Immunophenotypic and Gene Expression Analyses of the Inflammatory Microenvironment in High-Grade Oral Epithelial Dysplasia and Oral Lichen Planus.

Inflammation Microenvironment Oral epithelial dysplasia Oral lichen planus

Journal

Head and neck pathology
ISSN: 1936-0568
Titre abrégé: Head Neck Pathol
Pays: United States
ID NLM: 101304010

Informations de publication

Date de publication:
08 Mar 2024
Historique:
received: 10 01 2024
accepted: 30 01 2024
medline: 8 3 2024
pubmed: 8 3 2024
entrez: 8 3 2024
Statut: epublish

Résumé

Oral lichen planus (OLP) and oral epithelial dysplasia (OED) present diagnostic challenges due to clinical and histologic overlap. This study explores the immune microenvironment in OED, hypothesizing that immune signatures could aid in diagnostic differentiation and predict malignant transformation. Tissue samples from OED and OLP cases were analyzed using immunofluorescence/immunohistochemistry (IF/IHC) for CD4, CD8, CD163/STAT1, and PD-1/PDL-1 expression. RNA-sequencing was performed on the samples, and data was subjected to CIBERSORTx analysis for immune cell composition. Gene Ontology analysis on the immune differentially expressed genes was also conducted. In OED, CD8 + T-cells infiltrated dysplastic epithelium, correlating with dysplasia severity. CD4 + lymphocytes increased in the basal layer. STAT1/CD163 + macrophages correlated with CD4 + intraepithelial distribution. PD-1/PDL-1 expression varied. IF/IHC analysis revealed differential immune cell composition between OED and OLP. RNA-sequencing identified upregulated genes associated with cytotoxic response and immunosurveillance in OED. Downregulated genes were linked to signaling, immune cell recruitment, and tumor suppression. The immune microenvironment distinguishes OED and OLP, suggesting diagnostic potential. Upregulated genes indicate cytotoxic immune response in OED. Downregulation of TRADD, CX3CL1, and ILI24 implies dysregulation in TNFR1 signaling, immune recruitment, and tumor suppression. This study contributes to the foundation for understanding immune interactions in OED and OLP, offering insights into future objective diagnostic avenues.

Sections du résumé

BACKGROUND BACKGROUND
Oral lichen planus (OLP) and oral epithelial dysplasia (OED) present diagnostic challenges due to clinical and histologic overlap. This study explores the immune microenvironment in OED, hypothesizing that immune signatures could aid in diagnostic differentiation and predict malignant transformation.
METHODS METHODS
Tissue samples from OED and OLP cases were analyzed using immunofluorescence/immunohistochemistry (IF/IHC) for CD4, CD8, CD163/STAT1, and PD-1/PDL-1 expression. RNA-sequencing was performed on the samples, and data was subjected to CIBERSORTx analysis for immune cell composition. Gene Ontology analysis on the immune differentially expressed genes was also conducted.
RESULTS RESULTS
In OED, CD8 + T-cells infiltrated dysplastic epithelium, correlating with dysplasia severity. CD4 + lymphocytes increased in the basal layer. STAT1/CD163 + macrophages correlated with CD4 + intraepithelial distribution. PD-1/PDL-1 expression varied. IF/IHC analysis revealed differential immune cell composition between OED and OLP. RNA-sequencing identified upregulated genes associated with cytotoxic response and immunosurveillance in OED. Downregulated genes were linked to signaling, immune cell recruitment, and tumor suppression.
CONCLUSIONS CONCLUSIONS
The immune microenvironment distinguishes OED and OLP, suggesting diagnostic potential. Upregulated genes indicate cytotoxic immune response in OED. Downregulation of TRADD, CX3CL1, and ILI24 implies dysregulation in TNFR1 signaling, immune recruitment, and tumor suppression. This study contributes to the foundation for understanding immune interactions in OED and OLP, offering insights into future objective diagnostic avenues.

Identifiants

pubmed: 38456941
doi: 10.1007/s12105-024-01624-7
pii: 10.1007/s12105-024-01624-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

17

Subventions

Organisme : East Carolina University - University of North Carolina at Chapel Hill
ID : ECU-UNC Research Collaboration Grant
Organisme : East Carolina University - University of North Carolina at Chapel Hill
ID : ECU-UNC Research Collaboration Grant

Informations de copyright

© 2024. The Author(s).

