Human cytomegalovirus infection triggers a paracrine senescence loop in renal epithelial cells.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
08 Mar 2024
08 Mar 2024
Historique:
received:
09
07
2023
accepted:
22
02
2024
medline:
9
3
2024
pubmed:
9
3
2024
entrez:
8
3
2024
Statut:
epublish
Résumé
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.
Identifiants
pubmed: 38459109
doi: 10.1038/s42003-024-05957-5
pii: 10.1038/s42003-024-05957-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
292Subventions
Organisme : Università degli Studi di Torino (University of Turin)
ID : PoC - TOINPROVE/2020
Informations de copyright
© 2024. The Author(s).
Références
Griffiths, P. & Reeves, M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol. 19, 759–773 (2021).
pubmed: 34168328
pmcid: 8223196
doi: 10.1038/s41579-021-00582-z
Kabani, N. & Ross, S. A. Congenital Cytomegalovirus Infection. J. Infect. Dis. 221, S9–S14 (2020).
pubmed: 32134480
pmcid: 8453618
doi: 10.1093/infdis/jiz446
Atabani, S. F. et al. Cytomegalovirus replication kinetics in solid organ transplant recipients managed by preemptive therapy. Am. J. Transplant. 12, 2457–2464 (2012).
pubmed: 22594993
pmcid: 3510308
doi: 10.1111/j.1600-6143.2012.04087.x
Deayton, J. R. et al. Importance of cytomegalovirus viraemia in risk of disease progression and death in HIV-infected patients receiving highly active antiretroviral therapy. Lancet 363, 2116–2121 (2004).
pubmed: 15220032
doi: 10.1016/S0140-6736(04)16500-8
Streblow, D. N., Orloff, S. L. & Nelson, J. A. Acceleration of allograft failure by cytomegalovirus. Curr. Opin. Immunol. 19, 577–582 (2007).
pubmed: 17716883
pmcid: 3509935
doi: 10.1016/j.coi.2007.07.012
Fields, B. N., Knipe, D. M. & Howley, P. M. Fields virology. (Wolters Kluwer Health/Lippincott Williams & Wilkins, 2013).
Bughio, F., Elliott, D. A. & Goodrum, F. An endothelial cell-specific requirement for the UL133-UL138 locus of human cytomegalovirus for efficient virus maturation. J. Virol. 87, 3062–3075 (2013).
pubmed: 23283945
pmcid: 3592143
doi: 10.1128/JVI.02510-12
Bogdanow, B., Phan, Q. V. & Wiebusch, L. Emerging Mechanisms of G1/S Cell Cycle Control by Human and Mouse Cytomegaloviruses. mBio 12, e0293421 (2021).
pubmed: 34903047
doi: 10.1128/mBio.02934-21
Paladino, P., Marcon, E., Greenblatt, J. & Frappier, L. Identification of herpesvirus proteins that contribute to G1/S arrest. J. Virol. 88, 4480–4492 (2014).
pubmed: 24501404
pmcid: 3993752
doi: 10.1128/JVI.00059-14
Sanchez, V. & Spector, D. H. Subversion of cell cycle regulatory pathways. Curr. Top Microbiol. Immunol. 325, 243–262 (2008).
pubmed: 18637510
Spector, D. H. Human cytomegalovirus riding the cell cycle. Med. Microbiol. Immunol. 204, 409–419 (2015).
pubmed: 25776080
doi: 10.1007/s00430-015-0396-z
Xiaofei, E. & Kowalik, T. F. The DNA damage response induced by infection with human cytomegalovirus and other viruses. Viruses 6, 2155–2185 (2014).
pubmed: 24859341
doi: 10.3390/v6052155
E, X. et al. An E2F1-mediated DNA damage response contributes to the replication of human cytomegalovirus. PLoS Pathog 7, e1001342 (2011).
pubmed: 21589897
pmcid: 3093362
doi: 10.1371/journal.ppat.1001342
Gaspar, M. & Shenk, T. Human cytomegalovirus inhibits a DNA damage response by mislocalizing checkpoint proteins. Proc. Natl. Acad. Sci. USA 103, 2821–2826 (2006).
pubmed: 16477038
pmcid: 1413835
doi: 10.1073/pnas.0511148103
Merchut-Maya, J. M. et al. Human cytomegalovirus hijacks host stress response fueling replication stress and genome instability. Cell Death Differ. 29, 1639–1653 (2022).
