Mesenchymal Stromal/Stem Cell Therapy Improves Salivary Flow Rate in Radiation-Induced Salivary Gland Hypofunction in Preclinical in vivo Models: A Systematic Review and Meta-Analysis.

Cell Therapy Mesenchymal stem Cells Radiotherapy Systematic Review Xerostomia

Journal

Stem cell reviews and reports
ISSN: 2629-3277
Titre abrégé: Stem Cell Rev Rep
Pays: United States
ID NLM: 101752767

Informations de publication

Date de publication:
02 Mar 2024
Historique:
accepted: 17 02 2024
medline: 2 3 2024
pubmed: 2 3 2024
entrez: 2 3 2024
Statut: aheadofprint

Résumé

Mesenchymal stromal/stem cells (MSCs) have been suggested for salivary gland (SG) restoration following radio-induced salivary gland damage. This study aimed to determine the safety and effectiveness of MSC therapy on radio-induced SG damage and hypofunction in preclinical in vivo studies. PubMed and EMBASE were systematically searched for preclinical in vivo interventional studies evaluating efficacy and safety of MSC treatment following radio-induced salivary gland damage published before 10th of January 2022. The primary endpoint was salivary flow rate (SFR) evaluated in a meta-analysis. The study protocol was published and registered on PROSPERO ( www.crd.ac.uk/prospero ), registration number CRD42021227336. A total of 16 preclinical in vivo studies were included for qualitative analysis (858 experimental animals) and 13 in the meta-analysis (404 experimental animals). MSCs originated from bone marrow (four studies), adipose tissue (10 studies) and salivary gland tissue (two studies) and were administered intravenously (three studies), intra-glandularly (11 studies) or subcutaneously (one study). No serious adverse events were reported. The overall effect on SFR was significantly increased with a standardized mean difference (SMD) of 6.99 (95% CI: 2.55-11.42). Studies reported improvements in acinar tissue, vascular areas and paracrine factors. In conclusion, this systematic review and meta-analysis showed a significant effect of MSC therapy for restoring SG functioning and regenerating SG tissue following radiotherapy in preclinical in vivo studies without serious adverse events. MSC therapy holds significant therapeutic potential in the treatment of radio-induced xerostomia, but comprehensive, randomized, clinical trials in humans are required to ascertain their efficacy in a clinical setting.

Sections du résumé

BACKGROUND BACKGROUND
Mesenchymal stromal/stem cells (MSCs) have been suggested for salivary gland (SG) restoration following radio-induced salivary gland damage. This study aimed to determine the safety and effectiveness of MSC therapy on radio-induced SG damage and hypofunction in preclinical in vivo studies.
METHODS METHODS
PubMed and EMBASE were systematically searched for preclinical in vivo interventional studies evaluating efficacy and safety of MSC treatment following radio-induced salivary gland damage published before 10th of January 2022. The primary endpoint was salivary flow rate (SFR) evaluated in a meta-analysis. The study protocol was published and registered on PROSPERO ( www.crd.ac.uk/prospero ), registration number CRD42021227336.
RESULTS RESULTS
A total of 16 preclinical in vivo studies were included for qualitative analysis (858 experimental animals) and 13 in the meta-analysis (404 experimental animals). MSCs originated from bone marrow (four studies), adipose tissue (10 studies) and salivary gland tissue (two studies) and were administered intravenously (three studies), intra-glandularly (11 studies) or subcutaneously (one study). No serious adverse events were reported. The overall effect on SFR was significantly increased with a standardized mean difference (SMD) of 6.99 (95% CI: 2.55-11.42). Studies reported improvements in acinar tissue, vascular areas and paracrine factors.
CONCLUSION CONCLUSIONS
In conclusion, this systematic review and meta-analysis showed a significant effect of MSC therapy for restoring SG functioning and regenerating SG tissue following radiotherapy in preclinical in vivo studies without serious adverse events. MSC therapy holds significant therapeutic potential in the treatment of radio-induced xerostomia, but comprehensive, randomized, clinical trials in humans are required to ascertain their efficacy in a clinical setting.

