Locoregional delivery of IL-13Rα2-targeting CAR-T cells in recurrent high-grade glioma: a phase 1 trial.


Journal

Nature medicine
ISSN: 1546-170X
Titre abrégé: Nat Med
Pays: United States
ID NLM: 9502015

Informations de publication

Date de publication:
Apr 2024
Historique:
received: 27 06 2023
accepted: 15 02 2024
pubmed: 8 3 2024
medline: 8 3 2024
entrez: 7 3 2024
Statut: ppublish

Résumé

Chimeric antigen receptor T cell (CAR-T) therapy is an emerging strategy to improve treatment outcomes for recurrent high-grade glioma, a cancer that responds poorly to current therapies. Here we report a completed phase I trial evaluating IL-13Rα2-targeted CAR-T cells in 65 patients with recurrent high-grade glioma, the majority being recurrent glioblastoma (rGBM). Primary objectives were safety and feasibility, maximum tolerated dose/maximum feasible dose and a recommended phase 2 dose plan. Secondary objectives included overall survival, disease response, cytokine dynamics and tumor immune contexture biomarkers. This trial evolved to evaluate three routes of locoregional T cell administration (intratumoral (ICT), intraventricular (ICV) and dual ICT/ICV) and two manufacturing platforms, culminating in arm 5, which utilized dual ICT/ICV delivery and an optimized manufacturing process. Locoregional CAR-T cell administration was feasible and well tolerated, and as there were no dose-limiting toxicities across all arms, a maximum tolerated dose was not determined. Probable treatment-related grade 3+ toxicities were one grade 3 encephalopathy and one grade 3 ataxia. A clinical maximum feasible dose of 200 × 10

Identifiants

pubmed: 38454126
doi: 10.1038/s41591-024-02875-1
pii: 10.1038/s41591-024-02875-1
doi:

Banques de données

ClinicalTrials.gov
['NCT02208362']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1001-1012

Subventions

Organisme : California Institute for Regenerative Medicine (CIRM)
ID : CLIN2-12153
Organisme : Gateway for Cancer Research (Gateway)
ID : G-14-600
Organisme : U.S. Department of Health & Human Services | U.S. Food and Drug Administration (U.S. Food & Drug Administration)
ID : R01FD005129
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : K12CA001727
Organisme : U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
ID : R01CA155769

Commentaires et corrections

Type : ErratumIn

Informations de copyright

© 2024. The Author(s).

