Screening and diagnosis of primary aldosteronism. Consensus document of all the Spanish Societies involved in the management of primary aldosteronism.

Adrenal venous sampling Aldosterone to renin ratio Hypertension Primary aldosteronism

Journal

Endocrine
ISSN: 1559-0100
Titre abrégé: Endocrine
Pays: United States
ID NLM: 9434444

Informations de publication

Date de publication:
06 Mar 2024
Historique:
received: 25 01 2024
accepted: 15 02 2024
medline: 7 3 2024
pubmed: 7 3 2024
entrez: 6 3 2024
Statut: aheadofprint

Résumé

Primary aldosteronism (PA) is the most frequent cause of secondary hypertension (HT), and is associated with a higher cardiometabolic risk than essential HT. However, PA remains underdiagnosed, probably due to several difficulties clinicians usually find in performing its diagnosis and subtype classification. The aim of this consensus is to provide practical recommendations focused on the prevalence and the diagnosis of PA and the clinical implications of aldosterone excess, from a multidisciplinary perspective, in a nominal group consensus approach by experts from the Spanish Society of Endocrinology and Nutrition (SEEN), Spanish Society of Cardiology (SEC), Spanish Society of Nephrology (SEN), Spanish Society of Internal Medicine (SEMI), Spanish Radiology Society (SERAM), Spanish Society of Vascular and Interventional Radiology (SERVEI), Spanish Society of Laboratory Medicine (SEQC(ML)), Spanish Society of Anatomic-Pathology, Spanish Association of Surgeons (AEC).

Identifiants

pubmed: 38448679
doi: 10.1007/s12020-024-03751-1
pii: 10.1007/s12020-024-03751-1
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