Identifiants

pubmed: 38430363
doi: 10.1007/s12015-024-10700-y
pii: 10.1007/s12015-024-10700-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Marur, S., & Forastiere, A. A. (2016). Head and Neck squamous cell carcinoma: Update on Epidemiology, diagnosis, and treatment. Mayo Clinic Proceedings, 91, 386–396. https://doi.org/10.1016/j.mayocp.2015.12.017 .
doi: 10.1016/j.mayocp.2015.12.017 pubmed: 26944243
Jensen, S. B., Vissink, A., Limesand, K. H., & Reyland, M. E. Salivary gland hypofunction and Xerostomia in Head and Neck Radiation patients. Journal of the National Cancer Institute. Monographs 2019;2019. https://doi.org/10.1093/jncimonographs/lgz016 .
Vissink, A., van Luijk, P., Langendijk, J. A., & Coppes, R. P. (2015). Current ideas to reduce or salvage radiation damage to salivary glands. Oral Diseases, 21, e1–10. https://doi.org/10.1111/odi.12222 .
doi: 10.1111/odi.12222 pubmed: 24581290
Nutting, C. M., Morden, J. P., Harrington, K. J., Urbano, T. G., Bhide, S. A., Clark, C., et al. (2011). Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): A phase 3 multicentre randomised controlled trial. The Lancet Oncology, 12, 127–136. https://doi.org/10.1016/S1470-2045(10)70290-4 .
doi: 10.1016/S1470-2045(10)70290-4 pubmed: 21236730 pmcid: 3033533
Kakoei, S., Haghdoost, A. A., Rad, M., Mohammadalizadeh, S., Pourdamghan, N., Nakhaei, M., et al. (2012). Xerostomia after radiotherapy and its effect on quality of life in head and neck cancer patients. Archives of Iranian Medicine, 15, 214–218.
pubmed: 22424038
Memtsa, P. T., Tolia, M., Tzitzikas, I., Bizakis, J., Pistevou-Gombaki, K., Charalambidou, M., et al. (2017). Assessment of xerostomia and its impact on quality of life in head and neck cancer patients undergoing radiation therapy. Mol Clin Oncol, 6, 789–793. https://doi.org/10.3892/mco.2017.1200 .
doi: 10.3892/mco.2017.1200 pubmed: 28529753 pmcid: 5431738
Liu, X. K., Zeng, Z. Y., Hong, M. H., Zhang, A. L., Cui, N. J., & Chen, F. J. (2004). [Clinical analysis of xerostomia in patients with nasopharyngeal carcinoma after radiation therapy]. Ai Zheng, 23, 593–596.
pubmed: 15142462
El Agha, E., Kramann, R., Schneider, R. K., Li, X., Seeger, W., Humphreys, B. D., et al. (2017). Mesenchymal stem cells in Fibrotic Disease. Cell Stem Cell, 21, 166–177. https://doi.org/10.1016/j.stem.2017.07.011 .
doi: 10.1016/j.stem.2017.07.011 pubmed: 28777943
Ozdemir, T., Fowler, E. W., Hao, Y., Ravikrishnan, A., Harrington, D. A., Witt, R. L., et al. (2016). Biomaterials-based strategies for salivary gland tissue regeneration. Biomater Sci, 4, 592–604. https://doi.org/10.1039/c5bm00358j .
doi: 10.1039/c5bm00358j pubmed: 26878077 pmcid: 4803517
Galipeau, J., Krampera, M., Barrett, J., Dazzi, F., Deans, R. J., DeBruijn, J., et al. (2015). International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy, 18, 151–159. https://doi.org/10.1016/j.jcyt.2015.11.008 .
doi: 10.1016/j.jcyt.2015.11.008 pubmed: 26724220 pmcid: 4745114
Singer, N. G., & Caplan, A. I. (2011). Mesenchymal stem cells: Mechanisms of inflammation. Annu Rev Pathol Mech Dis, 6, 457–478. https://doi.org/10.1146/annurev-pathol-011110-130230 .
doi: 10.1146/annurev-pathol-011110-130230
Caplan, A. I., & Dennis, J. E. (2006). Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076–1084. https://doi.org/10.1002/jcb.20886 .
doi: 10.1002/jcb.20886 pubmed: 16619257
Caplan, A. I., & Correa, D. (2011). The MSC: An injury drugstore. Cell Stem Cell, 9, 11–15. https://doi.org/10.1016/j.stem.2011.06.008 .
doi: 10.1016/j.stem.2011.06.008 pubmed: 21726829 pmcid: 3144500
Coppes, R. P., & Stokman, M. A. (2011). Stem cells and the repair of radiation-induced salivary gland damage. Oral Diseases, 17, 143–153. https://doi.org/10.1111/j.1601-0825.2010.01723.x .