pubmed: 35194187
pmcid: 9346009
doi: 10.1038/s41418-022-00953-w
Alwine, J. C. Modulation of host cell stress responses by human cytomegalovirus. Curr. Top Microbiol. Immunol. 325, 263–279 (2008).
pubmed: 18637511
Castillo, J. P. & Kowalik, T. F. HCMV infection: modulating the cell cycle and cell death. Int. Rev. Immunol. 23, 113–139 (2004).
pubmed: 14690857
doi: 10.1080/08830180490265565
Kalejta, R. F. & Shenk, T. Manipulation of the cell cycle by human cytomegalovirus. Front. Biosci. 7, d295–d306 (2002).
pubmed: 11779699
doi: 10.2741/kalejta
Calcinotto, A. et al. Cellular Senescence: Aging, Cancer, and Injury. Physiol. Rev. 99, 1047–1078 (2019).
pubmed: 30648461
doi: 10.1152/physrev.00020.2018
Herranz, N. & Gil, J. Mechanisms and functions of cellular senescence. J. Clin. Invest. 128, 1238–1246 (2018).
pubmed: 29608137
pmcid: 5873888
doi: 10.1172/JCI95148
Gorgoulis, V. et al. Cellular Senescence: Defining a Path Forward. Cell 179, 813–827 (2019).
pubmed: 31675495
doi: 10.1016/j.cell.2019.10.005
Docherty, M.-H., O’Sullivan, E. D., Bonventre, J. V. & Ferenbach, D. A. Cellular Senescence in the Kidney. J. Am. Soc. Nephrol. 30, 726–736 (2019).
pubmed: 31000567
pmcid: 6493983
doi: 10.1681/ASN.2018121251
Gonzalez-Meljem, J. M., Apps, J. R., Fraser, H. C. & Martinez-Barbera, J. P. Paracrine roles of cellular senescence in promoting tumourigenesis. Br. J. Cancer 118, 1283–1288 (2018).
pubmed: 29670296
pmcid: 5959857
doi: 10.1038/s41416-018-0066-1
Ferreira-Gonzalez, S. et al. Paracrine cellular senescence exacerbates biliary injury and impairs regeneration. Nat. Commun. 9, 1020 (2018).
pubmed: 29523787
pmcid: 5844882
doi: 10.1038/s41467-018-03299-5
Kohli, J., Veenstra, I. & Demaria, M. The struggle of a good friend getting old: cellular senescence in viral responses and therapy. EMBO Rep. 22, e52243 (2021).
pubmed: 33734564
pmcid: 8024996
doi: 10.15252/embr.202052243
Tsuji, S. et al. SARS-CoV-2 infection triggers paracrine senescence and leads to a sustained senescence-associated inflammatory response. Nat. Aging 2, 115–124 (2022).
pubmed: 37117754
pmcid: 10154207
doi: 10.1038/s43587-022-00170-7
Lee, S. et al. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature 599, 283–289 (2021).
pubmed: 34517409
doi: 10.1038/s41586-021-03995-1
Tripathi, U. et al. SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. Aging (Albany NY) 13, 21838–21854 (2021).
pubmed: 34531331
doi: 10.18632/aging.203560
Noris, E. et al. Cell cycle arrest by human cytomegalovirus 86-kDa IE2 protein resembles premature senescence. J. Virol. 76, 12135–12148 (2002).
pubmed: 12414954
pmcid: 136868
doi: 10.1128/JVI.76.23.12135-12148.2002
Zannetti, C. et al. The expression of p16INK4a tumor suppressor is upregulated by human cytomegalovirus infection and required for optimal viral replication. Virology 349, 79–86 (2006).
pubmed: 16504234
doi: 10.1016/j.virol.2006.01.042
Fortunato, E. A. Using Diploid Human Fibroblasts as a Model System to Culture, Grow, and Study Human Cytomegalovirus Infection. Methods Mol. Biol. 2244, 39–50 (2021).
pubmed: 33555581
doi: 10.1007/978-1-0716-1111-1_3
Plachter, B., Sinzger, C. & Jahn, G. Cell types involved in replication and distribution of human cytomegalovirus. Adv. Virus Res. 46, 195–261 (1996).