Références

Ferrisse TM, de Oliveira AB, Palaçon MP, Silva EV, Massucato EMS, de Almeida LY et al (2021) The role of CD68+ and CD163+ macrophages in immunopathogenesis of oral lichen planus and oral lichenoid lesions. Immunobiology 226:152072
pubmed: 33677150 doi: 10.1016/j.imbio.2021.152072
Mao F, Dong Y, Wang Z, Cai L, Pan D, Zhang C et al (2022) Direct immunofluorescence and immune function in patients with oral lichen planus. J Dent Sci 17:795–801
pubmed: 35756820 doi: 10.1016/j.jds.2021.10.002
Korkitpoonpol N, Kanjanabuch P (2023) Direct immunofluorescence cannot be used solely to differentiate among oral lichen planus, oral lichenoid lesion, and oral epithelial dysplasia. J Dent Sci. https://doi.org/10.1016/j.jds.2023.01.025
doi: 10.1016/j.jds.2023.01.025 pubmed: 37799909 pmcid: 10547942
Warnakulasuriya S, Kujan O, Aguirre-Urizar JM, Bagan JV, González-Moles MÁ, Kerr AR et al (2021) Oral potentially malignant disorders: a consensus report from an international seminar on nomenclature and classification, convened by the WHO collaborating centre for oral cancer. Oral Dis 27:1862–1880
pubmed: 33128420 doi: 10.1111/odi.13704
Warnakulasuriya S (2020) Oral potentially malignant disorders: a comprehensive review on clinical aspects and management. Oral Oncol 102:104550
pubmed: 31981993 doi: 10.1016/j.oraloncology.2019.104550
Chaturvedi AK, Udaltsova N, Engels EA, Katzel JA, Yanik EL, Katki HA et al (2020) Oral leukoplakia and risk of progression to oral cancer: a population-based cohort study. J Natl Cancer Inst 112:1047–1054
pubmed: 31860085 doi: 10.1093/jnci/djz238
Stojanov IJ, Woo S-B (2022) Malignant transformation rate of non-reactive oral hyperkeratoses suggests an early dysplastic phenotype. Head Neck Pathol 16:366–374
pubmed: 34255278 doi: 10.1007/s12105-021-01363-z
Aguirre-Urizar JM, Lafuente-Ibáñez de Mendoza I, Warnakulasuriya S (2021) Malignant transformation of oral leukoplakia: systematic review and meta-analysis of the last 5 years. Oral Dis 27:1881–1895
pubmed: 33606345 doi: 10.1111/odi.13810
Dost F, Lê Cao K, Ford PJ, Ades C, Farah CS (2014) Malignant transformation of oral epithelial dysplasia: a real-world evaluation of histopathologic grading. Oral Surg Oral Med Oral Pathol Oral Radiol 117:343–352
pubmed: 24388536 doi: 10.1016/j.oooo.2013.09.017
Nogami T, Kuyama K, Yamamoto H (2003) Histopathological and immunohistochemical study of malignant transformation of oral leukoplakia, with special reference to apoptosis-related gene products and proliferative activity. Acta Otolaryngol 123:767–775
pubmed: 12953781 doi: 10.1080/00016480310000700b
Ho MW, Risk JM, Woolgar JA, Field EA, Field JK, Steele JC et al (2012) The clinical determinants of malignant transformation in oral epithelial dysplasia. Oral Oncol 48:969–976
pubmed: 22579265 doi: 10.1016/j.oraloncology.2012.04.002
Warnakulasuriya S, Ariyawardana A (2016) Malignant transformation of oral leukoplakia: a systematic review of observational studies. J Oral Pathol Med 45:155–166
pubmed: 26189354 doi: 10.1111/jop.12339
Conway C, Graham JL, Chengot P, Daly C, Chalkley R, Ross L et al (2015) Elucidating drivers of oral epithelial dysplasia formation and malignant transformation to cancer using RNAseq. Oncotarget 6:40186–40201
pubmed: 26515596 pmcid: 4741888 doi: 10.18632/oncotarget.5529
Zhang C, Zhang J, Xu F-P, Wang Y-G, Xie Z, Su J et al (2019) Genomic landscape and immune microenvironment features of preinvasive and early invasive lung adenocarcinoma. J Thorac Oncol 14:1912–1923
pubmed: 31446140 pmcid: 6986039 doi: 10.1016/j.jtho.2019.07.031
