A novel graphene oxide-based fluorescence method for detection of urine glycosaminoglycans.

fluorescence-based sensor graphene oxide mucopolysaccharidosis rhodamine B

Journal

Biotechnology and applied biochemistry
ISSN: 1470-8744
Titre abrégé: Biotechnol Appl Biochem
Pays: United States
ID NLM: 8609465

Informations de publication

Date de publication:
06 Mar 2024
Historique:
received: 06 09 2023
accepted: 20 01 2024
medline: 7 3 2024
pubmed: 7 3 2024
entrez: 7 3 2024
Statut: aheadofprint

Résumé

Glycosaminoglycans (GAGs) serve as a biomarker for mucopolysaccharidoses disease. In this study, a novel fluorometric method was developed to measure total GAGs in urine. Graphene oxide (GO) and rhodamine B (RhB), a cationic fluorescent dye, were employed in the development of the method. RhB attaches to the GO surface via electrostatic attraction, leading to the quenching of its fluorescence upon the establishment of the RhB-GO complex. However, the presence of GAGs prompts a resurgence of intense fluorescence. The linear range of the method is between 5.00 and 70.00 mg/L. The total GAG levels of urine samples analyzed using the method agree with the results of the biochemistry analysis laboratory (65.85 and 79.18 mg/L; 73.30 ± 1.76 and 72.21 ± 2.21). The method is simple, accurate, and sensitive and may be used for both first-step diagnosis of the mucopolysaccharidoses and detection of individual GAGs for studies of GAG-related research and other biological applications.

Identifiants

pubmed: 38449083
doi: 10.1002/bab.2565
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Yildiz Technical University, Scientific Research Project Coordination
ID : FDK-2020-3911

Informations de copyright

© 2024 International Union of Biochemistry and Molecular Biology, Inc.

