In Utero Exposure to Antibiotics and Risk of Serious Infections in the First Year of Life.
Journal
Drug safety
ISSN: 1179-1942
Titre abrégé: Drug Saf
Pays: New Zealand
ID NLM: 9002928
Informations de publication
Date de publication:
26 Feb 2024
26 Feb 2024
Historique:
accepted:
22
01
2024
medline:
27
2
2024
pubmed:
27
2
2024
entrez:
27
2
2024
Statut:
aheadofprint
Résumé
Given the high prevalence of antibiotic prescription during pregnancy in France and previous studies suggesting an increased risk of infection in offspring with such exposures, our study aimed to investigate the association between prenatal exposure to systemic antibiotics and serious infections in full-term infants during their first year of life. We conducted a retrospective population-based cohort study on singleton, full-term liveborn non-immunocompromised infants, using the French National Health Data System (SNDS) between 2012 and 2021. Systemic antibiotic dispensing in ambulatory care settings during pregnancy defined the exposure. Outcomes concerned serious infections (i.e., infections requiring hospitalization) in offspring identified between 3 and 12 months of life, hence excluding infections of maternal origin. Adjusted odds ratios (aORs) were estimated using logistic regression with multivariate models to control for potential confounders. Of 2,836,630 infants included, 39.6% were prenatally exposed to systemic antibiotics. Infants prenatally exposed to antibiotics had a higher incidence of serious infections compared with unexposed infants {aOR 1.12 [95% confidence interval (95% CI) 1.11-1.13]}. Similar associations were observed according to the timing of exposure during pregnancy, antibiotic class, and site of infections. The strongest association was observed when infants were prenatally exposed to three or more antibiotic courses during pregnancy [aOR 1.21 (95% CI 1.19-1.24)]. Limitations include residual confounders, such as genetic susceptibility to infections and the role of the underlying pathogen agent. Prenatal exposure to systemic antibiotics is very common and is associated with a weak yet significant associations with subsequent serious infectious events during the first year of life. While our study revealed associations, it is important to note that causation cannot be established, given the acknowledged limitations, including potential confounding by indication.
Identifiants
pubmed: 38409516
doi: 10.1007/s40264-024-01401-z
pii: 10.1007/s40264-024-01401-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Sinha A, Yokoe D, Platt R. Epidemiology of neonatal infections: experience during and after hospitalization. Pediatr Infect Dis J. 2003;22(3):244–50. https://doi.org/10.1097/01.inf.0000055060.32226.8a .
doi: 10.1097/01.inf.0000055060.32226.8a
pubmed: 12634586
Ferreras-Antolín L, Oligbu G, Okike IO, Ladhani S. Infection is associated with one in five childhood deaths in England and Wales: analysis of national death registrations data, 2013–15. Arch Dis Child. 2020;105(9):857–63. https://doi.org/10.1136/archdischild-2019-318001 .
doi: 10.1136/archdischild-2019-318001
pubmed: 32209555
Troeger C, Blacker B, Khalil IA, Rao PC, Cao J, Zimsen SRM, et al. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis. 2018;18(11):1191–210. https://doi.org/10.1016/S1473-3099(18)30310-4 .
doi: 10.1016/S1473-3099(18)30310-4
Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev. 2010;23(1):74–98. https://doi.org/10.1128/CMR.00032-09 .
doi: 10.1128/CMR.00032-09
pubmed: 20065326
pmcid: 2806659
Behrooz L, Balekian DS, Faridi MK, Espinola JA, Townley LP, Camargo CA. Prenatal and postnatal tobacco smoke exposure and risk of severe bronchiolitis during infancy. Respir Med. 2018;140:21–6. https://doi.org/10.1016/j.rmed.2018.05.013 .
