Towards tumour hypoxia imaging: Incorporating relative oxygen extraction fraction mapping of prostate with multi-parametric quantitative MRI on a 1.5T MR-linac.

biological image-guided adaptive radiotherapy hypoxia magnetic resonance imaging-guided radiotherapy oxygenation mapping quantitative magnetic resonance imaging

Journal

Journal of medical imaging and radiation oncology
ISSN: 1754-9485
Titre abrégé: J Med Imaging Radiat Oncol
Pays: Australia
ID NLM: 101469340

Informations de publication

Date de publication:
28 Feb 2024
Historique:
received: 29 06 2023
accepted: 03 02 2024
medline: 28 2 2024
pubmed: 28 2 2024
entrez: 28 2 2024
Statut: aheadofprint

Résumé

Hypoxia plays a central role in tumour radioresistance. Reliable tumour hypoxia imaging would allow the monitoring of tumour response and a more personalized adaptation of radiotherapy planning. Here, we showed a proof of concept of the feasibility and repeatability of relative oxygen extraction fraction (rOEF) mapping of prostate using multi-parametric quantitative MRI (qMRI) achieved for the first time on a 1.5T MR-linac. T2, T2* relaxation times maps, and intra-voxel incoherent motion (IVIM) parametric maps mapping were computed on a 29 years old healthy volunteer. R2' and rOEF maps were calculated based on a multi-parametric model. Long-term repeatability and repeatability coefficient (RC) were determined for each parameter according to QIBA recommendations. Mean values for the entire healthy prostate were 0.99 ± 0.14 × 10

Identifiants

pubmed: 38415384
doi: 10.1111/1754-9485.13626
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 Royal Australian and New Zealand College of Radiologists.

Références

Kooreman ES, van Houdt PJ, Nowee ME et al. Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiother Oncol 2019; 133: 156-162.
Kooreman ES, van Houdt PJ, Keesman R et al. Daily intravoxel incoherent motion (IVIM) in prostate cancer patients during MR-guided radiotherapy - a multicenter study. Front Oncol 2021; 11: 705964.
Le Bihan D, Breton E, Lallemand D et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505.
Kato H, Esaki K, Yamaguchi T et al. Predicting early response to chemoradiotherapy for uterine cervical cancer using Intravoxel incoherent motion MR imaging. Magn Reson Med Sci 2019; 18: 293-298.
Jabehdar Maralani P, Myrehaug S, Mehrabian H et al. Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma. Radiother Oncol 2021; 156: 258-265.
Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008; 8: 425-437.
Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994; 32: 749-763.
Wiestler B, Kluge A, Lukas M et al. Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma. Sci Rep 2016; 6: 35142.
Oughourlian TC, Yao J, Hagiwara A et al. Relative oxygen extraction fraction (rOEF) MR imaging reveals higher hypoxia in human epidermal growth factor receptor (EGFR) amplified compared with non-amplified gliomas. Neuroradiology 2021; 63: 857-868.
Kooreman ES, van Houdt PJ, Keesman R et al. ADC measurements on the Unity MR-linac - a recommendation on behalf of the Elekta Unity MR-linac consortium. Radiother Oncol 2020; 153: 106-113.
Leporq B, Saint-Jalmes H, Rabrait C et al. Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla for fast liver examination. J Magn Reson Imaging 2015; 41: 1209-1217.
Leporq B, Lambert SA, Ronot M, Vilgrain V, van Beers BE. Quantification of the triglyceride fatty acid composition with 3.0 T MRI. NMR Biomed 2014; 27: 1211-1221.
Christen T, Lemasson B, Pannetier N et al. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed 2011; 24: 393-403.
Shukla-Dave A, Obuchowski NA, Chenevert TL et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 2019; 49: e101-e121.
Lee CH. Quantitative T2-mapping using MRI for detection of prostate malignancy: a systematic review of the literature. Acta Radiol 2019; 60: 1181-1189.
Chopra S, Foltz WD, Milosevic MF et al. Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol 2009; 85: 805-813.
He N, Li Z, Li X et al. Intravoxel incoherent motion diffusion-weighted imaging used to detect prostate cancer and stratify tumor grade: a meta-analysis. Front Oncol 2020; 10: 1623.
Andreou A, Koh DM, Collins DJ et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013; 23: 428-434.
Alonzi R, Padhani AR, Taylor NJ et al. Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI. Int J Radiat Oncol Biol Phys 2011; 80: 721-727.
Zhou H, Hallac RR, Yuan Q et al. Incorporating oxygen-enhanced MRI into multi-parametric assessment of human prostate cancer. Diagnostics (Basel) 2017; 7: E48.
van Houdt PJ, Agarwal HK, van Buuren LD et al. Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T2 mapping across multiple systems. Magn Reson Med 2018; 79: 1586-1594.
van Houdt PJ, Yang Y, van der Heide UA. Quantitative magnetic resonance imaging for biological image-guided adaptive radiotherapy. Front Oncol 2020; 10: 615643.
Hompland T, Hole KH, Ragnum HB et al. Combined MR imaging of oxygen consumption and supply reveals tumor hypoxia and aggressiveness in prostate cancer patients. Cancer Res 2018; 78: 4774-4785.
Kooreman ES, van Pelt V, Nowee ME, Pos F, van der Heide UA, van Houdt PJ. Longitudinal correlations between Intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) MRI during radiotherapy in prostate cancer patients. Front Oncol 2022; 12: 897130.
Jerome NP, d'Arcy JA, Feiweier T et al. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging. Phys Med Biol 2016; 61: N667-N680.
Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 2010; 64: 1580-1585.

Auteurs

Emmanuel Mesny (E)

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France.
Radiation Oncology Department, Center Hospitalier Lyon Sud, Lyon, France.

Benjamin Leporq (B)

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France.

Olivier Chapet (O)

Radiation Oncology Department, Center Hospitalier Lyon Sud, Lyon, France.
Université Claude Bernard Lyon 1, Lyon, France.

Olivier Beuf (O)

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, Lyon, France.

Classifications MeSH