pubmed: 8824701
doi: 10.1016/S0065-3527(08)60073-1
Wilkerson, I., Laban, J., Mitchell, J. M., Sheibani, N. & Alcendor, D. J. Retinal pericytes and cytomegalovirus infectivity: implications for HCMV-induced retinopathy and congenital ocular disease. J. Neuroinflamm. 12, 2 (2015).
doi: 10.1186/s12974-014-0219-y
Popik, W., Correa, H., Khatua, A., Aronoff, D. M. & Alcendor, D. J. Mesangial cells, specialized renal pericytes and cytomegalovirus infectivity: Implications for HCMV pathology in the glomerular vascular unit and post-transplant renal disease. J. Transl. Sci. 5, 1–12 (2019).
de Magalhães, J. P., Chainiaux, F., Remacle, J. & Toussaint, O. Stress-induced premature senescence in BJ and hTERT-BJ1 human foreskin fibroblasts. FEBS Lett. 523, 157–162 (2002).
pubmed: 12123824
doi: 10.1016/S0014-5793(02)02973-3
Wieser, M. et al. hTERT alone immortalizes epithelial cells of renal proximal tubules without changing their functional characteristics. Am. J. Physiol. Renal. Physiol. 295, F1365–F1375 (2008).
pubmed: 18715936
doi: 10.1152/ajprenal.90405.2008
Murphy, E., Rigoutsos, I., Shibuya, T. & Shenk, T. E. Reevaluation of human cytomegalovirus coding potential. Proc. Natl. Acad. Sci. USA 100, 13585–13590 (2003).
pubmed: 14593199
pmcid: 263857
doi: 10.1073/pnas.1735466100
Wang, D., Yu, Q.-C., Schröer, J., Murphy, E. & Shenk, T. Human cytomegalovirus uses two distinct pathways to enter retinal pigmented epithelial cells. PNAS 104, 20037–20042 (2007).
pubmed: 18077432
pmcid: 2148418
doi: 10.1073/pnas.0709704104
Nogalski, M. T. et al. A tumor-specific endogenous repetitive element is induced by herpesviruses. Nat. Commun. 10, 90 (2019).
pubmed: 30626867
pmcid: 6327058
doi: 10.1038/s41467-018-07944-x
Matz, M. et al. Early post-transplant urinary IP-10 expression after kidney transplantation is predictive of short- and long-term graft function. Kidney Int. 69, 1683–1690 (2006).
pubmed: 16572110
doi: 10.1038/sj.ki.5000343
Bolignano, D. et al. Neutrophil Gelatinase–Associated Lipocalin (NGAL) as a Marker of Kidney Damage. Ame. J. Kidney Dis. 52, 595–605 (2008).
doi: 10.1053/j.ajkd.2008.01.020
Young, A. R. J. & Narita, M. SASP reflects senescence. EMBO Rep. 10, 228–230 (2009).
pubmed: 19218920
pmcid: 2658552
doi: 10.1038/embor.2009.22
Saul, D. et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat. Commun. 13, 4827 (2022).
pubmed: 35974106
pmcid: 9381717
doi: 10.1038/s41467-022-32552-1
Shimi, T. et al. The role of nuclear lamin B1 in cell proliferation and senescence. Genes Dev. 25, 2579–2593 (2011).
pubmed: 22155925
pmcid: 3248680
doi: 10.1101/gad.179515.111
Kohli, J. et al. Algorithmic assessment of cellular senescence in experimental and clinical specimens. Nat. Protoc. 16, 2471–2498 (2021).
pubmed: 33911261
pmcid: 8710232
doi: 10.1038/s41596-021-00505-5
Nagelkerke, A. & Span, P. N. Staining Against Phospho-H2AX (γ-H2AX) as a Marker for DNA Damage and Genomic Instability in Cancer Tissues and Cells. Adv. Exp. Med. Biol. 899, 1–10 (2016).
pubmed: 27325258
doi: 10.1007/978-3-319-26666-4_1
Admasu, T. D., Rae, M. & Stolzing, A. Dissecting primary and secondary senescence to enable new senotherapeutic strategies. Ageing. Res. Rev. 70, 101412 (2021).
pubmed: 34302996
doi: 10.1016/j.arr.2021.101412
Kojima, H., Inoue, T., Kunimoto, H. & Nakajima, K. IL-6-STAT3 signaling and premature senescence. JAKSTAT 2, e25763 (2013).