doi: 10.1016/j.rmed.2018.05.013
pubmed: 29957275
pmcid: 6056008
Bush NR, Savitz J, Coccia M, Jones-Mason K, Adler N, Boyce WT, et al. Maternal stress during pregnancy predicts infant infectious and noninfectious illness. J Pediatr. 2021;228:117-125.e2. https://doi.org/10.1016/j.jpeds.2020.08.041 .
doi: 10.1016/j.jpeds.2020.08.041
pubmed: 32827529
Gauthier TW, Drews-Botsch C, Falek A, Coles C, Brown LAS. Maternal alcohol abuse and neonatal infection. Clin Exp Res. 2005;29(6):1035–43. https://doi.org/10.1097/01.alc.0000167956.28160.5e .
doi: 10.1097/01.alc.0000167956.28160.5e
Goshen S, Novack L, Erez O, Yitshak-Sade M, Kloog I, Shtein A, et al. The effect of exposure to particulate matter during pregnancy on lower respiratory tract infection hospitalizations during first year of life. Environ Health. 2020;19(1):90. https://doi.org/10.1186/s12940-020-00645-3 .
doi: 10.1186/s12940-020-00645-3
pubmed: 32847589
pmcid: 7449075
Miller JE, Goldacre R, Moore HC, Zeltzer J, Knight M, Morris C, et al. Mode of birth and risk of infection-related hospitalisation in childhood: a population cohort study of 7.17 million births from 4 high-income countries. PLoS Med. 2020;17(11): e1003429. https://doi.org/10.1371/journal.pmed.1003429 .
doi: 10.1371/journal.pmed.1003429
pubmed: 33211696
pmcid: 7676705
Tsao NW, Sayre EC, Hanley G, Sadatsafavi M, Lynd LD, Marra CA, et al. Risk of preterm delivery and small-for-gestational-age births in women with autoimmune disease using biologics before or during pregnancy: a population-based cohort study. Ann Rheum Dis. 2018;77(6):869–74. https://doi.org/10.1136/annrheumdis-2018-213023 .
doi: 10.1136/annrheumdis-2018-213023
pubmed: 29496718
Williams EJ, Embleton ND, Bythell M, Ward Platt MP, Berrington JE. The changing profile of infant mortality from bacterial, viral and fungal infection over two decades. Acta Paediatr. 2013;102(10):999–1004. https://doi.org/10.1111/apa.12341 .
doi: 10.1111/apa.12341
pubmed: 23826761
Nakitanda AO, Kieler H, Odsbu I, Rhedin S, Almqvist C, Pasternak B, et al. In-utero antibiotic exposure and subsequent infections in infancy: a register-based cohort study with sibling analysis. Am J Obstet. 2023;5(4): 100860. https://doi.org/10.1016/j.ajogmf.2023.100860 .
doi: 10.1016/j.ajogmf.2023.100860
Miller JE, Wu C, Pedersen LH, de Klerk N, Olsen J, Burgner DP. Maternal antibiotic exposure during pregnancy and hospitalization with infection in offspring: a population-based cohort study. Int J Epidemiol. 2018;47(2):561–71. https://doi.org/10.1093/ije/dyx272 .
doi: 10.1093/ije/dyx272
pubmed: 29415232
Zhou P, Zhou Y, Liu B, Jin Z, Zhuang X, Dai W, et al. Perinatal antibiotic exposure affects the transmission between maternal and neonatal microbiota and is associated with early-onset sepsis. mSphere. 2020;5(1):e00984-e1019. https://doi.org/10.1128/mSphere.00984-19 .
doi: 10.1128/mSphere.00984-19
pubmed: 32075882
pmcid: 7031618
Jess T, Morgen CS, Harpsøe MC, Sørensen TIA, Ajslev TA, Antvorskov JC, et al. Antibiotic use during pregnancy and childhood overweight: a population-based nationwide cohort study. Sci Rep. 2019;9(1):11528. https://doi.org/10.1038/s41598-019-48065-9 .