doi: 10.1111/j.1601-0825.2010.01723.x pubmed: 20796229
Jensen, D. H., Oliveri, R. S., Trojahn Kølle, S. F., Fischer-Nielsen, A., Specht, L., Bardow, A., et al. (2014). Mesenchymal stem cell therapy for salivary gland dysfunction and xerostomia: A systematic review of preclinical studies. Oral Surg Oral Med Oral Pathol Oral Radiol, 117, 335–342e1. https://doi.org/10.1016/j.oooo.2013.11.496 .
doi: 10.1016/j.oooo.2013.11.496 pubmed: 24528792
Lynggaard, C. D., Grønhøj, C., Christensen, R., Fischer-Nielsen, A., Melchiors, J., Specht, L., et al. (2022). Intraglandular off-the-Shelf allogeneic mesenchymal stem cell treatment in patients with Radiation-Induced Xerostomia: A Safety Study (MESRIX-II). Stem Cells Transl Med, 11, 478–489. https://doi.org/10.1093/stcltm/szac011 .
doi: 10.1093/stcltm/szac011 pubmed: 35435231 pmcid: 9154319
Blitzer, G. C., Glazer, T., Burr, A., Gustafson, S., Ganz, O., Meyers, R., et al. (2023). Marrow-derived autologous stromal cells for the restoration of salivary hypofunction (MARSH): A pilot, first-in-human study of interferon gamma-stimulated marrow mesenchymal stromal cells for treatment of radiation-induced xerostomia. Cytotherapy, 25, 1139–1144. https://doi.org/10.1016/j.jcyt.2023.07.009 .
doi: 10.1016/j.jcyt.2023.07.009 pubmed: 37589639
Lynggaard, C. D., Grønhøj, C., Jensen, S. B., Christensen, R., Specht, L., Andersen, E., et al. (2022). Long-term safety of treatment with autologous mesenchymal stem cells in patients with Radiation-Induced Xerostomia: Primary results of the MESRIX Phase I/II Randomized Trial. Clinical Cancer Research, 28, 2890–2897. https://doi.org/10.1158/1078-0432.CCR-21-4520 .
doi: 10.1158/1078-0432.CCR-21-4520 pubmed: 35486613 pmcid: 9365378
Grønhøj, C., Jensen, D. H., Vester-Glowinski, P., Jensen, S. B., Bardow, A., Oliveri, R. S., et al. (2018). Safety and efficacy of mesenchymal stem cells for Radiation-Induced Xerostomia: A randomized, placebo-controlled phase 1/2 trial (MESRIX). International Journal of Radiation Oncology Biology Physics, 101, 581–592. https://doi.org/10.1016/j.ijrobp.2018.02.034 .
doi: 10.1016/j.ijrobp.2018.02.034 pubmed: 29678523
Jansson, P. M., Lynggaard, C. D., Carlander, A. F., Jensen, S. B., Follin, B., Hoeeg, C., et al. (2022). Mesenchymal stromal/stem cell therapy for radiation-induced salivary gland hypofunction in animal models: A protocol for a systematic review and meta-analysis. Syst Rev, 11, 72. https://doi.org/10.1186/s13643-022-01943-2 .
doi: 10.1186/s13643-022-01943-2 pubmed: 35436971 pmcid: 9016929
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., et al. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Plos Biology, 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410 .
doi: 10.1371/journal.pbio.3000410 pubmed: 32663219 pmcid: 7360023
Hooijmans, C. R., Rovers, M. M., de Vries, R. B. M., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. Bmc Medical Research Methodology, 14, 43. https://doi.org/10.1186/1471-2288-14-43 .
doi: 10.1186/1471-2288-14-43 pubmed: 24667063 pmcid: 4230647
https://handbook-5-1.cochrane.org/chapter_9/9_2_3_2_the_standardized_mean_difference.htm . (n.d).
Lin, C. Y., Chang, F. H., Chen, C. Y., Huang, C. Y., Hu, F. C., Huang, W. K., et al. (2011). Cell therapy for salivary gland regeneration. Journal of Dental Research, 90, 341–346. https://doi.org/10.1177/0022034510386374 .
doi: 10.1177/0022034510386374 pubmed: 21297017
Kojima, T., Kanemaru, S. I., Hirano, S., Tateya, I., Ohno, S., Nakamura, T., et al. (2011). Regeneration of radiation damaged salivary glands with adipose-derived stromal cells. The Laryngoscope, 121, 1864–1869. https://doi.org/10.1002/lary.22080 .