Références

Weller, M. et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 18, 170–186 (2021).
pubmed: 33293629 doi: 10.1038/s41571-020-00447-z
Wen, P. Y. et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 22, 1073–1113 (2020).
pubmed: 32328653 pmcid: 7594557 doi: 10.1093/neuonc/noaa106
Gilbert, M. R. et al. Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J. Clin. Oncol. 31, 4085–4091 (2013).
pubmed: 24101040 pmcid: 3816958 doi: 10.1200/JCO.2013.49.6968
Brown, C. E. et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin. Cancer Res. 21, 4062–4072 (2015).
pubmed: 26059190 pmcid: 4632968 doi: 10.1158/1078-0432.CCR-15-0428
Brown, C. E. et al. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro Oncol. 24, 1318–1330 (2022).
pubmed: 35100373 pmcid: 9340633 doi: 10.1093/neuonc/noac024
Brown, C. E. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N. Engl. J. Med. 375, 2561–2569 (2016).
pubmed: 28029927 pmcid: 5390684 doi: 10.1056/NEJMoa1610497
Vitanza, N. A. et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat. Med. 27, 1544–1552 (2021).
pubmed: 34253928 doi: 10.1038/s41591-021-01404-8
Ahmed, N. et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 3, 1094–1101 (2017).
pubmed: 28426845 pmcid: 5747970 doi: 10.1001/jamaoncol.2017.0184
Goff, S. L. et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced t cells targeting EGFRvIII in patients with glioblastoma. J. Immunother. 42, 126–135 (2019).
pubmed: 30882547 pmcid: 6691897 doi: 10.1097/CJI.0000000000000260
O’Rourke, D. M. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci. Trans. Med 9, eaaa0984 (2017).
doi: 10.1126/scitranslmed.aaa0984
Majzner, R. G. et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature 603, 934–941 (2022).
pubmed: 35130560 pmcid: 8967714 doi: 10.1038/s41586-022-04489-4
Vitanza, N. A. et al. Intraventricular B7-H3 CAR T cells for diffuse intrinsic pontine glioma: preliminary first-in-human bioactivity and safety. Cancer Discov. 13, 114–131 (2023).
pubmed: 36259971 doi: 10.1158/2159-8290.CD-22-0750
Alizadeh, D. et al. IFNγ is critical for CAR T cell-mediated myeloid activation and induction of endogenous immunity. Cancer Discov. 11, 2248–2265 (2021).
pubmed: 33837065 pmcid: 8561746 doi: 10.1158/2159-8290.CD-20-1661
Brown, C. E. et al. Glioma IL13Rα2 is associated with mesenchymal signature gene expression and poor patient prognosis. PLoS ONE 8, e77769 (2013).
pubmed: 24204956 pmcid: 3800130 doi: 10.1371/journal.pone.0077769
Jaén, M., Martín-Regalado, Á., Bartolomé, R. A., Robles, J. & Casal, J. I. Interleukin 13 receptor alpha 2 (IL13Rα2): expression, signaling pathways and therapeutic applications in cancer. Biochim. Biophys. Acta Rev. Cancer 1877, 188802 (2022).
pubmed: 36152905 doi: 10.1016/j.bbcan.2022.188802
Brown, C. E. et al. Optimization of IL13Rα2-targeted chimeric antigen receptor T cells for improved anti-tumor efficacy against glioblastoma. Mol. Ther. 26, 31–44 (2018).
pubmed: 29103912 doi: 10.1016/j.ymthe.2017.10.002
Starr, R. et al. Inclusion of 4-1BB costimulation enhances selectivity and functionality of IL13Rα2-targeted chimeric antigen receptor T cells. Cancer Res. Commun. 3, 66–79 (2023).
pubmed: 36968221 pmcid: 10035515 doi: 10.1158/2767-9764.CRC-22-0185
Louis, D. N. et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol. 23, 1231–1251 (2021).
pubmed: 34185076 pmcid: 8328013 doi: 10.1093/neuonc/noab106
Portnow, J. et al. Systemic anti-PD-1 immunotherapy results in PD-1 blockade on T cells in the cerebrospinal fluid. JAMA Oncol. 6, 1947–1951 (2020).
pubmed: 33030521 doi: 10.1001/jamaoncol.2020.4508
Akhavan, D. et al. CAR T cells for brain tumors: lessons learned and road ahead. Immunol. Rev. 290, 60–84 (2019).
pubmed: 31355493 pmcid: 6771592 doi: 10.1111/imr.12773
Weist, M. R. et al. PET of adoptively transferred chimeric antigen receptor T cells with (89)Zr-oxine. J. Nucl. Med. 59, 1531–1537 (2018).
pubmed: 29728514 pmcid: 6167529 doi: 10.2967/jnumed.117.206714
Khaled, S. K. et al. Adult patients with ALL treated with CD62L+ T naïve/memory-enriched T cells expressing a CD19-CAR mediate potent antitumor activity with a low toxicity profile. Blood 132, 4016 (2018).
doi: 10.1182/blood-2018-99-119883
Popplewell, L. et al. CD19-CAR therapy using naive/memory or central memory T cells integrated into the autologous stem cell transplant regimen for patients with B-NHL. Blood 132, 610 (2018).