J.D. Stanaway, A. Afshin, E. Gakidou, S.S. Lim, D. Abate, K.H. Abate et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Stu. Lancet 392, 1923–1994 (2018). https://doi.org/10.1016/S0140-6736(18)32225-6
doi: 10.1016/S0140-6736(18)32225-6
A.V. Chobanian, G.L. Bakris, H.R. Black, W.C. Cushman, L.A. Green, J.L. Izzo et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 289, 2560–2572 (2003). https://doi.org/10.1001/jama.289.19.2560
doi: 10.1001/jama.289.19.2560 pubmed: 12748199
P.M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P.K. Whelton, J. He, Global burden of hypertension: analysis of worldwide data. Lancet 365, 217–223 (2005). https://doi.org/10.1016/S0140-6736(05)17741-1
doi: 10.1016/S0140-6736(05)17741-1 pubmed: 15652604
E. Menéndez, E. Delgado, F. Fernández-Vega, M.A. Prieto, E. Bordiú, A. Calle, et al. Prevalence, diagnosis, treatment, and control of hypertension in Spain. Results of the Di@bet.es Study. Rev. Española Cardiol. English Ed 69, 572–578 (2016). https://doi.org/10.1016/j.rec.2015.11.034
T. Unger, C. Borghi, F. Charchar, N.A. Khan, N.R. Poulter, D. Prabhakaran et al. 2020 International Society of Hypertension global hypertension practice guidelines. J. Hypertens. 38, 982–1004 (2020). https://doi.org/10.1097/HJH.0000000000002453
doi: 10.1097/HJH.0000000000002453 pubmed: 32371787
S.E. Kjeldsen, K. Narkiewicz, M. Burnier, S. Oparil, 2018 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension. Taylor Francis Ltd 27, 313 (2018). https://doi.org/10.1080/08037051.2018.1530564
doi: 10.1080/08037051.2018.1530564
P.K. Whelton, R.M. Carey, W.S. Aronow, D.E. Casey, K.J. Collins, C. Dennison Himmelfarb et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Pr. Hypertens. (Dallas, Tex. 1979) 71, e13–e115 (2018). https://doi.org/10.1161/HYP.0000000000000065
doi: 10.1161/HYP.0000000000000065
S. Monticone, F. D’Ascenzo, C. Moretti, T.A. Williams, F. Veglio, F. Gaita et al. Cardiovascular events and target organ damage in primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Lancet Diabetes Endocrinol. 6, 41–50 (2018). https://doi.org/10.1016/S2213-8587(17)30319-4
doi: 10.1016/S2213-8587(17)30319-4 pubmed: 29129575
Y.K. Tan, Y.H. Kwan, D.C.L. Teo, M. Velema, J. Deinum, P.T. Tan et al. Improvement in quality of life and psychological symptoms after treatment for primary aldosteronism: Asian Cohort Study. Endocr. Connect 10, 834–844 (2021). https://doi.org/10.1530/EC-21-0125
doi: 10.1530/EC-21-0125 pubmed: 34223820 pmcid: 8346187
F. Buffolo, G. Cavaglià, J. Burrello, M. Amongero, M. Tetti, A. Pecori et al. Quality of life in primary aldosteronism: A prospective observational study. Eur. J. Clin. Invest 51, e13419 (2021). https://doi.org/10.1111/eci.13419
doi: 10.1111/eci.13419 pubmed: 32997795
C.C. Lubitz, K.P. Economopoulos, S. Sy, C. Johanson, H.E. Kunzel, M. Reincke et al. Cost-effectiveness of screening for primary aldosteronism and subtype diagnosis in the resistant hypertensive patients. Circ. Cardiovasc Qual. Outcomes 8, 621–630 (2015). https://doi.org/10.1161/CIRCOUTCOMES.115.002002
doi: 10.1161/CIRCOUTCOMES.115.002002 pubmed: 26555126 pmcid: 4651757
M. Sato, R. Morimoto, K. Seiji, Y. Iwakura, Y. Ono, M. Kudo et al. Cost-effectiveness analysis of the diagnosis and treatment of primary aldosteronism in Japan. Horm. Metab. Res. 47, 826–832 (2015). https://doi.org/10.1055/s-0035-1559645
doi: 10.1055/s-0035-1559645 pubmed: 26305168
J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata et al. The management of primary aldosteronism: Case detection, diagnosis, and treatment: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101, 1889–1916 (2016). https://doi.org/10.1210/jc.2015-4061
doi: 10.1210/jc.2015-4061 pubmed: 26934393
G.P. Rossi, V. Bisogni, A.V. Bacca, A. Belfiore, M. Cesari, A. Concistrè et al. The 2020 Italian Society of Arterial Hypertension (SIIA) practical guidelines for the management of primary aldosteronism. Int J. Cardiol. Hypertens. 5, 100029 (2020). https://doi.org/10.1016/j.ijchy.2020.100029
doi: 10.1016/j.ijchy.2020.100029 pubmed: 33447758 pmcid: 7803025
P. Mulatero, S. Monticone, J. Deinum, L. Amar, A. Prejbisz, M.C. Zennaro et al. Genetics, prevalence, screening and confirmation of primary aldosteronism: a position statement and consensus of the Working Group on Endocrine Hypertension of The European Society of Hypertension. J. Hypertens. 38, 1919–1928 (2020). https://doi.org/10.1097/HJH.0000000000002510
doi: 10.1097/HJH.0000000000002510 pubmed: 32890264
F. Buffolo, S. Monticone, J. Burrello, M. Tetti, F. Veglio, T. Williams et al. Is primary aldosteronism still largely unrecognized? Horm. Metab. Res 49, 908–914 (2017). https://doi.org/10.1055/s-0043-119755
doi: 10.1055/s-0043-119755 pubmed: 29145688
S.C. Käyser, J. Deinum, W.J. de Grauw, B.W. Schalk, H.J. Bor, J.W. Lenders et al. Prevalence of primary aldosteronism in primary care: a cross-sectional study. Br. J. Gen. Pr. 68, e114–e122 (2018). https://doi.org/10.3399/bjgp18X694589
doi: 10.3399/bjgp18X694589
L. Handgriff, M. Reincke, Primärer Hyperaldosteronismus – warum diagnostizieren wir immer noch so wenige Patienten? Dtsch Medizinische Wochenschr. 145, 716–721 (2020). https://doi.org/10.1055/a-0958-0068
doi: 10.1055/a-0958-0068
P. Mulatero, S. Monticone, J. Burrello, F. Veglio, T.A. Williams, J. Funder, Guidelines for primary aldosteronism: uptake by primary care physicians in Europe. J. Hypertens. 34, 2253–2257 (2016). https://doi.org/10.1097/HJH.0000000000001088
doi: 10.1097/HJH.0000000000001088 pubmed: 27607462
B.C. Ruhle, M.G. White, S. Alsafran, E.L. Kaplan, P. Angelos, R.H. Grogan, Keeping primary aldosteronism in mind: Deficiencies in screening at-risk hypertensives. Surgery 165, 221–227 (2019). https://doi.org/10.1016/j.surg.2018.05.085
doi: 10.1016/j.surg.2018.05.085 pubmed: 30415872
P. Parra Ramírez, P. Martín Rojas-Marcos, M. Cuesta Hernández, J.G. Ruiz-Sánchez, C. Lamas Oliveira, F.A. Hanzu, et al. Primera encuesta sobre el diagnóstico y tratamiento del hiperaldosteronismo primario por especialistas españoles en Endocrinología y Nutrición. Endocrinol Diabetes y Nutr. (2022). https://doi.org/10.1016/J.ENDINU.2022.01.008
AGREE Collaboration—AGREE Enterprise website n.d. https://www.agreetrust.org/login/?redirect_to=https%3A%2F%2Fwww.agreetrust.org%2Fmy-agree%2F (accessed September 19, 2022).
S.C. Käyser, T. Dekkers, H.J. Groenewoud, G.J. Van Der Wilt, J. Carel Bakx, M.C. Van Der Wel et al. Study heterogeneity and estimation of prevalence of primary aldosteronism: A systematic review and meta-regression analysis. J. Clin. Endocrinol. Metab. 101, 2826–2835 (2016). https://doi.org/10.1210/jc.2016-1472
doi: 10.1210/jc.2016-1472 pubmed: 27172433
S. Monticone, J. Burrello, D. Tizzani, C. Bertello, A. Viola, F. Buffolo et al. Prevalence and clinical manifestations of primary aldosteronism encountered in primary care practice. J. Am. Coll. Cardiol. 69, 1811–1820 (2017). https://doi.org/10.1016/j.jacc.2017.01.052
doi: 10.1016/j.jacc.2017.01.052 pubmed: 28385310
J.M. Brown, M. Siddiqui, D.A. Calhoun, R.M. Carey, P.N. Hopkins, G.H. Williams et al. The unrecognized prevalence of primary aldosteronism. Ann. Intern Med 173, 10–20 (2020). https://doi.org/10.7326/M20-0065
doi: 10.7326/M20-0065 pubmed: 32449886 pmcid: 7459427
M. Reincke, I. Bancos, P. Mulatero, U.I. Scholl, M. Stowasser, T.A. Williams, Diagnosis and treatment of primary aldosteronism. Lancet Diabetes Endocrinol. 9, 876–892 (2021). https://doi.org/10.1016/S2213-8587(21)00210-2
doi: 10.1016/S2213-8587(21)00210-2 pubmed: 34798068
J.M. Brown, M. Siddiqui, D.A. Calhoun, R.M. Carey, P.N. Hopkins, G.H. Williams et al. The unrecognized prevalence of primary aldosteronism a cross-sectional study. Ann. Intern Med 173, 10–20 (2020). https://doi.org/10.7326/M20-0065
doi: 10.7326/M20-0065 pubmed: 32449886 pmcid: 7459427
A. Markou, T. Pappa, G. Kaltsas, A. Gouli, K. Mitsakis, P. Tsounas et al. Evidence of primary aldosteronism in a predominantly female cohort of normotensive individuals: A very high odds ratio for progression into arterial hypertension. J. Clin. Endocrinol. Metab. 98, 1409–1416 (2013). https://doi.org/10.1210/jc.2012-3353
doi: 10.1210/jc.2012-3353 pubmed: 23471976
Y. Ito, R. Takeda, Y. Takeda, Subclinical primary aldosteronism. Best. Pr. Res Clin. Endocrinol. Metab. 26, 485–495 (2012). https://doi.org/10.1016/j.beem.2011.11.006
doi: 10.1016/j.beem.2011.11.006
C. Newton-Cheh, C.-Y. Guo, P. Gona, M.G. Larson, E.J. Benjamin, T.J. Wang et al. Clinical and genetic correlates of aldosterone-to-renin ratio and relations to blood pressure in a community sample. Hypertens. (Dallas, Tex. 1979) 49, 846–856 (2007). https://doi.org/10.1161/01.HYP.0000258554.87444.91
