Towards tumour hypoxia imaging: Incorporating relative oxygen extraction fraction mapping of prostate with multi-parametric quantitative MRI on a 1.5T MR-linac.
biological image-guided adaptive radiotherapy
hypoxia
magnetic resonance imaging-guided radiotherapy
oxygenation mapping
quantitative magnetic resonance imaging
Journal
Journal of medical imaging and radiation oncology
ISSN: 1754-9485
Titre abrégé: J Med Imaging Radiat Oncol
Pays: Australia
ID NLM: 101469340
Informations de publication
Date de publication:
28 Feb 2024
28 Feb 2024
Historique:
received:
29
06
2023
accepted:
03
02
2024
medline:
28
2
2024
pubmed:
28
2
2024
entrez:
28
2
2024
Statut:
aheadofprint
Résumé
Hypoxia plays a central role in tumour radioresistance. Reliable tumour hypoxia imaging would allow the monitoring of tumour response and a more personalized adaptation of radiotherapy planning. Here, we showed a proof of concept of the feasibility and repeatability of relative oxygen extraction fraction (rOEF) mapping of prostate using multi-parametric quantitative MRI (qMRI) achieved for the first time on a 1.5T MR-linac. T2, T2* relaxation times maps, and intra-voxel incoherent motion (IVIM) parametric maps mapping were computed on a 29 years old healthy volunteer. R2' and rOEF maps were calculated based on a multi-parametric model. Long-term repeatability and repeatability coefficient (RC) were determined for each parameter according to QIBA recommendations. Mean values for the entire healthy prostate were 0.99 ± 0.14 × 10
Identifiants
pubmed: 38415384
doi: 10.1111/1754-9485.13626
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 Royal Australian and New Zealand College of Radiologists.
Références
Kooreman ES, van Houdt PJ, Nowee ME et al. Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator. Radiother Oncol 2019; 133: 156-162.
Kooreman ES, van Houdt PJ, Keesman R et al. Daily intravoxel incoherent motion (IVIM) in prostate cancer patients during MR-guided radiotherapy - a multicenter study. Front Oncol 2021; 11: 705964.
Le Bihan D, Breton E, Lallemand D et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497-505.
Kato H, Esaki K, Yamaguchi T et al. Predicting early response to chemoradiotherapy for uterine cervical cancer using Intravoxel incoherent motion MR imaging. Magn Reson Med Sci 2019; 18: 293-298.
Jabehdar Maralani P, Myrehaug S, Mehrabian H et al. Intravoxel incoherent motion (IVIM) modeling of diffusion MRI during chemoradiation predicts therapeutic response in IDH wildtype glioblastoma. Radiother Oncol 2021; 156: 258-265.
Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008; 8: 425-437.
Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 1994; 32: 749-763.
Wiestler B, Kluge A, Lukas M et al. Multiparametric MRI-based differentiation of WHO grade II/III glioma and WHO grade IV glioblastoma. Sci Rep 2016; 6: 35142.
Oughourlian TC, Yao J, Hagiwara A et al. Relative oxygen extraction fraction (rOEF) MR imaging reveals higher hypoxia in human epidermal growth factor receptor (EGFR) amplified compared with non-amplified gliomas. Neuroradiology 2021; 63: 857-868.
Kooreman ES, van Houdt PJ, Keesman R et al. ADC measurements on the Unity MR-linac - a recommendation on behalf of the Elekta Unity MR-linac consortium. Radiother Oncol 2020; 153: 106-113.
Leporq B, Saint-Jalmes H, Rabrait C et al. Optimization of intra-voxel incoherent motion imaging at 3.0 Tesla for fast liver examination. J Magn Reson Imaging 2015; 41: 1209-1217.
Leporq B, Lambert SA, Ronot M, Vilgrain V, van Beers BE. Quantification of the triglyceride fatty acid composition with 3.0 T MRI. NMR Biomed 2014; 27: 1211-1221.
Christen T, Lemasson B, Pannetier N et al. Evaluation of a quantitative blood oxygenation level-dependent (qBOLD) approach to map local blood oxygen saturation. NMR Biomed 2011; 24: 393-403.
Shukla-Dave A, Obuchowski NA, Chenevert TL et al. Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials. J Magn Reson Imaging 2019; 49: e101-e121.
Lee CH. Quantitative T2-mapping using MRI for detection of prostate malignancy: a systematic review of the literature. Acta Radiol 2019; 60: 1181-1189.
Chopra S, Foltz WD, Milosevic MF et al. Comparing oxygen-sensitive MRI (BOLD R2*) with oxygen electrode measurements: a pilot study in men with prostate cancer. Int J Radiat Biol 2009; 85: 805-813.
He N, Li Z, Li X et al. Intravoxel incoherent motion diffusion-weighted imaging used to detect prostate cancer and stratify tumor grade: a meta-analysis. Front Oncol 2020; 10: 1623.
Andreou A, Koh DM, Collins DJ et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases. Eur Radiol 2013; 23: 428-434.
Alonzi R, Padhani AR, Taylor NJ et al. Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI. Int J Radiat Oncol Biol Phys 2011; 80: 721-727.
Zhou H, Hallac RR, Yuan Q et al. Incorporating oxygen-enhanced MRI into multi-parametric assessment of human prostate cancer. Diagnostics (Basel) 2017; 7: E48.
van Houdt PJ, Agarwal HK, van Buuren LD et al. Performance of a fast and high-resolution multi-echo spin-echo sequence for prostate T2 mapping across multiple systems. Magn Reson Med 2018; 79: 1586-1594.
van Houdt PJ, Yang Y, van der Heide UA. Quantitative magnetic resonance imaging for biological image-guided adaptive radiotherapy. Front Oncol 2020; 10: 615643.
Hompland T, Hole KH, Ragnum HB et al. Combined MR imaging of oxygen consumption and supply reveals tumor hypoxia and aggressiveness in prostate cancer patients. Cancer Res 2018; 78: 4774-4785.
Kooreman ES, van Pelt V, Nowee ME, Pos F, van der Heide UA, van Houdt PJ. Longitudinal correlations between Intravoxel incoherent motion (IVIM) and dynamic contrast-enhanced (DCE) MRI during radiotherapy in prostate cancer patients. Front Oncol 2022; 12: 897130.
Jerome NP, d'Arcy JA, Feiweier T et al. Extended T2-IVIM model for correction of TE dependence of pseudo-diffusion volume fraction in clinical diffusion-weighted magnetic resonance imaging. Phys Med Biol 2016; 61: N667-N680.
Lemke A, Laun FB, Simon D, Stieltjes B, Schad LR. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn Reson Med 2010; 64: 1580-1585.