doi: 10.1182/blood-2018-99-119650
Zah, E. et al. Systematically optimized BCMA/CS1 bispecific CAR-T cells robustly control heterogeneous multiple myeloma. Nat. Commun. 11, 2283 (2020).
pubmed: 32385241 pmcid: 7210316 doi: 10.1038/s41467-020-16160-5
Aldoss, I. et al. Favorable activity and safety profile of memory-enriched CD19-targeted chimeric antigen receptor T cell therapy in adults with high-risk relapsed/refractory ALL. Clin. Cancer Res. 29, 742–753 (2023).
pubmed: 36255386 pmcid: 10544259 doi: 10.1158/1078-0432.CCR-22-2038
Arcangeli, S. et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J. Clin. Invest. 132, e150807 (2022).
pubmed: 35503659 pmcid: 9197529 doi: 10.1172/JCI150807
Larson, S. M. et al. CD19/CD20 bispecific chimeric antigen receptor (CAR) in naïve/memory T cells for the treatment of relapsed or refractory non-Hodgkin lymphoma. J. Clin. Oncol. 40, 2543 (2022).
doi: 10.1200/JCO.2022.40.16_suppl.2543
Zhu, Y., Hubbard, R. A., Chubak, J., Roy, J. & Mitra, N. Core concepts in pharmacoepidemiology: violations of the positivity assumption in the causal analysis of observational data: consequences and statistical approaches. Pharmacoepidemiol. Drug Saf. 30, 1471–1485 (2021).
pubmed: 34375473 pmcid: 8492528 doi: 10.1002/pds.5338
Woroniecka, K. I., Rhodin, K. E., Chongsathidkiet, P., Keith, K. A. & Fecci, P. E. T-cell dysfunction in glioblastoma: applying a new framework. Clin. Cancer Res. 24, 3792–3802 (2018).
pubmed: 29593027 pmcid: 6095741 doi: 10.1158/1078-0432.CCR-18-0047
Wang, X. et al. Phenotypic and functional attributes of lentivirus-modified CD19-specific human CD8+ central memory T cells manufactured at clinical scale. J. Immunother. 35, 689–701 (2012).
pubmed: 23090078 pmcid: 3525345 doi: 10.1097/CJI.0b013e318270dec7
Good, Z. et al. Post-infusion CAR T
pubmed: 36097223 pmcid: 10917089 doi: 10.1038/s41591-022-01960-7
Haradhvala, N. J. et al. Distinct cellular dynamics associated with response to CAR-T therapy for refractory B cell lymphoma. Nat. Med. 28, 1848–1859 (2022).
pubmed: 36097221 pmcid: 9509487 doi: 10.1038/s41591-022-01959-0
Simon, M. J. & Iliff, J. J. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim. Biophys. Acta 1862, 442–451 (2016).
pubmed: 26499397 doi: 10.1016/j.bbadis.2015.10.014
Wang, X. et al. The cerebroventricular environment modifies CAR T cells for potent activity against both central nervous system and systemic lymphoma. Cancer Immunol. Res. 9, 75–88 (2021).
pubmed: 33093217 doi: 10.1158/2326-6066.CIR-20-0236
Scholler, N. et al. Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat. Med. 28, 1872–1882 (2022).
pubmed: 36038629 pmcid: 9499856 doi: 10.1038/s41591-022-01916-x
Boulch, M. et al. A cross-talk between CAR T cell subsets and the tumor microenvironment is essential for sustained cytotoxic activity. Sci. Immunol. 6, eabd4344 (2021).
pubmed: 33771887 doi: 10.1126/sciimmunol.abd4344
Bikfalvi, A. et al. Challenges in glioblastoma research: focus on the tumor microenvironment. Trends Cancer 9, 9–27 (2023).
pubmed: 36400694 doi: 10.1016/j.trecan.2022.09.005
Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).
pubmed: 29713085 pmcid: 6117613 doi: 10.1038/s41591-018-0010-1
Chen, G. M. et al. Integrative bulk and single-cell profiling of premanufacture T-cell populations reveals factors mediating long-term persistence of CAR T-cell therapy. Cancer Discov. 11, 2186–2199 (2021).
pubmed: 33820778 pmcid: 8419030 doi: 10.1158/2159-8290.CD-20-1677
Debinski, W. & Gibo, D. M. Molecular expression analysis of restrictive receptor for interleukin 13, a brain tumor-associated cancer/testis antigen. Mol. Med. 6, 440–449 (2000).
pubmed: 10952023 pmcid: 1949955 doi: 10.1007/BF03401786
Reschke, R. & Gajewski, T. F. CXCL9 and CXCL10 bring the heat to tumors. Sci. Immunol. 7, eabq6509 (2022).
pubmed: 35867802 doi: 10.1126/sciimmunol.abq6509
Bruni, D., Angell, H. K. & Galon, J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).
pubmed: 32753728 doi: 10.1038/s41568-020-0285-7
Petitprez, F., Meylan, M., de Reyniès, A., Sautès-Fridman, C. & Fridman, W. H. The tumor microenvironment in the response to immune checkpoint blockade therapies. Front. Immunol. 11, 784 (2020).
pubmed: 32457745 pmcid: 7221158 doi: 10.3389/fimmu.2020.00784
Kmiecik, J. et al. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J. Neuroimmunol. 264, 71–83 (2013).
pubmed: 24045166 doi: 10.1016/j.jneuroim.2013.08.013