doi: 10.1161/01.HYP.0000258554.87444.91
J.M. Brown, C. Robinson-Cohen, M.A. Luque-Fernandez, M.A. Allison, R. Baudrand, J.H. Ix et al. The spectrum of subclinical primary aldosteronism and incident hypertension: a cohort study. Ann. Intern Med 167, 630–641 (2017). https://doi.org/10.7326/M17-0882
doi: 10.7326/M17-0882 pubmed: 29052707 pmcid: 5920695
R. Baudrand, F.J. Guarda, C. Fardella, G. Hundemer, J. Brown, G. Williams et al. Continuum of renin-independent aldosteronism in normotension. Hypertension 69, 950–956 (2017). https://doi.org/10.1161/HYPERTENSIONAHA.116.08952
doi: 10.1161/HYPERTENSIONAHA.116.08952 pubmed: 28289182
E.V. Adlin, Subclinical primary aldosteronism. Ann. Intern Med 167, 673–674 (2017). https://doi.org/10.7326/M17-2237
doi: 10.7326/M17-2237 pubmed: 29052700
J.G. Ruiz-Sánchez, M. Pazos Guerra, D. Meneses, I. Runkle, Primary hyperaldosteronism: when to suspect it and how to confirm its diagnosis. Endocrines 3, 29–42 (2022). https://doi.org/10.3390/endocrines3010003
doi: 10.3390/endocrines3010003
G.P. Rossi, G. Bernini, C. Caliumi, G. Desideri, B. Fabris, C. Ferri et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. J. Am. Coll. Cardiol. 48, 2293–2300 (2006). https://doi.org/10.1016/j.jacc.2006.07.059
doi: 10.1016/j.jacc.2006.07.059 pubmed: 17161262
D.A. Calhoun, M.K. Nishizaka, M.A. Zaman, R.B. Thakkar, P. Weissmann, Hyperaldosteronism among black and white subjects with resistant hypertension. Hypertension 40, 892–896 (2002). https://doi.org/10.1161/01.HYP.0000040261.30455.B6
doi: 10.1161/01.HYP.0000040261.30455.B6 pubmed: 12468575
N. Voulgaris, E. Tyfoxylou, S. Vlachou, E. Kyriazi, C. Gravvanis, C. Kapsali et al. Prevalence of primary aldosteronism across the stages of hypertension based on a new combined overnight test. Horm. Metab. Res 53, 461–469 (2021). https://doi.org/10.1055/a-1507-5226
doi: 10.1055/a-1507-5226 pubmed: 34282597
J. Burrello, S. Monticone, I. Losano, G. Cavaglià, F. Buffolo, M. Tetti et al. Prevalence of hypokalemia and primary aldosteronism in 5100 patients referred to a tertiary hypertension unit. Hypertension 75, 1025–1033 (2020). https://doi.org/10.1161/HYPERTENSIONAHA.119.14063
doi: 10.1161/HYPERTENSIONAHA.119.14063 pubmed: 32114853
S. Moradi, M. Shafiepour, A. Amirbaigloo, A woman with normotensive primary hyperaldosteronism. Acta Med Iran. 54, 156–158 (2016)
pubmed: 26997605
Y.-C. Huang, M.-H. Tsai, Y.-W. Fang, M.-L. Tu, Normotensive hypokalemic primary hyperaldosteronism mimicking clinical features of anorexia nervosa in a young patient: A case report. Med. (Baltim.) 99, e20826 (2020). https://doi.org/10.1097/MD.0000000000020826
doi: 10.1097/MD.0000000000020826
I. Kostoglou-Athanassiou, L. Athanassiou, P. Spyropoulos, E. Xanthakou, A. Fortis, T. Kalogirou et al. Primary hyperaldosteronism. A clinical profile of the disease without arterial hypertension. Endocr. Abstr. 73, 68 (2021). https://doi.org/10.1530/endoabs.73.AEP68
doi: 10.1530/endoabs.73.AEP68
Z. Meng, Z. Dai, K. Huang, C. Xu, Y.-G. Zhang, H. Zheng et al. Long-term mortality for patients of primary aldosteronism compared with essential hypertension: a systematic review and meta-analysis. Front Endocrinol. (Lausanne) 11, 121 (2020). https://doi.org/10.3389/fendo.2020.00121
doi: 10.3389/fendo.2020.00121 pubmed: 32210920
G.L. Hundemer, G.C. Curhan, N. Yozamp, M. Wang, A. Vaidya, Cardiometabolic outcomes and mortality in medically treated primary aldosteronism: a retrospective cohort study. Lancet Diabetes Endocrinol. 6, 51–59 (2018). https://doi.org/10.1016/S2213-8587(17)30367-4
doi: 10.1016/S2213-8587(17)30367-4 pubmed: 29129576
Y. Jing, K. Liao, R. Li, S. Yang, Y. Song, W. He et al. Cardiovascular events and all-cause mortality in surgically or medically treated primary aldosteronism: A Meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 22, 4703203211003781 (2021). https://doi.org/10.1177/14703203211003781
doi: 10.1177/14703203211003781
P. Milliez, X. Girerd, P.F. Plouin, J. Blacher, M.E. Safar, J.J. Mourad et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J. Am. Coll. Cardiol. 45, 1243–1248 (2005). https://doi.org/10.1016/j.jacc.2005.01.015
doi: 10.1016/j.jacc.2005.01.015 pubmed: 15837256
M. Stowasser, J. Sharman, R. Leano, R.D. Gordon, G. Ward, D. Cowley et al. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J. Clin. Endocrinol. Metab. 90, 5070–5076 (2005). https://doi.org/10.1210/jc.2005-0681
doi: 10.1210/jc.2005-0681 pubmed: 15941863
M. Abad-Cardiel, B. Álvarez-Álvarez, L. Luque-Fernandez, C. Fernández, A. Fernández-Cruz, N. Martell-Claros, Hipertensión por hiperaldosteronismo: más lesión cardiaca, mayor riesgo cardiovascular. Rev. Española Cardiol. 66, 47–52 (2013). https://doi.org/10.1016/j.recesp.2012.07.025
doi: 10.1016/j.recesp.2012.07.025
P. Mulatero, S. Monticone, C. Bertello, A. Viola, D. Tizzani, A. Iannaccone et al. Long-term cardio- and cerebrovascular events in patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 98, 4826–4833 (2013). https://doi.org/10.1210/jc.2013-2805
doi: 10.1210/jc.2013-2805 pubmed: 24057288
X. Lin, M.H.E. Ullah, X. Wu, F. Xu, S.-K. Shan, L.-M. Lei et al. Cerebro-cardiovascular risk, target organ damage, and treatment outcomes in primary aldosteronism. Front Cardiovasc Med 8, 798364 (2021). https://doi.org/10.3389/fcvm.2021.798364
doi: 10.3389/fcvm.2021.798364 pubmed: 35187110
B. Vogt, M. Burnier, Aldosterone and cardiovascular risk. Curr. Hypertens. Rep. 11, 450–455 (2009). https://doi.org/10.1007/s11906-009-0076-8
doi: 10.1007/s11906-009-0076-8 pubmed: 19895757
A. Prejbisz, E. Warchoł-Celińska, J. Lenders, A. Januszewicz, Cardiovascular risk in primary hyperaldosteronism. Horm. Metab. Res 47, 973–980 (2015). https://doi.org/10.1055/s-0035-1565124
doi: 10.1055/s-0035-1565124 pubmed: 26575306
L. Petramala, P. Pignatelli, R. Carnevale, L. Zinnamosca, C. Marinelli, A. Settevendemmie et al. Oxidative stress in patients affected by primary aldosteronism. J. Hypertens. 32, 2022–2029 (2014). https://doi.org/10.1097/HJH.0000000000000284 .
doi: 10.1097/HJH.0000000000000284 pubmed: 24979305
G. Liu, G.-S. Yin, J. Tang, D.-J. Ma, J. Ru, X.-H. Huang, Endothelial dysfunction in patients with primary aldosteronism: a biomarker of target organ damage. J. Hum. Hypertens. 28, 711–715 (2014). https://doi.org/10.1038/jhh.2014.11
doi: 10.1038/jhh.2014.11 pubmed: 24553636
A.P. McGraw, J. Bagley, W.-S. Chen, C. Galayda, H. Nickerson, A. Armani et al. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism. J. Am. Heart Assoc. 2, e000018 (2013). https://doi.org/10.1161/JAHA.112.000018
doi: 10.1161/JAHA.112.000018 pubmed: 23525413 pmcid: 3603255
G.P. Rossi, M. Cesari, C. Cuspidi, G. Maiolino, M.V. Cicala, V. Bisogni et al. Long-term control of arterial hypertension and regression of left ventricular hypertrophy with treatment of primary aldosteronism. Hypertension 62, 62–69 (2013). https://doi.org/10.1161/HYPERTENSIONAHA.113.01316
doi: 10.1161/HYPERTENSIONAHA.113.01316 pubmed: 23648698
C.T. Pan, C.H. Tsai, Z.W. Chen, Y.Y. Chang, V.C. Wu, C.S. Hung et al. Atrial fibrillation in primary aldosteronism. Horm. Metab. Res 52, 357–365 (2020). https://doi.org/10.1055/a-1141-5989
doi: 10.1055/a-1141-5989 pubmed: 32289838
R.S. Vasan, J.C. Evans, M.G. Larson, P.W.F. Wilson, J.B. Meigs, N. Rifai et al. Serum aldosterone and the incidence of hypertension in nonhypertensive persons. N. Engl. J. Med. 351, 33–41 (2004). https://doi.org/10.1056/NEJMoa033263
doi: 10.1056/NEJMoa033263 pubmed: 15229305
Y. Yoshida, S. Yoshimura, M. Kinoshita, Y. Ozeki, M. Okamoto, K. Gotoh et al. Oral salt loading test is associated with 24-hour blood pressure and organ damage in primary aldosteronism patients. J. Endocr. Soc. 4, bvaa116 (2020). https://doi.org/10.1210/JENDSO/BVAA116
doi: 10.1210/JENDSO/BVAA116 pubmed: 32968702 pmcid: 7497815
J.M. Luther, Effects of aldosterone on insulin sensitivity and secretion. Steroids 91, 54–60 (2014). https://doi.org/10.1016/j.steroids.2014.08.016
doi: 10.1016/j.steroids.2014.08.016 pubmed: 25194457
C. Bothou, F. Beuschlein, A. Spyroglou, Links between aldosterone excess and metabolic complications: A comprehensive review. Diabetes Metab. 46, 1–7 (2020). https://doi.org/10.1016/j.diabet.2019.02.003
doi: 10.1016/j.diabet.2019.02.003 pubmed: 30825519
M.N. Pratt-Ubunama, M.K. Nishizaka, R.L. Boedefeld, S.S. Cofield, S.M. Harding, D.A. Calhoun, Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest 131, 453–459 (2007). https://doi.org/10.1378/chest.06-1442
doi: 10.1378/chest.06-1442 pubmed: 17296647
A. Di Murro, L. Petramala, D. Cotesta, L. Zinnamosca, E. Crescenzi, C. Marinelli et al. Renin-angiotensin-aldosterone system in patients with sleep apnoea: Prevalence of primary aldosteronism. J. Renin-Angiotensin-Aldosterone Syst. 11, 165–172 (2010). https://doi.org/10.1177/1470320310366581