Yagyuu T, Hatakeyama K, Imada M, Kurihara M, Matsusue Y, Yamamoto K et al (2017) Programmed death ligand 1 (PD-L1) expression and tumor microenvironment: implications for patients with oral precancerous lesions. Oral Oncol 68:36–43
pubmed: 28438290 doi: 10.1016/j.oraloncology.2017.03.006
Goertzen C, Mahdi H, Laliberte C, Meirson T, Eymael D, Gil-Henn H et al (2018) Oral inflammation promotes oral squamous cell carcinoma invasion. Oncotarget 9:29047–29063
pubmed: 30018735 pmcid: 6044370 doi: 10.18632/oncotarget.25540
Horsman MR, Vaupel P (2016) Pathophysiological basis for the formation of the tumor microenvironment. Front Oncol 6:66
pubmed: 27148472 pmcid: 4828447 doi: 10.3389/fonc.2016.00066
Flores-Hidalgo A, Murrah V, Fedoriw Y, Padilla RJ (2019) Relationship of infiltrating intraepithelial T lymphocytes in the diagnosis of oral lichen planus versus oral epithelial dysplasia: a pilot study. Oral Surg Oral Med Oral Pathol Oral Radiol 127:e123–e135
pubmed: 30928328 doi: 10.1016/j.oooo.2019.02.004
Kim J, Bae JS (2016) Tumor-associated macrophages and neutrophils in tumor microenvironment. Mediators Inflamm 2016:6058147
pubmed: 26966341 pmcid: 4757693 doi: 10.1155/2016/6058147
Dave K, Ali A, Magalhaes M (2020) Increased expression of PD-1 and PD-L1 in oral lesions progressing to oral squamous cell carcinoma: a pilot study. Sci Rep 10:9705
pubmed: 32546692 pmcid: 7297711 doi: 10.1038/s41598-020-66257-6
Patel SP, Kurzrock R (2015) PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 14:847–856
pubmed: 25695955 doi: 10.1158/1535-7163.MCT-14-0983
Akhtar M, Rashid S, Al-Bozom IA (2021) PD-L1 immunostaining: what pathologists need to know. Diagn Pathol 16:94
pubmed: 34689789 pmcid: 8543866 doi: 10.1186/s13000-021-01151-x
Odell E, Kujan O, Warnakulasuriya S, Sloan P (2021) Oral epithelial dysplasia: recognition, grading and clinical significance. Oral Dis 27:1947–1976
pubmed: 34418233 doi: 10.1111/odi.13993
Cheng YSL, Gould A, Kurago Z, Fantasia J, Muller S (2016) Diagnosis of oral lichen planus: a position paper of the American Academy of Oral and Maxillofacial Pathology. Oral Surg Oral Med Oral Pathol Oral Radiol 122:332–354
pubmed: 27401683 doi: 10.1016/j.oooo.2016.05.004
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29
pubmed: 10802651 pmcid: 3037419 doi: 10.1038/75556
Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H (2022) PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci 31:8–22
pubmed: 34717010 doi: 10.1002/pro.4218
Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ et al (2023) The gene ontology knowledgebase in 2023. Genetics 2023:224
Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F et al (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37:773–782
pubmed: 31061481 pmcid: 6610714 doi: 10.1038/s41587-019-0114-2
Chen YP, Wang YQ, Lv JW, Li YQ, Chua MLK, Le QT et al (2019) Identification and validation of novel microenvironment-based immune molecular subgroups of head and neck squamous cell carcinoma: implications for immunotherapy. Ann Oncol 30:68–75
pubmed: 30407504 doi: 10.1093/annonc/mdy470
Sathasivam HP, Kist R, Sloan P, Thomson P, Nugent M, Alexander J et al (2021) Predicting the clinical outcome of oral potentially malignant disorders using transcriptomic-based molecular pathology. Br J Cancer 125:413–421
pubmed: 33972745 pmcid: 8329212 doi: 10.1038/s41416-021-01411-z
Nikitakis NG, Pentenero M, Georgaki M, Poh CF, Peterson DE, Edwards P et al (2018) Molecular markers associated with development and progression of potentially premalignant oral epithelial lesions: Current knowledge and future implications. Oral Surg Oral Med Oral Pathol Oral Radiol 125:650–669