Références

Gandhi NS, Mancera RL. The structure of glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des. 2008;72(6):455-482.
Scott JE. Supramolecular organization of extracellular matrix glycosaminoglycans, in vitro and in the tissues. FASEB J. 1992;6(9):2639-2645.
Merida-de-Barros DA, Chaves SP, Belmiro CLR, Wanderley JLM. Leishmaniasis and glycosaminoglycans: a future therapeutic strategy? Parasit Vectors. 2018;11(1):1-12.
Casale J, Crane JS. Biochemistry, glycosaminoglycans. Europe PMC. Treasure Island, FL: StatPearls Publishing; 2019.
Kubaski F, Osago H, Mason RW, Yamaguchi S, Kobayashi H, Tsuchiya M, et al. Glycosaminoglycans detection methods: applications of mass spectrometry. Mol Genet Metab. 2017;120(1-2):67-77.
Vallet SD, Clerc O, Ricard-Blum S. Glycosaminoglycan-protein interactions: the first draft of the glycosaminoglycan interactome. J Histochem Cytochem. 2021;69(2):93-104.
Anower-E-Khuda MF, Kimata K. Human blood glycosaminoglycans: isolation and analysis. Methods Mol Biol. 2015;229:95-103.
Nyren-Erickson EK, Haldar MK, Gu Y, SY Q, Friesner DL, Mallik S. Fluorescent liposomes for differential interactions with glycosaminoglycans. Anal Chem. 2011;83(15):5989-5995.
Chu CR, Williams AA, Coyle CH, Bowers ME. Early diagnosis to enable early treatment of pre-osteoarthritis. Arthritis Res Ther. 2012;14:1-10.
Kakkis E, Marsden D. Urinary glycosaminoglycans as a potential biomarker for evaluating treatment efficacy in subjects with mucopolysaccharidoses. Mol Genet Metab. 2020;130(1):7-15.
Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford). 2011;50:4-12.
Barbosa I, Garcia S, Barbier-Chassefière V, Caruelle JP, Martelly I, Papy-García D. Improved and simple micro assay for sulfated glycosaminoglycans quantification in biological extracts and its use in skin and muscle tissue studies. Glycobiology. 2003;13(9):647-653.
Chih-Kuang C, Shuan-Pei L, Shyue-Jye L, Tuen-Jen W. MPS screening methods, the berry spot and acid turbidity tests, cause a high incidence of false-negative results in sanfilippo and morquio syndromes. J Clin Lab Anal. 2002;16(5):253-258.
Pepi LE, Sanderson P, Stickney M, Amster IJ. Developments in mass spectrometry for glycosaminoglycan analysis: a review. Mol Cell Proteomics. 2021;20:100025.
Toida T, Qiu G, Matsunaga T, Sagehashi Y, Imanari T. Gas chromatography-mass spectrometric determinations of iduronic and glucuronic acids in glycosaminoglycans after reduction of carboxylic group using sodium borodeuteride. Anal Sci. 1992;8(6):799-804.
Khan SA, Mason RW, Kobayashi H, Yamaguchi S, Tomatsu S. Advances in glycosaminoglycan detection. Mol Genet Metab. 2020;130(2):101-109.
Wang YT, Tseng WL. Surfen-assembled graphene oxide for fluorescence turn-on detection of sulfated glycosaminoglycans in biological matrix. ACS Sens. 2017;2(6):748-756.
Usha G, Prakash R, Karpagalakshmi K, Ramalakshmi S, Piramuthu L, Yang C, et al. A graphene oxide-based fluorescent sensor for surfactants. Anal Methods. 2019;11(45):5826-5832.
El-Shafai NM, El-Khouly ME, El-Kemary M, Ramadan MS, Masoud MS. Graphene oxide-metal oxide nanocomposites: fabrication, characterization and removal of cationic rhodamine B dye. RSC Adv. 2018;8(24):13323-13332.
Prakash R, Usha G, Sivaranjana P, Karpagalakshmi K, Piramuthu L, Selvapalam N. Graphene oxide based fluorescence sensor for cucurbit [7]uril. J Chem. 2018;42(15):13038-13043.
Zhang R, Hummelgård M, Lv G, Olin H. Real time monitoring of the drug release of rhodamine B on graphene oxide. Carbon. 2011;49(4):1126-1132.
Akyüz D, Keskin B, Şahintürk U, Koca A. Electrocatalytic hydrogen evolution reaction on reduced graphene oxide electrode decorated with cobaltphthalocyanine. Appl Catal B. 2016;188:217-226.
Eigler S, Enzelberger-Heim M, Grimm S, Hofmann P, Kroener W, Geworski A, et al. Wet chemical synthesis of graphene. Adv Mater. 2013;25(26):3583-3587.
Blau N, Thöny B. Pterins and related enzymes. Laboratory guide to the methods in biochemical genetics. Springer Berlin Heidelberg. 2008. p. 665-701.
Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45(7):1558-1565.
Sahara J, Naeem A, Farooq M, Zareen S, Rahman AU. Thermodynamic studies of adsorption of rhodamine B and Congo red on graphene oxide. Desalin Water Treat. 2019;164:228-239.
Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, et al. Preparation and characterization of graphene oxide nanosheets. Procedia Eng. 2012;32:759-764.
Raza SA, Naqvi SQ, Usman A, Jennings JR, Soon YW. Spectroscopic study of the interaction between rhodamine B and graphene. J Photochem Photobiol A Chem. 2021;418:113417.
Shakya J, Sahoo H, Mohanty T. A study on the interaction between molybdenum disulfide and rhodamine B by spectroscopic methods. J Mater Sci. 2017;52:3831-3840.
Jhonsi MA, Nithya C, Kathiravan A. Probing electron transfer dynamics of pyranine with reduced graphene oxide. Phys Chem Chem Phys. 2014;16(38):20878-20886.
Liu J, Liu G, Liu W, Wang Y. Turn-on fluorescence sensor for the detection of heparin based on rhodamine B-modified polyethyleneimine-graphene oxide complex. Biosens Bioelectron. 2015;64:300-305.
Zhong L, Yun K. Fluorometric ‘switch-on'detection of heparin based on a system composed of rhodamine-labeled chitosan oligosaccharide lactate, and graphene oxide. Methods Appl Fluoresc. 2018;6(3):035011.
Dai Q, Liu W, Zhuang X, Wu J, Zhang H, Wang P. Ratiometric fluorescence sensor based on a pyrene derivative and quantification detection of heparin in aqueous solution and serum. Anal Chem. 2011;83(17):6559-6564.
Tomatsu S, Montaño AM, Oguma T, Dung VC, Oikawa H, de Carvalho TG, et al. Dermatan sulfate and heparan sulfate as a biomarker for mucopolysaccharidosis I. J Inherit Metab Dis. 2010;33:141-150.
Andrade F, Prieto JA, Elorz J, Martín S, Sanjurjo P. Aldámiz-Echevarría L. Stability of urinary glycosaminoglycans in patients with mucopolysaccharidoses. Clin Chim Acta. 2008;388(1-2):73-77.
Gray G, Claridge P, Jenkinson L, Green A. Quantitation of urinary glycosaminoglycans using dimethylene blue as a screening technique for the diagnosis of mucopolysaccharidoses-an evaluation. Ann Clin Biochem. 2007;44(4):360-363.
Stone JE, Akhtar N, Botchway S, Pennock CA. Interaction of 1, 9-dimethylmethylene blue with glycosaminoglycans. Ann Clin Biochem. 1994;31(2):147-152.
Oguma T, Tomatsu S, Montano AM, Okazaki O. Analytical method for the determination of disaccharides derived from keratan, heparan, and dermatan sulfates in human serum and plasma by high-performance liquid chromatography/turbo ionspray ionization tandem mass spectrometry. Anal Biochem. 2007;368(1):79-86.
Studelska DR, Giljum K, McDowell LM, Zhang L. Quantification of glycosaminoglycans by reversed-phase HPLC separation of fluorescent isoindole derivatives. Glycobiology. 2006;16(1):65-72.
Najjam S, Gibbs RV, Gordon MY, Rider CC. Characterization of human recombinant interleukin 2 binding to heparin and heparan sulfate using an ELISA approach. Cytokine. 1997;9(12):1013-1022.
Møller HJ, Larsen FS, Ingemann-Hansen T, Poulsen JH. ELISA for the core protein of the cartilage large aggregating proteoglycan, aggrecan: comparison with the concentrations of immunogenic keratan sulphate in synovial fluid, serum and urine. Clin Chim Acta. 1994;225(1):43-55.
Shibutani T, Nishino W, Shiraki M, Iwayama Y. ELISA detection of glycosaminoglycan (GAG)-linked proteoglycans in gingival crevicular fluid. J Periodontal Res. 1993;28(1):17-20.
Yang JA, Kim ES, Kwon JH, Kim H, Shin JH, Yun SH, et al. Transdermal delivery of hyluronic acid-human growth hormone conjugate. Biomaterials. 2012;33(25):5947-5954.
Wang W, Han N, Li R, Han W, Zhang X, Li F. Supercharged fluorescent protein as a versatile probe for the detection of glycosaminoglycans in vitro and in vivo. Anal Chem. 2015;87(18):9302-9307.

Auteurs

Ceren Bakır Kösoğlu (CB)

Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey.

Süreyya Dede (S)

Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey.

Emine Karakuş (E)

Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey.

Ali Erdoğmuş (A)

Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey.

Bahadır Keskin (B)

Department of Chemistry, Faculty of Arts and Sciences, Yildiz Technical University, Esenler Istanbul, Istanbul, Turkey.

Hasan Önal (H)

Pediatric Endocrinology and Metabolic Diseases Clinic, University of Health Sciences, Basaksehir Cam and Sakura City Hospital, Basaksehir Istanbul, Turkey.

Classifications MeSH