doi: 10.1177/1470320310366581 pubmed: 20488824
A. Pecori, F. Buffolo, J. Pieroni, V. Forestiero, E. Sconfienza, F. Veglio et al. Primary aldosteronism and obstructive sleep apnea: casual association or pathophysiological link? Horm. Metab. Res 52, 366–372 (2020). https://doi.org/10.1055/a-1133-7255
doi: 10.1055/a-1133-7255 pubmed: 32219799
W. Kawarazaki, T. Fujita, The role of aldosterone in obesity-related hypertension. Am. J. Hypertens. 29, 415–423 (2016). https://doi.org/10.1093/ajh/hpw003
doi: 10.1093/ajh/hpw003 pubmed: 26927805 pmcid: 4886496
V.M. Gershuni, D.S. Herman, R.R. Kelz, R.E. Roses, D.L. Cohen, S.O. Trerotola et al. Challenges in obesity and primary aldosteronism: Diagnosis and treatment. Surgery 167, 204–210 (2020). https://doi.org/10.1016/j.surg.2019.03.036
doi: 10.1016/j.surg.2019.03.036 pubmed: 31542169
Y. Ohno, M. Sone, N. Inagaki, T. Yamasaki, O. Ogawa, Y. Takeda et al. Obesity as a key factor underlying idiopathic hyperaldosteronism. J. Clin. Endocrinol. Metab. 103, 4456–4464 (2018). https://doi.org/10.1210/jc.2018-00866
doi: 10.1210/jc.2018-00866 pubmed: 30165444
Y. Akehi, T. Yanase, R. Motonaga, H. Umakoshi, M. Tsuiki, Y. Takeda et al. High prevalence of diabetes in patients with primary aldosteronism (PA) associated with subclinical hypercortisolism and prediabetes more prevalent in bilateral than unilateral PA: A large, multicenter cohort study in Japan. Diabetes Care 42, 938–945 (2019). https://doi.org/10.2337/dc18-1293
doi: 10.2337/dc18-1293 pubmed: 31010944
G. Hanslik, H. Wallaschofski, A. Dietz, A. Riester, M. Reincke, B. Allolio et al. Increased prevalence of diabetes mellitus and the metabolic syndrome in patients with primary aldosteronism of the German Conn’s Registry. Eur. J. Endocrinol. 173, 665–675 (2015). https://doi.org/10.1530/EJE-15-0450
doi: 10.1530/EJE-15-0450 pubmed: 26311088
Y. Hu, J. Zhang, W. Liu, X. Su, Determining the prevalence of primary aldosteronism in patients with new-onset type 2 diabetes and hypertension. J. Clin. Endocrinol. Metab. 105, 1079–1085 (2020). https://doi.org/10.1210/clinem/dgz293
doi: 10.1210/clinem/dgz293
E. Rossi, C. Sani, F. Perazzoli, M.C. Casoli, A. Negro, C. Dotti, Alterations of calcium metabolism and of parathyroid function in primary aldosteronism, and their reversal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am. J. Hypertens. 8, 884–893 (1995). https://doi.org/10.1016/0895-7061(95)00182-O
doi: 10.1016/0895-7061(95)00182-O pubmed: 8541003
M. Fernández-Argüeso, E. Pascual-Corrales, N. Bengoa Rojano, A. García Cano, L. Jiménez Mendiguchía, M. Araujo-Castro, Higher risk of chronic kidney disease and progressive kidney function impairment in primary aldosteronism than in essential hypertension. Case-control study. Endocrine 73, 439–446 (2021). https://doi.org/10.1007/s12020-021-02704-2
doi: 10.1007/s12020-021-02704-2 pubmed: 33797699
S. Monticone, E. Sconfienza, F. D’Ascenzo, F. Buffolo, F. Satoh, L.A. Sechi et al. Renal damage in primary aldosteronism: A systematic review and meta-analysis. J. Hypertens. 38, 3–12 (2020). https://doi.org/10.1097/HJH.0000000000002216
doi: 10.1097/HJH.0000000000002216 pubmed: 31385870
J. Gerards, D.A. Heinrich, C. Adolf, C. Meisinger, W. Rathmann, L. Sturm et al. Impaired glucose metabolism in primary aldosteronism is associated with cortisol cosecretion. J. Clin. Endocrinol. Metab. 104, 3192–3202 (2019). https://doi.org/10.1210/jc.2019-00299
doi: 10.1210/jc.2019-00299 pubmed: 30865224
S. Monticone, A. Viola, D. Tizzani, V. Crudo, J. Burrello, M. Galmozzi et al. Primary aldosteronism: who should be screened? Horm. Metab. Res 44, 163–169 (2012). https://doi.org/10.1055/S-0031-1295409
doi: 10.1055/S-0031-1295409 pubmed: 22120135
M. Araujo-Castro, P. Parra-Ramírez, Diagnosis of primary hyperaldosteronism. Med. Clin. (Barc) (2021). https://doi.org/10.1016/j.medcli.2021.10.012 .
R. Zhang, X. Cai, C. lin, W. Yang, F. Lv, X. Han et al. Primary aldosteronism and obstructive sleep apnea: A meta-analysis of prevalence and metabolic characteristics. Sleep. Med 114, 8–14 (2024). https://doi.org/10.1016/J.SLEEP.2023.12.007
doi: 10.1016/J.SLEEP.2023.12.007 pubmed: 38142557
M. Araujo-Castro, M. Paja Fano, B. Pla Peris, M. González Boillos, E. Pascual-Corrales, A.M. García-Cano, et al. Autonomous cortisol secretion in patients with primary aldosteronism: prevalence and implications on cardiometabolic profile and on surgical outcomes. Endocr. Connect 12 (2023). https://doi.org/10.1530/EC-23-0043
Z. Guo, M. Poglitsch, B.C. McWhinney, J.P.J. Ungerer, A.H. Ahmed, R.D. Gordon et al. Aldosterone LC-MS/MS assay-specific threshold values in screening and confirmatory testing for primary aldosteronism. J. Clin. Endocrinol. Metab. 103, 3965–3973 (2018). https://doi.org/10.1210/JC.2018-01041
doi: 10.1210/JC.2018-01041 pubmed: 30137438
M. Stowasser, R.D. Gordon, Primary aldosteronism: changing definitions and new concepts of physiology and pathophysiology both inside and outside the kidney. Physiol. Rev. 96, 1327–1384 (2016). https://doi.org/10.1152/PHYSREV.00026.2015
doi: 10.1152/PHYSREV.00026.2015 pubmed: 27535640
W.F. Young, Diagnosis and treatment of primary aldosteronism: practical clinical perspectives. J. Intern Med. 285, 126–148 (2019). https://doi.org/10.1111/JOIM.12831
doi: 10.1111/JOIM.12831 pubmed: 30255616
S.M. Gibbons, H.P. Field, A. Fairhurst, A. Fleming, C. Ford, E.L. Williams et al. Clinical evaluation of assays for plasma renin activity and aldosterone measurement by liquid chromatography-tandem mass spectrometry. J. Appl Lab Med 6, 668–678 (2021). https://doi.org/10.1093/JALM/JFAA177
doi: 10.1093/JALM/JFAA177 pubmed: 33928391
M. Stowasser, A. Ahmed, Z. Guo, M. Wolley, J. Ungerer, B. Mcwhinney et al. Can screening and confirmatory testing in the management of patients with primary aldosteronism be improved? (2017).
J. Burrello, S. Monticone, F. Buffolo, M. Lucchiari, M. Tetti, F. Rabbia et al. Diagnostic accuracy of aldosterone and renin measurement by chemiluminescent immunoassay and radioimmunoassay in primary aldosteronism. J. Hypertens. 34, 920–927 (2016). https://doi.org/10.1097/HJH.0000000000000880
doi: 10.1097/HJH.0000000000000880 pubmed: 27031933
G.P. Rossi, M. Barisa, A. Belfiore, G. Desideri, C. Ferri, C. Letizia et al. The aldosterone-renin ratio based on the plasma renin activity and the direct renin assay for diagnosing aldosterone-producing adenoma. J. Hypertens. 28, 1892–1899 (2010). https://doi.org/10.1097/HJH.0B013E32833D2192
doi: 10.1097/HJH.0B013E32833D2192 pubmed: 20683340
C. Douillard, P. Houillier, J. Nussberger, X. Girerd, SFE/SFHTA/AFCE consensus on primary aldosteronism, part 2: first diagnostic steps. Ann. Endocrinol. (Paris) 77, 192–201 (2016). https://doi.org/10.1016/J.ANDO.2016.02.003
doi: 10.1016/J.ANDO.2016.02.003 pubmed: 27177498
T. Nishikawa, M. Omura, F. Satoh, H. Shibata, K. Takahashi, N. Tamura et al. Guidelines for the diagnosis and treatment of primary aldosteronism-the Japan Endocrine Society 2009. Endocr. J. 58, 711–721 (2011). https://doi.org/10.1507/ENDOCRJ.EJ11-0133
doi: 10.1507/ENDOCRJ.EJ11-0133 pubmed: 21828936
G.P. Rossi, G. Ceolotto, G. Rossitto, T.M. Seccia, G. Maiolino, C. Berton et al. Prospective validation of an automated chemiluminescence-based assay of renin and aldosterone for the work-up of arterial hypertension. Clin. Chem. Lab Med. 54, 1441–1450 (2016). https://doi.org/10.1515/CCLM-2015-1094
doi: 10.1515/CCLM-2015-1094 pubmed: 26824982
S. Baron, L. Amar, A.L. Faucon, A. Blanchard, L. Baffalie, C. Faucard et al. Criteria for diagnosing primary aldosteronism on the basis of liquid chromatography-tandem mass spectrometry determinations of plasma aldosterone concentration. J. Hypertens. 36, 1592–1601 (2018). https://doi.org/10.1097/HJH.0000000000001735
doi: 10.1097/HJH.0000000000001735 pubmed: 29677048
M. Stowasser, A.H. Ahmed, E. Pimenta, P.J. Taylor, R.D. Gordon, E. Hypertension et al. Factors affecting the aldosterone / renin ratio. Horm. Metab. Res 44, 170–176 (2012)
doi: 10.1055/s-0031-1295460 pubmed: 22147655
D.J. Campbell, J. Nussberger, M. Stowasser, A.H.J. Danser, A. Morganti, E. Frandsen et al. Activity assays and immunoassays for plasma Renin and prorenin: information provided and precautions necessary for accurate measurement. Clin. Chem. 55, 867–877 (2009). https://doi.org/10.1373/CLINCHEM.2008.118000
doi: 10.1373/CLINCHEM.2008.118000 pubmed: 19264850
F.H. Messerli, Doxazosin and congestive heart failure. J. Am. Coll. Cardiol. 38, 1295–1296 (2001). https://doi.org/10.1016/S0735-1097(01)01534-0
doi: 10.1016/S0735-1097(01)01534-0 pubmed: 11691497