Yang, I. et al. CD8+ T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J. Clin. Neurosci. 17, 1381–1385 (2010).
pubmed: 20727764 pmcid: 3064460 doi: 10.1016/j.jocn.2010.03.031
Alanio, C. et al. Immunologic features in de novo and recurrent glioblastoma are associated with survival outcomes. Cancer Immunol. Res. 10, 800–810 (2022).
pubmed: 35507919 pmcid: 9250610 doi: 10.1158/2326-6066.CIR-21-1050
McBain, C. et al. Treatment options for progression or recurrence of glioblastoma: a network meta-analysis. Cochrane Database Syst. Rev. 5, Cd013579 (2021).
pubmed: 34559423
Tipping, M., Eickhoff, J. & Ian Robins, H. Clinical outcomes in recurrent glioblastoma with bevacizumab therapy: an analysis of the literature. J. Clin. Neurosci. 44, 101–106 (2017).
pubmed: 28711289 pmcid: 5581989 doi: 10.1016/j.jocn.2017.06.070
Stupp, R. et al. NovoTTF-100A versus physician’s choice chemotherapy in recurrent glioblastoma: a randomised phase III trial of a novel treatment modality. Eur. J. Cancer 48, 2192–2202 (2012).
pubmed: 22608262 doi: 10.1016/j.ejca.2012.04.011
Meier, R. et al. Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry. Sci. Rep. 6, 23376 (2016).
pubmed: 27001047 pmcid: 4802217 doi: 10.1038/srep23376
Yushkevich, P. A. et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31, 1116–1128 (2006).
pubmed: 16545965 doi: 10.1016/j.neuroimage.2006.01.015
Kahlon, K. S. et al. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res. 64, 9160–9166 (2004).
pubmed: 15604287 doi: 10.1158/0008-5472.CAN-04-0454
Debinski, W. & Thompson, J. P. Retargeting interleukin 13 for radioimmunodetection and radioimmunotherapy of human high-grade gliomas. Clin. Cancer Res. 5, 3143s–3147s (1999).
pubmed: 10541355
Jonnalagadda, M. et al. Chimeric antigen receptors with mutated IgG4 Fc spacer avoid fc receptor binding and improve T cell persistence and antitumor efficacy. Mol. Ther. 23, 757–768 (2015).
pubmed: 25366031 pmcid: 4395772 doi: 10.1038/mt.2014.208
Donnelly, M. L. L. et al. Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J. Gen. Virol. 82, 1013–1025 (2001).
pubmed: 11297676 doi: 10.1099/0022-1317-82-5-1013
Ishibashi, H. et al. Sex steroid hormone receptors in human thymoma. J. Clin. Endocrinol. Metab. 88, 2309–2317 (2003).
pubmed: 12727990 doi: 10.1210/jc.2002-021353
Wang, D., Yang, X., Xella, A., Stern, L. A. & Brown, C. E. Potency monitoring of CAR T cells. Methods Cell. Biol. 173, 173–189 (2023).
pubmed: 36653083 doi: 10.1016/bs.mcb.2022.07.010
Alizadeh, D. et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol. Res. 7, 759–772 (2019).
pubmed: 30890531 pmcid: 6687561 doi: 10.1158/2326-6066.CIR-18-0466
Wang, X. et al. Phase 1 studies of central memory-derived CD19 CAR T-cell therapy following autologous HSCT in patients with B-cell NHL. Blood 127, 2980–2990 (2016).
pubmed: 27118452 pmcid: 4911862 doi: 10.1182/blood-2015-12-686725
Wang, X. et al. A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells. Blood 118, 1255–1263 (2011).
pubmed: 21653320 pmcid: 3152493 doi: 10.1182/blood-2011-02-337360
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e3529 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89–94 (2018).
pubmed: 29227470 doi: 10.1038/nbt.4042
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
pubmed: 19451168 pmcid: 2705234 doi: 10.1093/bioinformatics/btp324
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
deepvariant. GitHub https://github.com/google/deepvariant (2023).
presto. GitHub https://github.com/immunogenomics/presto (2022).
Deng, Q. et al. Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas. Nat. Med. 26, 1878–1887 (2020).
pubmed: 33020644 pmcid: 8446909 doi: 10.1038/s41591-020-1061-7
Sade-Feldman, M. et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175, 998–1013.e1020 (2018).
pubmed: 30388456 pmcid: 6641984 doi: 10.1016/j.cell.2018.10.038
Li, H. et al. Dysfunctional CD8 T cells form a proliferative, dynamically regulated compartment within human melanoma. Cell 176, 775–789.e718 (2019).
pubmed: 30595452 doi: 10.1016/j.cell.2018.11.043
scGSVA. GitHub https://github.com/guokai8/scGSVA (2024).
Xie, J. & Liu, C. Adjusted Kaplan–Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat. Med. 24, 3089–3110 (2005).
pubmed: 16189810 doi: 10.1002/sim.2174
Natri, H. M. Single-cell RNAseq analysis of CAR T products for Brown et al. Zenodo https://doi.org/10.5281/zenodo.10642420 (2024).