pubmed: 29709496 doi: 10.1016/j.oooo.2018.03.012
Group YM (2014) Immunological phenotypes of premalignant oral lesions and the immune shifts with the development of head and neck cancer. Austin J Otolaryngol 1:7
Danaher P, Warren S, Dennis L, D’Amico L, White A, Disis ML et al (2017) Gene expression markers of tumor infiltrating leukocytes. J Immunother Cancer 5:18
pubmed: 28239471 pmcid: 5319024 doi: 10.1186/s40425-017-0215-8
Hashibe M, Brennan P, Benhamou S, Castellsague X, Chen C, Curado MP et al (2007) Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J Natl Cancer Inst 99:777–789
pubmed: 17505073 doi: 10.1093/jnci/djk179
Au J, Patel D, Campbell JH (2013) Oral lichen planus. Oral Maxillofac Surg Clin North Am 25(93–100):vii
pubmed: 23399399
Alves MGO, Balducci I, Carvalho YR, Nunes FD, Almeida JD (2015) Oral lichen planus: a histopathological study. Histopathology 66:463–464
pubmed: 25308123 doi: 10.1111/his.12538
Wenig BM (2017) Squamous cell carcinoma of the upper aerodigestive tract: dysplasia and select variants. Mod Pathol 30:S112–S118
pubmed: 28060368 doi: 10.1038/modpathol.2016.207
Fitzpatrick SG, Honda KS, Sattar A, Hirsch SA (2014) Histologic lichenoid features in oral dysplasia and squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 117:511–520
pubmed: 24560560 doi: 10.1016/j.oooo.2013.12.413
Katsanos KH, Roda G, Brygo A, Delaporte E, Colombel J-F (2015) Oral cancer and oral precancerous lesions in inflammatory bowel diseases: a systematic review. J Crohns Colitis 9:1043–1052
pubmed: 26163301 doi: 10.1093/ecco-jcc/jjv122
Almangush A, Ruuskanen M, Hagström J, Hirvikoski P, Tommola S, Kosma V-M et al (2018) Tumor-infiltrating lymphocytes associate with outcome in nonendemic nasopharyngeal carcinoma: a multicenter study. Hum Pathol 81:211–219
pubmed: 30030117 doi: 10.1016/j.humpath.2018.07.009
William WN, Zhang J, Zhao X, Parra ER, Uraoka N, Lin HY et al (2023) Spatial PD-L1, immune-cell microenvironment, and genomic copy-number alteration patterns and drivers of invasive-disease transition in prospective oral precancer cohort. Cancer 129:714–727
pubmed: 36597662 doi: 10.1002/cncr.34607
Poage GM, Christensen BC, Houseman EA, McClean MD, Wiencke JK, Posner MR et al (2010) Genetic and epigenetic somatic alterations in head and neck squamous cell carcinomas are globally coordinated but not locally targeted. PLoS ONE 5:e9651
pubmed: 20300172 pmcid: 2836370 doi: 10.1371/journal.pone.0009651
Rowley H, Sherrington P, Helliwell TR, Kinsella A, Jones AS (1998) p53 expression and p53 gene mutation in oral cancer and dysplasia. Otolaryngol Head Neck Surg 118:115–123
pubmed: 9450841 doi: 10.1016/S0194-5998(98)70387-0
Novack R, Zhang L, Hoang LN, Kadhim M, Ng TL, Poh CF et al (2023) Abnormal p53 immunohistochemical patterns shed light on the aggressiveness of oral epithelial dysplasia. Mod Pathol 36:100153
pubmed: 36906072 doi: 10.1016/j.modpat.2023.100153
McCarthy C, Fedele S, Ottensmeier C, Shaw RJ (2021) Early-phase interventional trials in oral cancer prevention. Cancers (Basel). 13:3845
pubmed: 34359746 pmcid: 8345124 doi: 10.3390/cancers13153845
Grigolato R, Bizzoca ME, Calabrese L, Leuci S, Mignogna MD, Lo ML (2020) Leukoplakia and immunology: new chemoprevention landscapes? Int J Mol Sci 21:6874
pubmed: 32961682 pmcid: 7555729 doi: 10.3390/ijms21186874
Maresso KC, Tsai KY, Brown PH, Szabo E, Lippman S, Hawk ET (2015) Molecular cancer prevention: current status and future directions. CA Cancer J Clin 65:345–383
pubmed: 26284997 pmcid: 4820069 doi: 10.3322/caac.21287