G. Cholack, J. Garfein, R. Krallman, D. Montgomery, E. Kline-Rogers, M. Rubenfire et al. Trends in calcium channel blocker use in patients with heart failure with reduced ejection fraction and comorbid atrial fibrillation. Am. J. Med 134, 1413–1418.e1 (2021). https://doi.org/10.1016/J.AMJMED.2021.06.013
doi: 10.1016/J.AMJMED.2021.06.013 pubmed: 34245675 pmcid: 8605988
A.H. Ahmed, R.D. Gordon, P.J. Taylor, G. Ward, E. Pimenta, M. Stowasser, Effect of contraceptives on aldosterone/renin ratio may vary according to the components of contraceptive, renin assay method, and possibly route of administration. J. Clin. Endocrinol. Metab. 96, 1797–1804 (2011). https://doi.org/10.1210/jc.2010-2918
doi: 10.1210/jc.2010-2918 pubmed: 21411552
A.H. Ahmed, M. Calvird, R.D. Gordon, P.J. Taylor, G. Ward, E. Pimenta et al. Effects of two selective serotonin reuptake inhibitor antidepressants, sertraline and escitalopram, on aldosterone/renin ratio in normotensive depressed male patients. J. Clin. Endocrinol. Metab. 96, 1039–1045 (2011). https://doi.org/10.1210/jc.2010-2603
doi: 10.1210/jc.2010-2603 pubmed: 21289246
D.Z.I. Cherney, B.A. Perkins, N. Soleymanlou, M. Maione, V. Lai, A. Lee et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129, 587–597 (2014). https://doi.org/10.1161/CIRCULATIONAHA.113.005081
doi: 10.1161/CIRCULATIONAHA.113.005081 pubmed: 24334175
P. Parra Ramírez, P.M. Rojas-Marcos, M. Paja Fano, M. González Boillos, E. Pascual-Corrales, A. García-Cano et al. Differences in the presentation and evolution of primary aldosteronism in elderly (≥65 years). Endocr. Connect 11, e220169 (2022). https://doi.org/10.1530/EC-22-0169
doi: 10.1530/EC-22-0169 pubmed: 35583179 pmcid: 9254285
W. Tu, G.J. Eckert, T.S. Hannon, H. Liu, L.M. Pratt, M.A. Wagner et al. Racial differences in sensitivity of blood pressure to aldosterone. Hypertension 63, 1212 (2014). https://doi.org/10.1161/HYPERTENSIONAHA.113.02989
doi: 10.1161/HYPERTENSIONAHA.113.02989 pubmed: 24711519
Y. Ohno, M. Sone, N. Inagaki, Y. Takeda, I. Kurihara, M. Tsuiki et al. Latent autonomous cortisol secretion from apparently nonfunctioning adrenal tumor in nonlateralized hyperaldosteronism. J. Clin. Endocrinol. Metab. 104, 4382–4389 (2019). https://doi.org/10.1210/JC.2018-02790
doi: 10.1210/JC.2018-02790 pubmed: 31058960
G.P. Rossi, G. Maiolino, A. Flego, A. Belfiore, G. Bernini, B. Fabris et al. Adrenalectomy lowers incident atrial fibrillation in primary aldosteronism patients at long term. Hypertens. (Dallas, Tex. 1979) 71, 585–591 (2018). https://doi.org/10.1161/HYPERTENSIONAHA.117.10596
doi: 10.1161/HYPERTENSIONAHA.117.10596
M. Stowasser, R.D. Gordon, J.C. Rutherford, N.Z. Nikwan, N. Daunt, G.J. Slater, Diagnosis and management of primary aldosteronism. J. Renin Angiotensin Aldosterone Syst. 2 (2001) https://doi.org/10.3317/jraas.2001.022
G. Opocher, S. Rocco, M. Cimolato, B. Vianello, G. Arnaldi, F. Mantero, Angiotensin II receptors in cortical and medullary adrenal tumors. J. Clin. Endocrinol. Metab. 82, 865–869 (1997). https://doi.org/10.1210/JCEM.82.3.3794
doi: 10.1210/JCEM.82.3.3794 pubmed: 9062498
T.J. Tunny, S.A. Klemm, M. Stowasser, R.D. Gordon, Angiotensin-responsive aldosterone-producing adenomas: postoperative disappearance of aldosterone response to angiotensin. Clin. Exp. Pharm. Physiol. 20, 306–309 (1993). https://doi.org/10.1111/J.1440-1681.1993.TB01690.X
doi: 10.1111/J.1440-1681.1993.TB01690.X
T. Saruta, T. Okuno, T. Eguchi, R. Nakamura, I. Saito, K. Kondo et al. Responses of aldosterone-producing adenomas to ACTH and angiotensins. Acta Endocrinol. (Copenh) 92, 702–709 (1979). https://doi.org/10.1530/ACTA.0.0920702
doi: 10.1530/ACTA.0.0920702 pubmed: 231371
E.V. Adlin, L.E. Braitman, R.S. Vasan, Bimodal aldosterone distribution in low-renin hypertension. Am. J. Hypertens. 26, 1076–1085 (2013). https://doi.org/10.1093/AJH/HPT091
doi: 10.1093/AJH/HPT091 pubmed: 23757402 pmcid: 3741228
J.G. Ruiz-Sánchez, A.L. Calle-Pascual, M.Á. Rubio-Herrera, M.P. De Miguel Novoa, E. Gómez-Hoyos, I. Runkle, Clinical manifestations and associated factors in acquired hypoaldosteronism in endocrinological practice. Front Endocrinol. (Lausanne) 13, 990148 (2022). https://doi.org/10.3389/FENDO.2022.990148
doi: 10.3389/FENDO.2022.990148 pubmed: 36303866
J.M.C. Connell, S.M. MacKenzie, E.M. Freel, R. Fraser, E. Davies, A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr. Rev. 29, 133–154 (2008). https://doi.org/10.1210/ER.2007-0030
doi: 10.1210/ER.2007-0030 pubmed: 18292466
D.F. Lyons, D.C. Kem, R.D. Brown, C.S. Hanson, M.L. Carollo, Single dose captopril as a diagnostic test for primary aldosteronism. J. Clin. Endocrinol. Metab. 57, 892–896 (1983). https://doi.org/10.1210/JCEM-57-5-892
doi: 10.1210/JCEM-57-5-892 pubmed: 6352726
A. Vecchiola, C.A. Fuentes, E.R. Barros, A. Martínez-Aguayo, H. García, F. Allende et al. The aldosterone/renin ratio predicts cardiometabolic disorders in subjects without classic primary aldosteronism. Am. J. Hypertens. 32, 468–475 (2019). https://doi.org/10.1093/AJH/HPZ023
doi: 10.1093/AJH/HPZ023 pubmed: 30753255
S.J. Duffy, E.S. Biegelsen, R.T. Eberhardt, D.F. Kahn, B.A. Kingwell, J.A. Vita, Low-renin hypertension with relative aldosterone excess is associated with impaired NO-mediated vasodilation. Hypertens. (Dallas, Tex. 1979) 46, 707–713 (2005). https://doi.org/10.1161/01.HYP.0000184231.84465.62
doi: 10.1161/01.HYP.0000184231.84465.62
K.T. Weber, S.K. Bhattacharya, M.S. Gandhi, G. Kamalov, R.A. Ahokas, Y. Sun et al. Myocardial remodeling in low-renin hypertension: molecular pathways to cellular injury in relative aldosteronism. Curr. Hypertens. Rep. 11, 412–420 (2009). https://doi.org/10.1007/S11906-009-0071-0
doi: 10.1007/S11906-009-0071-0 pubmed: 19895752 pmcid: 2896307
A. Mahmud, M. Mahgoub, M. Hall, J. Feely, Does aldosterone-to-renin ratio predict the antihypertensive effect of the aldosterone antagonist spironolactone? Am. J. Hypertens. 18, 1631–1635 (2005). https://doi.org/10.1016/J.AMJHYPER.2005.06.010
doi: 10.1016/J.AMJHYPER.2005.06.010 pubmed: 16364838
P.O. Lim, R.T. Jung, T.M. MacDonald, Raised aldosterone to renin ratio predicts antihypertensive efficacy of spironolactone: a prospective cohort follow-up study. Br. J. Clin. Pharm. 48, 756–760 (1999). https://doi.org/10.1046/J.1365-2125.1999.00070.X
doi: 10.1046/J.1365-2125.1999.00070.X
M.H. Weinberger, W.B. White, L.M. Ruilope, T.M. MacDonald, R.C. Davidson, B. Roniker et al. Effects of eplerenone versus losartan in patients with low-renin hypertension. Am. Heart J. 150, 426–433 (2005). https://doi.org/10.1016/J.AHJ.2004.12.005
doi: 10.1016/J.AHJ.2004.12.005 pubmed: 16169319
Y. Ori, A. Chagnac, A. Korzets, B. Zingerman, M. Herman-Edelstein, M. Bergman et al. Regression of left ventricular hypertrophy in patients with primary aldosteronism/low-renin hypertension on low-dose spironolactone. Nephrol. Dial. Transpl. 28, 1787–1793 (2013). https://doi.org/10.1093/ndt/gfs587
doi: 10.1093/ndt/gfs587
M. Stowasser, R.D. Gordon, Primary aldosteronism: Learning from the study of familial varieties. J. Hypertens. 18, 1165–1176 (2000). https://doi.org/10.1097/00004872-200018090-00002
doi: 10.1097/00004872-200018090-00002 pubmed: 10994747
H. Shibata, H. Itoh, Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am. J. Hypertens. 25, 514–523 (2012). https://doi.org/10.1038/AJH.2011.245
doi: 10.1038/AJH.2011.245 pubmed: 22258336
A. Vaidya, R.M. Carey, Evolution of the primary aldosteronism syndrome: updating the approach. J. Clin. Endocrinol. Metab. 105, 3771–3783 (2020). https://doi.org/10.1210/CLINEM/DGAA606
doi: 10.1210/CLINEM/DGAA606 pubmed: 32865201 pmcid: 7899564
H. Umakoshi, M. Naruse, N. Wada, T. Ichijo, K. Kamemura, Y. Matsuda et al. Adrenal venous sampling in patients with positive screening but negative confirmatory testing for primary aldosteronism. Hypertens. (Dallas, Tex. 1979) 67, 1014–1019 (2016). https://doi.org/10.1161/HYPERTENSIONAHA.115.06607
doi: 10.1161/HYPERTENSIONAHA.115.06607
N. Matsunoshita, K. Nozu, A. Shono, Y. Nozu, X.J. Fu, N. Morisada et al. Differential diagnosis of Bartter syndrome, Gitelman syndrome, and pseudo-Bartter/Gitelman syndrome based on clinical characteristics. Genet Med. 18, 180–188 (2016). https://doi.org/10.1038/GIM.2015.56
doi: 10.1038/GIM.2015.56 pubmed: 25880437
L.K. Nieman, B.M.K.K. Biller, J.W. Findling, J. Newell-Price, M.O. Savage, P.M. Stewart et al. The Diagnosis of Cushing’s syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 93, 1526–1540 (2008). https://doi.org/10.1210/jc.2008-0125
doi: 10.1210/jc.2008-0125 pubmed: 18334580 pmcid: 2386281