doi: 10.1038/s41598-019-48065-9
pubmed: 31395930
pmcid: 6687733
Korpela K, Dikareva E, Hanski E, Kolho KL, de Vos WM, Salonen A. Cohort profile: Finnish health and early life microbiota (HELMi) longitudinal birth cohort. BMJ Open. 2019;9(6): e028500. https://doi.org/10.1136/bmjopen-2018-028500 .
doi: 10.1136/bmjopen-2018-028500
pubmed: 31253623
pmcid: 6609051
Stearns JC, Simioni J, Gunn E, McDonald H, Holloway AC, Thabane L, et al. Intrapartum antibiotics for GBS prophylaxis alter colonization patterns in the early infant gut microbiome of low risk infants. Sci Rep. 2017;7(1):16527. https://doi.org/10.1038/s41598-017-16606-9 .
doi: 10.1038/s41598-017-16606-9
pubmed: 29184093
pmcid: 5705725
Gonzalez-Perez G, Hicks AL, Tekieli TM, Radens CM, Williams BL, Lamousé-Smith ESN. Maternal antibiotic treatment impacts development of the neonatal intestinal microbiome and antiviral immunity. J Immunol. 2016;196(9):3768–79. https://doi.org/10.4049/jimmunol.1502322 .
doi: 10.4049/jimmunol.1502322
pubmed: 27036912
Collado MC, Rautava S, Aakko J, Isolauri E, Salminen S. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid. Sci Rep. 2016;6(1):23129. https://doi.org/10.1038/srep23129 .
doi: 10.1038/srep23129
pubmed: 27001291
pmcid: 4802384
Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016;16(1):86. https://doi.org/10.1186/s12876-016-0498-0 .
doi: 10.1186/s12876-016-0498-0
pubmed: 27475754
pmcid: 4967522
Kim H, Choe YJ, Cho H, Heo JS. Effect of prenatal antibiotic exposure on neonatal outcomes of preterm infants. Pediatr Infect Vaccine. 2021;28(3):149. https://doi.org/10.14776/piv.2021.28.e21 .
doi: 10.14776/piv.2021.28.e21
Cunha AJLA, Santos AC, Medronho RA, Barros H. Use of antibiotics during pregnancy is associated with infection in children at four years of age in Portugal. Acta Paediatr. 2021;110(6):1911–5. https://doi.org/10.1111/apa.15733 .
doi: 10.1111/apa.15733
pubmed: 33368616
Demailly R, Escolano S, Quantin C, Tubert-Bitter P, Ahmed I. Prescription drug use during pregnancy in France: a study from the national health insurance permanent sample. Pharmacoepidemiol Drug Saf. 2017;26(9):1126–34. https://doi.org/10.1002/pds.4265 .
doi: 10.1002/pds.4265
pubmed: 28758270
Bérard A, Abbas-Chorfa F, Kassai B, Vial T, Nguyen KA, Sheehy O, et al. The French Pregnancy Cohort: medication use during pregnancy in the French population. PLoS One. 2019;14(7): e0219095. https://doi.org/10.1371/journal.pone.0219095 .
doi: 10.1371/journal.pone.0219095
pubmed: 31314794
pmcid: 6636733
Tubiana S, Sibiude J, Herlemont P, et al. Trends in anti-infective use during pregnancy in France between 2010 and 2019: a nationwide population-based study. Br J Clin Pharmacol. 2023;89(5):1629–39. https://doi.org/10.1111/bcp.15638 .
doi: 10.1111/bcp.15638
pubmed: 36511832
Glasgow TS, Young PC, Wallin J, Kwok C, Stoddard G, Firth S, et al. Association of intrapartum antibiotic exposure and late-onset serious bacterial infections in infants. Pediatrics. 2005;116(3):696–702. https://doi.org/10.1542/peds.2004-2421 .
