10.1016/S1095-6433(02)00136-8
Hutchinson, J. R., Famini, D., Lair, R. & Kram, R. Are fast-moving elephants really running? Nature 422, 493–494 (2003).
pubmed: 12673241
doi: 10.1038/422493a
Apontes, P. & Brown, C. A. Between-sex variation in running speed and a potential cost of leg autotomy in the wolf spider pirata sedentarius. Am. Midl. Nat. 154, 115–125 (2005).
doi: 10.1674/0003-0031(2005)154[0115:BVIRSA]2.0.CO;2
Nelson, M. K. & Formanowicz, D. R. Relationship between escape speed and flight distance in a wolf spider, hogna carolinensis (walckenaer 1805). J. Arachnol. 33, 153–158 (2005).
doi: 10.1636/S03-37
Dangles, O., Ory, N., Steinmann, T., Christides, J.-P. & Casas, J. Spider’s attack versus cricket’s escape: velocity modes determine success. Anim. Behav. 72, 603–610 (2006).
doi: 10.1016/j.anbehav.2005.11.018
Hutchinson, J. R. et al. The locomotor kinematics of Asian and African elephants: changes with speed and size. J. Exp. Biol. 209, 3812–3827 (2006).
pubmed: 16985198
doi: 10.1242/jeb.02443
Schmidt, W. Reptiles and Amphibians of Southern Africa (Struik, 2006).
Hurlbert, A. H., Ballantyne, F. & Powell, S. Shaking a leg and hot to trot: the effects of body size and temperature on running speed in ants. Ecol. Entomol. 33, 144–154 (2008).
doi: 10.1111/j.1365-2311.2007.00962.x
Prenter, J., Pérez-Staples, D. & Taylor, P. W. Functional relations between locomotor performance traits in spiders and implications for evolutionary hypotheses. BMC Res. Notes 3, 306 (2010).
pubmed: 21080931
pmcid: 2998518
doi: 10.1186/1756-0500-3-306
Wu, G. C., Wright, J. C., Whitaker, D. L. & Ahn, A. N. Kinematic evidence for superfast locomotory muscle in two species of teneriffiid mites. J. Exp. Biol. 213, 2551 (2010).
pubmed: 20639415
doi: 10.1242/jeb.024463
Spagna, J. C., Valdivia, E. A. & Mohan, V. Gait characteristics of two fast-running spider species (hololena adnexa and hololena curta), including an aerial phase (araneae: Agelenidae). J. Arachnol. 39, 84–92 (2011).
doi: 10.1636/B10-45.1
McGinley, R. H., Prenter, J. & Taylor, P. W. Whole-organism performance in a jumping spider, Servaea incana (Araneae: Salticidae):links with morphology and between performance traits. Biol. J. Linnean Soc. 110, 644–657 (2013).
doi: 10.1111/bij.12155
Bonner, J. T. Size and Cycle: an Essay on the Structure of Biology, Vol. 2087 (Princeton University Press, 2015).
de Albuquerque, R. L., Bonine, K. E. & Garland, T. J. Speed and endurance do not trade off in phrynosomatid lizards. Physiol. Biochem. Zool. 88, 634–47 (2015).
pubmed: 26658411
doi: 10.1086/683678
Rubin, S., Young, M. H.-Y., Wright, J. C., Whitaker, D. L. & Ahn, A. N. Exceptional running and turning performance in a mite. J Exp Bio 219, 676–685 (2016).
Weihmann, T., Brun, P.-G. & Pycroft, E. Speed dependent phase shifts and gait changes in cockroaches running on substrates of different slipperiness. Front. Zool. 14, 54 (2017).
pubmed: 29225659
pmcid: 5719566
doi: 10.1186/s12983-017-0232-y
Peattie, A. M. & Full, R. J. Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. PNAS 104, 18595–18600 (2007).
pubmed: 18000044
pmcid: 2141822
doi: 10.1073/pnas.0707591104
Labonte, D. et al. Extreme positive allometry of animal adhesive pads and the size limits of adhesion-based climbing. PNAS 113, 1297–1302 (2016).
pubmed: 26787862
pmcid: 4747726
doi: 10.1073/pnas.1519459113
Cieri, R. L., Dick, T. J. M., Morris, J. S. & Clemente, C. J. Scaling of fibre area and fibre glycogen concentration in the hindlimb musculature of monitor lizards: implications for locomotor performance with increasing body size. J. Exp. Biol. 225, jeb243380 (2022).
pubmed: 35258618
doi: 10.1242/jeb.243380
Püffel, F., Roces, F. & Labonte, D. Strong positive allometry of bite force in leaf-cutter ants increases the range of cuttable plant tissues. J. Exp. Biol. 226, jeb245140 (2023).
pubmed: 37293932
pmcid: 10357016
doi: 10.1242/jeb.245140
Bennett, M. B. & Taylor, G. C. Scaling of elastic strain energy in kangaroos and the benefits of being big. Nature 378, 56–9 (1995).
pubmed: 7477284
doi: 10.1038/378056a0
Huey, R. B. & Hertz, P. E. Effects of body size and slope on acceleration of a lizard (stellio stellio). J. Exp. Biol. 110, 113–123 (1984).
doi: 10.1242/jeb.110.1.113
Cieri, R. L., Dick, T. J. M., Irwin, R., Rumsey, D. & Clemente, C. J. The scaling of ground reaction forces and duty factor in monitor lizards: implications for locomotion in sprawling tetrapods. Biol. Lett. 17, 20200612 (2021).
pubmed: 33529545
pmcid: 8086983
doi: 10.1098/rsbl.2020.0612
Larramendi, A. Shoulder height, body mass, and shape of proboscideans. Acta Palaeontol. Pol. 61, 537–574 (2015).
Josephson, R. K. Contraction dynamics and power output of skeletal muscle. Annu. Rev. Physiol. 55, 527–546 (1993).
pubmed: 8466183
doi: 10.1146/annurev.ph.55.030193.002523
Medler, S. Comparative trends in shortening velocity and force production in skeletal muscles. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 283, R368–R378 (2002).
pubmed: 12121850
doi: 10.1152/ajpregu.00689.2001
Mendez, J. & Keys, A. Density and composition of mammalian muscle. Metab. Clin. Exp. 9, 184–188 (1960).
Alexander, R. M. Principles of Animal Locomotion (Princeton University Press, 2003).
Rospars, J.-P. & Meyer-Vernet, N. Force per cross-sectional area from molecules to muscles: a general property of biological motors. R. Soc. Open Sci. 3, 160313 (2016).
pubmed: 27493785
pmcid: 4968477
doi: 10.1098/rsos.160313
Biewener, A. & Patek, S. Animal locomotion (Oxford University Press, 2018).
Alexander, R. The maximum forces exerted by animals. J. Exp. Biol. 115, 231–238 (1985).
pubmed: 4031766
doi: 10.1242/jeb.115.1.231