M. Tetti, S. Monticone, J. Burrello, P. Matarazzo, F. Veglio, B. Pasini et al. Liddle syndrome: review of the literature and description of a new case. Int. J. Mol. Sci. 19, 812 (2018). https://doi.org/10.3390/IJMS19030812
doi: 10.3390/IJMS19030812 pubmed: 29534496 pmcid: 5877673
M. Yau, S. Haider, A. Khattab, C. Ling, M. Mathew, S. Zaidi et al. Clinical, genetic, and structural basis of apparent mineralocorticoid excess due to 11β-hydroxysteroid dehydrogenase type 2 deficiency. Proc. Natl. Acad. Sci. USA 114, E11248–E11256 (2017). https://doi.org/10.1073/PNAS.1716621115
doi: 10.1073/PNAS.1716621115 pubmed: 29229831 pmcid: 5748222
D. El-Maouche, W. Arlt, D.P. Merke, Congenital adrenal hyperplasia. Lancet (Lond., Engl.) 390, 2194–2210 (2017). https://doi.org/10.1016/S0140-6736(17)31431-9
doi: 10.1016/S0140-6736(17)31431-9
F.H. Wilson, S. Disse-Nicodème, K.A. Choate, K. Ishikawa, C. Nelson-Williams, I. Desitter et al. Human hypertension caused by mutations in WNK kinases. Science 293, 1107–1112 (2001). https://doi.org/10.1126/SCIENCE.1062844
doi: 10.1126/SCIENCE.1062844 pubmed: 11498583
E. Charmandari, T. Kino, G.P. Chrousos, Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. Endocr. Dev. 24, 67–85 (2013). https://doi.org/10.1159/000342505
doi: 10.1159/000342505 pubmed: 23392096 pmcid: 4133123
T.A. Williams, C.E. Gomez-Sanchez, W.E. Rainey, T.J. Giordano, A.K. Lam, A. Marker et al. International histopathology consensus for unilateral primary aldosteronism. J. Clin. Endocrinol. Metab. 106, 42–54 (2021). https://doi.org/10.1210/clinem/dgaa484
doi: 10.1210/clinem/dgaa484 pubmed: 32717746
D. Sam, G.A. Kline, B. So, S.J. Przybojewski, A.A. Leung, Unilateral disease is common in patients with primary aldosteronism without adrenal nodules. Can. J. Cardiol. 37, 269–275 (2021). https://doi.org/10.1016/j.cjca.2020.05.013
doi: 10.1016/j.cjca.2020.05.013 pubmed: 32428615
S.M. Patel, R.K. Lingam, T.I. Beaconsfield, T.L. Tran, B. Brown, Role of radiology in the management of primary aldosteronism. Radiographics 27, 1145–1157 (2007). https://doi.org/10.1148/RG.274065150
doi: 10.1148/RG.274065150 pubmed: 17620472
R.K. Lingam, S.A. Sohaib, A.G. Rockall, A.M. Isidori, S. Chew, J.P. Monson et al. Diagnostic performance of CT versus MR in detecting aldosterone-producing adenoma in primary hyperaldosteronism (Conn’s syndrome). Eur. Radio. 14, 1787–1792 (2004). https://doi.org/10.1007/S00330-004-2308-2
doi: 10.1007/S00330-004-2308-2
S.A. Sohaib, P.D. Peppercorn, C. Allan, J.P. Monson, A.B. Grossman, G.M. Besser et al. Primary hyperaldosteronism (Conn syndrome): MR imaging findings. Radiology 214, 527–531 (2000). https://doi.org/10.1148/RADIOLOGY.214.2.R00FE09527
doi: 10.1148/RADIOLOGY.214.2.R00FE09527 pubmed: 10671606
R.K. Lingam, S.A. Sohaib, I. Vlahos, A.G. Rockall, A.M. Isidori, J.P. Monson et al. CT of primary hyperaldosteronism (Conn’s syndrome): the value of measuring the adrenal gland. AJR Am. J. Roentgenol. 181, 843–849 (2003). https://doi.org/10.2214/AJR.181.3.1810843
doi: 10.2214/AJR.181.3.1810843 pubmed: 12933492
S. Powlson, M. Gurnell, M.J. Brown, Nuclear imaging in the diagnosis of primary aldosteronism. Curr. Opin. Endocrinol. Diabetes Obes.; 22, 150–156 (2015). https://doi.org/10.1097/MED.0000000000000148
doi: 10.1097/MED.0000000000000148 pubmed: 25871964 pmcid: 4405075
G.P. Rossi, R.J. Auchus, M. Brown, J.W.M. Lenders, M. Naruse, P.F. Plouin et al. An expert consensus statement on use of adrenal vein sampling for the subtyping of primary aldosteronism. Hypertension 63, 151–160 (2014). https://doi.org/10.1161/HYPERTENSIONAHA.113.02097
doi: 10.1161/HYPERTENSIONAHA.113.02097 pubmed: 24218436
J.W. Funder, Primary aldosteronism: clinical lateralization and costs. J. Clin. Endocrinol. Metab. 97, 3450–3452 (2012). https://doi.org/10.1210/JC.2012-3046
doi: 10.1210/JC.2012-3046 pubmed: 23043195
M.J.E. Kempers, J.W.M. Lenders, L. Van Outheusden, G.J. Van Der Wilt, L.J.S. Kool, A.R.M.M. Hermus et al. Systematic review: Diagnostic procedures to differentiate unilateral from bilateral adrenal abnormality in primary aldosteronism. Ann. Intern Med. 151, 329–337 (2009). https://doi.org/10.7326/0003-4819-151-5-200909010-00007
doi: 10.7326/0003-4819-151-5-200909010-00007 pubmed: 19721021
H. Ota, K. Seiji, M. Kawabata, N. Satani, K. Omata, Y. Ono et al. Dynamic multidetector CT and non-contrast-enhanced MR for right adrenal vein imaging: comparison with catheter venography in adrenal venous sampling. Eur. Radio. 26, 622–630 (2016). https://doi.org/10.1007/S00330-015-3872-3
doi: 10.1007/S00330-015-3872-3
S. Morita, H. Yamazaki, Y. Sonoyama, Y. Nishina, A. Ichihara, S. Sakai, Successful adrenal venous sampling by non-experts with reference to CT images. Cardiovasc Interv. Radio. 39, 1001–1006 (2016). https://doi.org/10.1007/S00270-016-1335-0
doi: 10.1007/S00270-016-1335-0
T. Kocjan, M. Jensterle, G. Vidmar, R. Vrckovnik, P. Berden, M. Stankovic, Adrenal vein sampling for primary aldosteronism: a 15-year national referral center experience. Radio. Oncol. 54, 409–418 (2020). https://doi.org/10.2478/RAON-2020-0052
doi: 10.2478/RAON-2020-0052
K.B. Quencer, Adrenal vein sampling: technique and protocol, a systematic review. CVIR Endovasc. 4, 38 (2021). https://doi.org/10.1186/s42155-021-00220-y
doi: 10.1186/s42155-021-00220-y pubmed: 33939038 pmcid: 8093361
T.M. Seccia, D. Miotto, M. Battistel, R. Motta, M. Barisa, C. Maniero et al. A stress reaction affects assessment of selectivity of adrenal venous sampling and of lateralization of aldosterone excess in primary aldosteronism. Eur. J. Endocrinol. 166, 869–875 (2012). https://doi.org/10.1530/EJE-11-0972
doi: 10.1530/EJE-11-0972 pubmed: 22330150
G.P. Rossi, G. Pitter, P. Bernante, R. Motta, G. Feltrin, D. Miotto, Adrenal vein sampling for primary aldosteronism: the assessment of selectivity and lateralization of aldosterone excess baseline and after adrenocorticotropic hormone (ACTH) stimulation. J. Hypertens. 26, 989–997 (2008). https://doi.org/10.1097/HJH.0B013E3282F9E66A
doi: 10.1097/HJH.0B013E3282F9E66A pubmed: 18398342
G. Rossitto, L. Amar, M. Azizi, A. Riester, M. Reincke, C. Degenhart et al. Subtyping of primary aldosteronism in the AVIS-2 study: Assessment of selectivity and lateralization. J. Clin. Endocrinol. Metab. 105, 2042–2052 (2020). https://doi.org/10.1210/clinem/dgz017
doi: 10.1210/clinem/dgz017
E.G. Violari, M. Arici, C.K. Singh, C.M. Caetano, C.S. Georgiades, J. Grady et al. Adrenal vein sampling with and without cosyntropin stimulation for detection of surgically remediable aldosteronism. Endocrinol. Diabetes Metab. 2, e00066 (2019). https://doi.org/10.1002/EDM2.66
doi: 10.1002/EDM2.66 pubmed: 31008369 pmcid: 6458460
O. Vonend, N. Ockenfels, X. Gao, B. Allolio, K. Lang, K. Mai et al. Adrenal venous sampling: Evaluation of the german conn’s registry. Hypertension 57, 990–995 (2011). https://doi.org/10.1161/HYPERTENSIONAHA.110.168484
doi: 10.1161/HYPERTENSIONAHA.110.168484 pubmed: 21383311
A.R. Deipolyi, A. Bailin, S. Wicky, S. Alansari, R. Oklu, Adrenal Vein sampling for Conn’s syndrome: diagnosis and clinical outcomes. Diagnostics (Basel, Switz.) 5, 254–271 (2015). https://doi.org/10.3390/DIAGNOSTICS5020254
doi: 10.3390/DIAGNOSTICS5020254
T. Dekkers, A. Prejbisz, L.J.S. Kool, H.J.M.M. Groenewoud, M. Velema, W. Spiering et al. Adrenal vein sampling versus CT scan to determine treatment in primary aldosteronism: an outcome-based randomised diagnostic trial. Lancet Diabetes Endocrinol. 4, 739–746 (2016). https://doi.org/10.1016/S2213-8587(16)30100-0
doi: 10.1016/S2213-8587(16)30100-0 pubmed: 27325147
J.M. Seo, B.K. Park, S.Y. Park, C.K. Kim, Characterization of lipid-poor adrenal adenoma: Chemical-shift MRI and washout CT. Am. J. Roentgenol. 202, 1043–1050 (2014). https://doi.org/10.2214/AJR.13.11389
doi: 10.2214/AJR.13.11389
M.M. Page, M. Taranto, D. Ramsay, G. van Schie, P. Glendenning, M.J. Gillett et al. Improved technical success and radiation safety of adrenal vein sampling using rapid, semi-quantitative point-of-care cortisol measurement. Ann. Clin. Biochem 55, 588–592 (2018). https://doi.org/10.1177/0004563218760352
doi: 10.1177/0004563218760352 pubmed: 29388434
G.P. Rossi, G. Rossitto, L. Amar, M. Azizi, A. Riester, M. Reincke et al. Clinical outcomes of 1625 patients with primary aldosteronism subtyped with Adrenal Vein sampling. Hypertension 74, 800–808 (2019). https://doi.org/10.1161/HYPERTENSIONAHA.119.13463
doi: 10.1161/HYPERTENSIONAHA.119.13463 pubmed: 31476901
M. Araujo-Castro, M. Paja Fano, M. González Boillos, B. Pla Peris, E. Pascual-Corrales, A.M. García Cano et al. Adrenal venous sampling in primary aldosteronism: Experience of a Spanish multicentric study (Results from the SPAIN-ALDO Register). Endocrine 78, 363–372 (2022). https://doi.org/10.1007/S12020-022-03122-8