doi: 10.1002/lary.22080 pubmed: 21748735
Jeong, J., Baek, H., Kim, Y. J., Choi, Y., Lee, H., Lee, E., et al. (2013). Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Experimental & Molecular Medicine, 45, e58. https://doi.org/10.1038/emm.2013.121 .
doi: 10.1038/emm.2013.121
Lim, J. Y., Yi, T., Choi, J. S., Jang, Y. H., Lee, S., Kim, H. J., et al. (2013). Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncology, 49, 136–143. https://doi.org/10.1016/j.oraloncology.2012.08.010 .
doi: 10.1016/j.oraloncology.2012.08.010 pubmed: 22981389
Lim, J. Y., Ra, J. C., Shin, I. S., Jang, Y. H., An, H. Y., Choi, J. S., et al. (2013). Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PLoS One, 8, e71167. https://doi.org/10.1371/journal.pone.0071167 .
doi: 10.1371/journal.pone.0071167 pubmed: 23951100 pmcid: 3739795
Xiong, X., Shi, X., & Chen, F. (2014). Human adipose tissuederived stem cells alleviate radiationinduced xerostomia. International Journal of Molecular Medicine, 34, 749–755. https://doi.org/10.3892/ijmm.2014.1837 .
doi: 10.3892/ijmm.2014.1837 pubmed: 25017690 pmcid: 4121343
Chen, Y., Niu, Z., Xue, Y., Yuan, F., Fu, Y., & Bai, N. (2014). Improvement in the repair of defects in maxillofacial soft tissue in irradiated minipigs by a mixture of adipose-derived stem cells and platelet-rich fibrin. British Journal of Oral and Maxillofacial Surgery, 52, 740–745. https://doi.org/10.1016/j.bjoms.2014.06.006 .
doi: 10.1016/j.bjoms.2014.06.006 pubmed: 24993354
Li, Z., Wang, Y., Xing, H., Wang, Z., Hu, H., An, R., et al. (2015). Protective efficacy of intravenous transplantation of adipose-derived stem cells for the prevention of radiation-induced salivary gland damage. Archives of Oral Biology, 60, 1488–1496. https://doi.org/10.1016/j.archoralbio.2015.07.016 .
doi: 10.1016/j.archoralbio.2015.07.016 pubmed: 26263537
Wang, Z., Ju, Z., He, L., Li, Z., Liu, Y., & Liu, B. (2017). Intraglandular transplantation of adipose-derived stem cells for the Alleviation of Irradiation-Induced parotid gland damage in Miniature pigs. Journal of Oral and Maxillofacial Surgery, 75, 1784–1790. https://doi.org/10.1016/j.joms.2016.08.001 .
doi: 10.1016/j.joms.2016.08.001 pubmed: 27621149
Choi, J. S., An, H. Y., Shin, H. S., Kim, Y. M., & Lim, J. Y. (2018). Enhanced tissue remodelling efficacy of adipose-derived mesenchymal stem cells using injectable matrices in radiation-damaged salivary gland model. Journal of Tissue Engineering and Regenerative Medicine, 12, e695–706. https://doi.org/10.1002/term.2352 .
doi: 10.1002/term.2352 pubmed: 27860388
Shin, H. S., Lee, S., Hong, H. J., Lim, Y. C., Koh, W. G., & Lim, J. Y. (2018). Stem cell properties of human clonal salivary gland stem cells are enhanced by three-dimensional priming culture in nanofibrous microwells. Stem Cell Research & Therapy, 9, 74. https://doi.org/10.1186/s13287-018-0829-x .
doi: 10.1186/s13287-018-0829-x
Shin, H. S., Lee, S., Kim, Y. M., & Lim, J. Y. (2018). Hypoxia-activated adipose mesenchymal stem cells prevents Irradiation-Induced Salivary Hypofunction by enhanced paracrine effect through fibroblast growth factor 10. Stem Cells, 36, 1020–1032. https://doi.org/10.1002/stem.2818 .
doi: 10.1002/stem.2818 pubmed: 29569790
Elsaadany, B., Zakaria, M., & Mousa, M. R. (2019). Transplantation of bone marrow-derived mesenchymal stem cells preserve the salivary glands structure after Head and Neck Radiation in rats. Open Access Maced J Med Sci, 7, 1588–1592. https://doi.org/10.3889/oamjms.2019.350 .
doi: 10.3889/oamjms.2019.350 pubmed: 31210805 pmcid: 6560309
Mulyani, S. W. M., Astuti, E. R., Wahyuni, O. R., Ernawati, D. S., & Ramadhani, N. F. (2019). Xerostomia Therapy due to Ionized Radiation using preconditioned bone marrow-derived mesenchymal stem cells. Eur J Dent, 13, 238–242. https://doi.org/10.1055/s-0039-1694697 .