pubmed: 24416650
pmcid: 3876432
Monzani, A. et al. Fulminant cytomegalovirus infection in a preterm newborn. Minerva. Pediatr. 70, 408–409 (2018).
pubmed: 29943548
doi: 10.23736/S0026-4946.17.05136-2
Salmonowicz, H. & Passos, J. F. Detecting senescence: a new method for an old pigment. Aging Cell 16, 432–434 (2017).
pubmed: 28185406
pmcid: 5418201
doi: 10.1111/acel.12580
Georgakopoulou, E. A. et al. Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY) 5, 37–50 (2013).
pubmed: 23449538
doi: 10.18632/aging.100527
Field, M. et al. The use of NGAL and IP-10 in the prediction of early acute rejection in highly sensitized patients following HLA-incompatible renal transplantation. Transpl. Int. 27, 362–370 (2014).
pubmed: 24438378
doi: 10.1111/tri.12266
Chuprin, A. et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev. 27, 2356–2366 (2013).
pubmed: 24186980
pmcid: 3828521
doi: 10.1101/gad.227512.113
Martínez, I. et al. Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus. Virulence 7, 427–442 (2016).
pubmed: 26809688
pmcid: 4871660
doi: 10.1080/21505594.2016.1144001
Thangaraj, A. et al. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol. 40, 101843 (2021).
pubmed: 33385630
doi: 10.1016/j.redox.2020.101843
Yan, Y. et al. NS1 of H7N9 Influenza A Virus Induces NO-Mediated Cellular Senescence in Neuro2a Cells. Cell Physiol. Biochem. 43, 1369–1380 (2017).
pubmed: 28992616
doi: 10.1159/000481848
Shelton, D. N., Chang, E., Whittier, P. S., Choi, D. & Funk, W. D. Microarray analysis of replicative senescence. Curr. Biol. 9, 939–945 (1999).
pubmed: 10508581
doi: 10.1016/S0960-9822(99)80420-5
Dimri, G. P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363–9367 (1995).
pubmed: 7568133
pmcid: 40985
doi: 10.1073/pnas.92.20.9363
Meyer, K., Patra, T., Vijayamahantesh & Ray, R. SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in Endothelial Cells. J. Virol. 95, e0079421 (2021).
pubmed: 34160250
doi: 10.1128/JVI.00794-21
Terman, A. & Brunk, U. T. Lipofuscin: mechanisms of formation and increase with age. APMIS 106, 265–276 (1998).
pubmed: 9531959
doi: 10.1111/j.1699-0463.1998.tb01346.x
Gariano, G. R. et al. The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog. 8, e1002498 (2012).
pubmed: 22291595
pmcid: 3266931
doi: 10.1371/journal.ppat.1002498
Biolatti, M. et al. The Viral Tegument Protein pp65 Impairs Transcriptional Upregulation of IL-1β by Human Cytomegalovirus through Inhibition of NF-kB Activity. Viruses 10, 567 (2018).
pubmed: 30332797
pmcid: 6213739
doi: 10.3390/v10100567
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886
doi: 10.1093/bioinformatics/bts635
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
doi: 10.1186/1471-2105-12-323
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).
pubmed: 16199517
pmcid: 1239896
doi: 10.1073/pnas.0506580102
Zhou, Y. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 10, 1523 (2019).
pubmed: 30944313
pmcid: 6447622
doi: 10.1038/s41467-019-09234-6
Iannucci, A. et al. Toll-like receptor 4-mediated inflammation triggered by extracellular IFI16 is enhanced by lipopolysaccharide binding. PLoS Pathog. 16, e1008811 (2020).
pubmed: 32903274
pmcid: 7505474
doi: 10.1371/journal.ppat.1008811
Itahana, K., Itahana, Y. & Dimri, G. P. Colorimetric detection of senescence-associated β galactosidase. Methods Mol. Biol. 965, 143–156 (2013).
pubmed: 23296655
pmcid: 3769963
doi: 10.1007/978-1-62703-239-1_8
Zanoni, I. et al. An endogenous caspase-11 ligand elicits interleukin-1 release from living dendritic cells. Science 352, 1232–1236 (2016).
pubmed: 27103670
pmcid: 5111085
doi: 10.1126/science.aaf3036