doi: 10.1007/S12020-022-03122-8 pubmed: 35751774
J.D. Pasternak, I. Epelboym, N. Seiser, M. Wingo, M. Herman, V. Cowan et al. Diagnostic utility of data from adrenal venous sampling for primary aldosteronism despite failed cannulation of the right adrenal vein. Surgery 159, 267–274 (2016). https://doi.org/10.1016/J.SURG.2015.06.048
doi: 10.1016/J.SURG.2015.06.048 pubmed: 26435431
L. Lin, L. Zhou, Y. Guo, Z. Liu, T. Chen, Z. Liu et al. Can incomplete adrenal venous sampling data be used in predicting the subtype of primary aldosteronism? Ann. Endocrinol. (Paris) 80, 301–307 (2019). https://doi.org/10.1016/J.ANDO.2019.10.001
doi: 10.1016/J.ANDO.2019.10.001 pubmed: 31722788
G.P. Rossi, M. Barisa, B. Allolio, R.J. Auchus, L. Amar, D. Cohen et al. The adrenal vein sampling International study (avis) for identifying the major subtypes of primary aldosteronism. J. Clin. Endocrinol. Metab. 97, 1606–1614 (2012). https://doi.org/10.1210/jc.2011-2830
doi: 10.1210/jc.2011-2830 pubmed: 22399502
S. Zhong, T. Zhang, M. He, H. Yu, Z. Liu, Z. Li et al. Recent advances in the clinical application of Adrenal Vein sampling. Front Endocrinol. (Lausanne) 13, 797021 (2022). https://doi.org/10.3389/FENDO.2022.797021
doi: 10.3389/FENDO.2022.797021 pubmed: 35222268
F. Beuschlein, P. Mulatero, E. Asbach, S. Monticone, C. Catena, L.A. Sechi et al. The SPARTACUS trial: controversies and unresolved issues. Horm. Metab. Res 49, 936–942 (2017). https://doi.org/10.1055/S-0043-120524
doi: 10.1055/S-0043-120524 pubmed: 29165736
M. Naruse, A. Tanabe, K. Yamamoto, H. Rakugi, M. Kometani, T. Yoneda et al. Adrenal venous sampling for subtype diagnosis of primary hyperaldosteronism. Endocrinol. Metab. (Seoul., Korea) 36, 965–973 (2021). https://doi.org/10.3803/ENM.2021.1192
doi: 10.3803/ENM.2021.1192
G. Ceolotto, G. Antonelli, G. Maiolino, M. Cesari, G. Rossitto, V. Bisogni et al. Androstenedione and 17-α-hydroxyprogesterone are better indicators of adrenal vein sampling selectivity than cortisol. Hypertens. (Dallas, Tex. 1979) 70, 342–346 (2017). https://doi.org/10.1161/HYPERTENSIONAHA.117.09415
doi: 10.1161/HYPERTENSIONAHA.117.09415
T. Dekkers, J. Deinum, L.J. Schultzekool, D. Blondin, O. Vonend, A.R.R.M. Hermus et al. Plasma metanephrine for assessing the selectivity of adrenal venous sampling. Hypertens. (Dallas, Tex. 1979) 62, 1152–1157 (2013). https://doi.org/10.1161/HYPERTENSIONAHA.113.01601
doi: 10.1161/HYPERTENSIONAHA.113.01601
R. Webb, A. Mathur, R. Chang, S. Baid, N. Nilubol, S.K. Libutti et al. What is the best criterion for the interpretation of adrenal vein sample results in patients with primary hyperaldosteronism? Ann. Surg. Oncol. 19, 1881–1886 (2012). https://doi.org/10.1245/S10434-011-2121-5
doi: 10.1245/S10434-011-2121-5 pubmed: 22048631
H. Umakoshi, K. Tanase-Nakao, N. Wada, T. Ichijo, M. Sone, N. Inagaki et al. Importance of contralateral aldosterone suppression during adrenal vein sampling in the subtype evaluation of primary aldosteronism. Clin. Endocrinol. (Oxf.) 83, 462–467 (2015). https://doi.org/10.1111/CEN.12761
doi: 10.1111/CEN.12761 pubmed: 25727719
M. Araujo-Castro, P. Martín Rojas-Marcos, P. Parra Ramírez, Familial forms and molecular profile of primary hyperaldosteronism. Hipertens y. Riesgo Vasc. 39, 167–173 (2022). https://doi.org/10.1016/J.HIPERT.2022.05.007
doi: 10.1016/J.HIPERT.2022.05.007
A.A. MacConnachie, K.F. Kelly, A. McNamara, S. Loughlin, L.J. Gates, G.C. Inglis et al. Rapid diagnosis and identification of cross-over sites in patients with glucocorticoid remediable aldosteronism. J. Clin. Endocrinol. Metab. 83, 4328–4331 (1998). https://doi.org/10.1210/JCEM.83.12.5309
doi: 10.1210/JCEM.83.12.5309 pubmed: 9851772
P. Mulatero, P. Tauber, M.C. Zennaro, S. Monticone, K. Lang, F. Beuschlein et al. KCNJ5 mutations in European families with nonglucocorticoid remediable familial hyperaldosteronism. Hypertension 59, 235–240 (2012). https://doi.org/10.1161/HYPERTENSIONAHA.111.183996
doi: 10.1161/HYPERTENSIONAHA.111.183996 pubmed: 22203740
C.E. Gomez-Sanchez, X. Qi, E.P. Gomez-Sanchez, H. Sasano, M.O. Bohlen, M. Wisgerhof, Disordered zonal and cellular CYP11B2 enzyme expression in familial hyperaldosteronism type 3. Mol. Cell Endocrinol. 439, 74–80 (2017). https://doi.org/10.1016/J.MCE.2016.10.025
doi: 10.1016/J.MCE.2016.10.025 pubmed: 27793677
U.I. Scholl, G. Stölting, C. Nelson-Williams, A.A. Vichot, M. Choi, E. Loring et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife 4, e06315 (2015). https://doi.org/10.7554/eLife.06315
doi: 10.7554/eLife.06315 pubmed: 25907736 pmcid: 4408447
A. Pinggera, L. Mackenroth, A. Rump, J. Schallner, F. Beleggia, B. Wollnik et al. New gain-of-function mutation shows CACNA1D as recurrently mutated gene in autism spectrum disorders and epilepsy. Hum. Mol. Genet 26, 2923–2932 (2017). https://doi.org/10.1093/HMG/DDX175
doi: 10.1093/HMG/DDX175 pubmed: 28472301 pmcid: 5886262
E. Seidel, J. Schewe, U.I. Scholl, Genetic causes of primary aldosteronism. Exp. Mol. Med 51, 1–12 (2019). https://doi.org/10.1038/s12276-019-0337-9
doi: 10.1038/s12276-019-0337-9 pubmed: 31695023
G. Eisenhofer, C. Durán, C.V. Cannistraci, M. Peitzsch, T.A. Williams, A. Riester et al. Use of steroid profiling combined with machine learning for identification and subtype classification in primary aldosteronism. JAMA Netw. Open 3, e2016209 (2020). https://doi.org/10.1001/JAMANETWORKOPEN.2020.16209
doi: 10.1001/JAMANETWORKOPEN.2020.16209 pubmed: 32990741 pmcid: 7525346
Y. Tezuka, K. Ishii, L. Zhao, Y. Yamazaki, R. Morimoto, H. Sasano et al. ACTH stimulation maximizes the accuracy of peripheral steroid profiling in primary aldosteronism subtyping. J. Clin. Endocrinol. Metab. 106, E3969–E3978 (2021). https://doi.org/10.1210/CLINEM/DGAB420
doi: 10.1210/CLINEM/DGAB420 pubmed: 34117870 pmcid: 8475211
S. Monticone, F. Buffolo, M. Tetti, F. Veglio, B. Pasini, P. Mulatero, GENETICS IN ENDOCRINOLOGY: The expanding genetic horizon of primary aldosteronism. Eur. J. Endocrinol. 178, R101–R111 (2018). https://doi.org/10.1530/EJE-17-0946
doi: 10.1530/EJE-17-0946 pubmed: 29348113
T. Åkerström, J. Crona, A. Delgado Verdugo, L.F. Starker, K. Cupisti, H.S. Willenberg et al. Comprehensive re-sequencing of adrenal aldosterone producing lesions reveal three somatic mutations near the KCNJ5 potassium channel selectivity filter. PLoS One 7, e41926 (2012). https://doi.org/10.1371/JOURNAL.PONE.0041926
doi: 10.1371/JOURNAL.PONE.0041926 pubmed: 22848660 pmcid: 3407065
I.C. Mouat, K. Omata, A.S. McDaniel, N.G. Hattangady, D. Talapatra, A.K. Cani et al. Somatic mutations in adrenocortical carcinoma with primary aldosteronism or hyperreninemic hyperaldosteronism. Endocr. Relat. Cancer 26, 217–225 (2019). https://doi.org/10.1530/ERC-18-0385
doi: 10.1530/ERC-18-0385 pubmed: 30475217 pmcid: 7065382
S. Gruber, E. Stasi, R. Steiner, M. Reincke, S. Bornstein, F. Beuschlein, Incidence of primary aldosteronism in patients with hypokalemia (IPAHK+): study design and baseline characteristics. Horm. Metab. Res 53, 787–793 (2021). https://doi.org/10.1055/a-1685-0583
doi: 10.1055/a-1685-0583 pubmed: 34891208
T.M. Seccia, C. Letizia, M.L. Muiesan, S. Lerco, M. Cesari, V. Bisogni et al. Atrial fibrillation as presenting sign of primary aldosteronism: Results of the prospective appraisal on the prevalence of primary aldosteronism in hypertensive (PAPPHY) study. J. Hypertens. 38, 332–339 (2020). https://doi.org/10.1097/HJH.0000000000002250
doi: 10.1097/HJH.0000000000002250 pubmed: 31834121
F. Buffolo, Q. Li, S. Monticone, D.A. Heinrich, A. Mattei, J. Pieroni et al. Primary aldosteronism and obstructive sleep apnea a cross-sectional multi-ethnic study. Hypertension 74, 1532–1540 (2019). https://doi.org/10.1161/HYPERTENSIONAHA.119.13833
doi: 10.1161/HYPERTENSIONAHA.119.13833 pubmed: 31679423
J. Ceral, E. Malirova, M. Ballon, M. Solar, The role of urinary aldosterone for the diagnosis of primary aldosteronism. Horm. Metab. Res. 46, 663–667 (2014). https://doi.org/10.1055/S-0034-1374638
doi: 10.1055/S-0034-1374638 pubmed: 24810470
A.H. Ahmed, D. Cowley, M. Wolley, R.D. Gordon, S. Xu, P.J. Taylor et al. Seated saline suppression testing for the diagnosis of primary aldosteronism: a preliminary study. J. Clin. Endocrinol. Metab. 99, 2745–2753 (2014). https://doi.org/10.1210/JC.2014-1153
doi: 10.1210/JC.2014-1153 pubmed: 24762111
M.H. Lee, J.E. Moxey, M.M. Derbyshire, G.M. Ward, R.J. Macisaac, N. Sachithanandan, Decrease in serum potassium levels post saline suppression test in primary aldosteronism: an under-recognised phenomenon? J. Hum. Hypertens. 30, 664–665 (2016). https://doi.org/10.1038/JHH.2016.7
doi: 10.1038/JHH.2016.7 pubmed: 26888603