Yao L, Guo B, Wang J, Wu J (2023) Analysis of transcriptome expression profiling data in oral leukoplakia and early and late-stage oral squamous cell carcinoma. Oncol Lett 25:156
pubmed: 36936021 pmcid: 10017914 doi: 10.3892/ol.2023.13742
Bismuth G, Boumsell L (2002) Controlling the immune system through semaphorins. Sci STKE. https://doi.org/10.1126/stke.1282002re4
doi: 10.1126/stke.1282002re4 pubmed: 11972358
Organ SL, Tsao MS (2011) An overview of the c-MET signaling pathway. Ther Adv Med Oncol 3:S7-19
pubmed: 22128289 pmcid: 3225017 doi: 10.1177/1758834011422556
Das D, Maitra A, Panda CK, Ghose S, Roy B, Sarin R et al (2021) Genes and pathways monotonically dysregulated during progression from normal through leukoplakia to gingivo-buccal oral cancer. NPJ Genom Med 6:32
pubmed: 33980865 pmcid: 8115176 doi: 10.1038/s41525-021-00195-8
Gan CP, Lee BKB, Lau SH, Kallarakkal TG, Zaini ZM, Lye BKW et al (2022) Transcriptional analysis highlights three distinct immune profiles of high-risk oral epithelial dysplasia. Front Immunol 13:954567
pubmed: 36119104 pmcid: 9479061 doi: 10.3389/fimmu.2022.954567
Kusmartsev S, Gabrilovich DI (2005) STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. J Immunol 174:4880–4891
pubmed: 15814715 doi: 10.4049/jimmunol.174.8.4880
Huffaker TB, Ekiz HA, Barba C, Lee S-H, Runtsch MC, Nelson MC et al (2021) A Stat1 bound enhancer promotes Nampt expression and function within tumor associated macrophages. Nat Commun 12:2620
pubmed: 33976173 pmcid: 8113251 doi: 10.1038/s41467-021-22923-5
Cao X, Pobezinskaya YL, Morgan MJ, Liu Z (2011) The role of TRADD in TRAIL-induced apoptosis and signaling. FASEB J 25:1353–1358
pubmed: 21187341 pmcid: 3058711 doi: 10.1096/fj.10-170480
Fraticelli P, Sironi M, Bianchi G, D’Ambrosio D, Albanesi C, Stoppacciaro A et al (2001) Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. J Clin Invest 107:1173–1181
pubmed: 11342581 pmcid: 209276 doi: 10.1172/JCI11517
Shulby SA, Dolloff NG, Stearns ME, Meucci O, Fatatis A (2004) CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 64:4693–4698
pubmed: 15256432 doi: 10.1158/0008-5472.CAN-03-3437
Fisher PB, Gopalkrishnan RV, Chada S, Ramesh R, Grimm EA, Rosenfeld MR et al (2003) mda-7/IL-24, a novel cancer selective apoptosis inducing cytokine gene: from the laboratory into the clinic. Cancer Biol Ther 2:S23-37
pubmed: 14508078 doi: 10.4161/cbt.458
Kim TJ, Kim YG, Jung W, Jang S, Ko HG, Park CH et al (2023) Non-coding RNAs as potential targets for diagnosis and treatment of oral lichen planus: a narrative review. Biomolecules. https://doi.org/10.3390/biom13111646
doi: 10.3390/biom13111646 pubmed: 38254619 pmcid: 10742164
Wang H, Deng Y, Peng S, Yan L, Xu H, Wang Q et al (2021) RNA-Seq based transcriptome analysis in oral lichen planus. Hereditas 158:39
pubmed: 34615554 pmcid: 8495917 doi: 10.1186/s41065-021-00202-z

Auteurs

Andres Flores-Hidalgo (A)

Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA. floresa9@ucmail.uc.edu.

James Phero (J)

Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Scott Steward-Tharp (S)

Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, USA.

Megumi Williamson (M)

Department of Surgical Sciences, East Carolina University School of Dental Medicine, Greenville, USA.

David Paquette (D)

Department of Surgical Sciences, East Carolina University School of Dental Medicine, Greenville, USA.

Deepak Krishnan (D)

Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.

Ricardo Padilla (R)

Department of Diagnostic Sciences, University of North Carolina at Chapel Hill Adams School of Dentistry, Chapel Hill, USA.

Classifications MeSH