doi: 10.1055/s-0039-1694697 pubmed: 31509876 pmcid: 6777157
Wang, Z., Xing, H., Hu, H., Dai, T., Wang, Y., Li, Z., et al. (2016). Intraglandular transplantation of adipose-derived stem cells combined with platelet-rich fibrin extract for the treatment of irradiation-induced salivary gland damage. Exp Ther Med, 15, 795–805. https://doi.org/10.3892/etm.2017.5497 .
doi: 10.3892/etm.2017.5497
A, H. Y., C, H. S. S. J. S., & K, H. J. (2015). Adipose mesenchymal stem cell secretome modulated in hypoxia for remodeling of radiation-induced salivary gland damage. PLoS One, 10, e0141862. https://doi.org/10.1371/journal.pone.0141862 .
doi: 10.1371/journal.pone.0141862
Eisbruch, A., Ten Haken, R. K., Kim, H. M., Marsh, L. H., & Ship, J. A. (1999). Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. International Journal of Radiation Oncology Biology Physics, 45, 577–587. https://doi.org/10.1016/s0360-3016(99)00247-3 .
doi: 10.1016/s0360-3016(99)00247-3 pubmed: 10524409
Dohan, D. M., Choukroun, J., Diss, A., Dohan, S. L., Dohan, A. J. J., Mouhyi, J., et al. (2006). Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics, 101, e37–44. https://doi.org/10.1016/j.tripleo.2005.07.008 .
doi: 10.1016/j.tripleo.2005.07.008 pubmed: 16504849
Kronberg Jakobsen, K., Duch Lynggard, C., Paaske, N., Fenger Carlander, A. L., Kastrup, J., Hauge Werner, A., et al. (2023). Long-term outcome following treatment with allogeneic mesenchymal stem/Stromal cells for Radiation-Induced Hyposalivation and Xerostomia. Stem Cells Transl Med.
Lynggaard, C. D., Jersie-Christensen, R., Juhl, M., Jensen, S. B., Grønhøj, C., Melchiors, J., et al. (2022). Intraglandular mesenchymal stem cell treatment induces changes in the salivary proteome of irradiated patients. Communications Medicine, 2, 160. https://doi.org/10.1038/s43856-022-00223-3 .
doi: 10.1038/s43856-022-00223-3 pubmed: 36496530 pmcid: 9735277

Auteurs

Amanda-Louise Fenger Carlander (AF)

Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark. amanda-louise.fenger.carlander@regionh.dk.
Department of Otolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University hospital, Copenhagen, Denmark. amanda-louise.fenger.carlander@regionh.dk.

Anders Kierkegaard Gundestrup (AK)

Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Per Marcus Jansson (PM)

Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Bjarke Follin (B)

Cardiology Stem Cell Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Cecilie Hoeeg (C)

Cardiology Stem Cell Centre, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Birgitte Saima Kousholt (BS)

Department of Clinical Medicine, Aarhus University Group for Understanding Systematic Reviews and Meta analyses in Translational Preclinical Science, Aarhus University, Copenhagen, Denmark.

Rasmus Tolstrup Larsen (RT)

Department of Occupational Therapy and Physiotherapy, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.
Section of Social Medicine, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.

Kathrine Kronberg Jakobsen (KK)

Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Susie Rimborg (S)

The Royal Danish Library, Copenhagen University Library, Copenhagen, Denmark.

Anne Fischer-Nielsen (A)

Department of Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Christian Grønhøj (C)

Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Christian von Buchwald (CV)

Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Charlotte Duch Lynggaard (CD)

Department of Otolaryngology and Audiology, Head and Neck Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Classifications MeSH