Auteurs

Christine E Brown (CE)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA. cbrown@coh.org.

Jonathan C Hibbard (JC)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Darya Alizadeh (D)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

M Suzette Blanchard (MS)

Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Heini M Natri (HM)

The Translational Genomics Research Institute, Phoenix, AZ, USA.

Dongrui Wang (D)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.
Bone Marrow Transplantation Center, the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.

Julie R Ostberg (JR)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Brenda Aguilar (B)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Jamie R Wagner (JR)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Jinny A Paul (JA)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Renate Starr (R)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Robyn A Wong (RA)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Wuyang Chen (W)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Noah Shulkin (N)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Maryam Aftabizadeh (M)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Aleksandr Filippov (A)

Department of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Ammar Chaudhry (A)

Department of Diagnostic Radiology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Julie A Ressler (JA)

Department of Diagnostic Radiology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Julie Kilpatrick (J)

Department of Clinical Research, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Paige Myers-McNamara (P)

Department of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Mike Chen (M)

Department of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Leo D Wang (LD)

Departments of Immuno-Oncology and Pediatrics, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Russell C Rockne (RC)

Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Joseph Georges (J)

Department of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Jana Portnow (J)

Department of Medical Oncology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Michael E Barish (ME)

Department of Stem Cell Biology & Regenerative Medicine, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Massimo D'Apuzzo (M)

Department of Pathology, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Nicholas E Banovich (NE)

The Translational Genomics Research Institute, Phoenix, AZ, USA.

Stephen J Forman (SJ)

Department of Hematology & Hematopoietic Cell Transplantation (T Cell Therapeutics Research Laboratories), City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Behnam Badie (B)

Department of Neurosurgery, City of Hope Beckman Research Institute and Medical Center, Duarte, CA, USA.

Classifications MeSH