Auteurs

Marta Araujo-Castro (M)

Endocrinology & Nutrition Department, Hospital Universitario Ramón y Cajal. Instituto de Investigación Biomédica Ramón y Cajal (IRYCIS)., Madrid, Spain. marta.araujo@salud.madrid.org.

Jorge Gabriel Ruiz-Sánchez (JG)

Endocrinology & Nutrition Department. Hospital Universitario Fundación Jiménez Díaz, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD, UAM), Madrid, Spain.

Paola Parra Ramírez (P)

Endocrinology & Nutrition Department, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.

Patricia Martín Rojas-Marcos (P)

Endocrinology & Nutrition Department, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain.

Almudena Aguilera-Saborido (A)

Cardiology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain.

Jorge Francisco Gómez Cerezo (JF)

Internal Medicine, Hospital Universitario Infanta Sofía. Universidad Europea de Madrid, Madrid, Spain.

Nieves López Lazareno (N)

Biochemical Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain.

María Eugenia Torregrosa Quesada (ME)

Biochemical Department, Hospital General Universitario Dr. Balmis de Alicante, Alicante, Spain.

Jorge Gorrin Ramos (J)

Biochemical department, Laboratori de Referència de Catalunya, Barcelona, Spain.

Josep Oriola (J)

Biochemistry and Molecular Genetics Department, CDB. Hospital Clínic. University of Barcelona, Barcelona, Spain.

Esteban Poch (E)

Nephrology Department. Hospital Clinic, IDIBAPS. University of Barcelona, Barcelona, Spain.

Anna Oliveras (A)

Nephrology Department. Hospital del Mar, Universitat Pompeu Fabra, Barcelona, ES, Spain.

José Vicente Méndez Monter (JV)

Vascular and Interventional Radiology Department, Hospital Clínico San Carlos, Madrid, Spain.

Isabel Gómez Muriel (I)

Radiology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain.

María Rosa Bella-Cueto (MR)

Pathology Department, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA). Universitat Autònoma de Barcelona. Sabadell, Barcelona, Spain.

Enrique Mercader Cidoncha (E)

General Surgery, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
Fellow European Board of Surgery -Endocrine Surgery, Madrid, Spain.

Isabelle Runkle (I)

Endocrinology and Nutrition Department, Hospital Clínico San Carlos, Madrid, Spain.

Felicia A Hanzu (FA)

Endocrinology & Nutrition Department, Hospital Clinic. IDIBAPS. University of Barcelona, Barcelona, Spain. fhanzu@clinic.cat.

Classifications MeSH