doi: 10.1542/peds.2004-2421
pubmed: 16140710
Wright AJ, Unger S, Coleman BL, Lam PP, McGeer AJ. Maternal antibiotic exposure and risk of antibiotic resistance in neonatal early-onset sepsis: a case–cohort study. Pediatr Infect Dis J. 2012;31(11):1206–8. https://doi.org/10.1097/INF.0b013e31826eb4f9 .
doi: 10.1097/INF.0b013e31826eb4f9
pubmed: 22926208
Pedersen TM, Stokholm J, Thorsen J, Mora-Jensen ARC, Bisgaard H. Antibiotics in pregnancy increase children’s risk of otitis media and ventilation tubes. J Pediatr. 2017;183:153-158.e1. https://doi.org/10.1016/j.jpeds.2016.12.046 .
doi: 10.1016/j.jpeds.2016.12.046
pubmed: 28088397
Cohen R, Gutvirtz G, Wainstock T, Sheiner E. Maternal urinary tract infection during pregnancy and long-term infectious morbidity of the offspring. Early Hum Dev. 2019;136:54–9. https://doi.org/10.1016/j.earlhumdev.2019.07.002 .
doi: 10.1016/j.earlhumdev.2019.07.002
pubmed: 31319353
Kim JH, Lee J, Kim DH, Park JY, Lee H, Kang HG, et al. Maternal antibiotic exposure during pregnancy is a risk factor for community-acquired urinary tract infection caused by extended-spectrum beta-lactamase-producing bacteria in infants. Pediatr Nephrol. 2022;37(1):163–70. https://doi.org/10.1007/s00467-021-05163-z .
doi: 10.1007/s00467-021-05163-z
pubmed: 34170412
Bezin J, Duong M, Lassalle R, Droz C, Pariente A, Blin P, et al. The national healthcare system claims databases in France, SNIIRAM and EGB: owerful tools for pharmacoepidemiology. Pharmacoepidemiol Drug Saf. 2017;26(8):954–62. https://doi.org/10.1002/pds.4233 .
doi: 10.1002/pds.4233
pubmed: 28544284
Blotière PO, Weill A, Dalichampt M, Billionnet C, Mezzarobba M, Raguideau F, et al. Development of an algorithm to identify pregnancy episodes and related outcomes in health care claims databases: n application to antiepileptic drug use in 4.9 million pregnant women in France. Pharmacoepidemiol Drug Saf. 2018;27(7):763–70. https://doi.org/10.1002/pds.4556 .
doi: 10.1002/pds.4556
pubmed: 29763992
pmcid: 6055607
Collins A, Weitkamp JH, Wynn JL. Why are preterm newborns at increased risk of infection? Arch Dis Child Fetal Neonatal Ed. 2018;103(4):F391–4. https://doi.org/10.1136/archdischild-2017-313595 .
doi: 10.1136/archdischild-2017-313595
pubmed: 29382648
Ukah UV, Aibibula W, Platt RW, Dayan N, Reynier P, Filion KB. Time-related biases in perinatal pharmacoepidemiology: systematic review of observational studies. Pharmacoepidemiol Drug Saf. 2022;31(12):1228–41. https://doi.org/10.1002/pds.5504 .
doi: 10.1002/pds.5504
pubmed: 35753061
Sahli L, Lapeyre-Mestre M, Derumeaux H, Moulis G. Positive predictive values of selected hospital discharge diagnoses to identify infections responsible for hospitalization in the French national hospital database. Pharmacoepidemiol Drug Saf. 2016;25(7):785–9. https://doi.org/10.1002/pds.4006 .
doi: 10.1002/pds.4006
pubmed: 27125251
Meyer A, Taine M, Drouin J, Weill A, Carbonnel F, Dray-Spira R. Serious infections in children born to mothers with inflammatory bowel disease with in utero exposure to thiopurines and anti-tumor necrosis factor. Clin Gastroenterol Hepatol. 2022;20(6):1269-1281.e9. https://doi.org/10.1016/j.cgh.2021.07.028 .
doi: 10.1016/j.cgh.2021.07.028
pubmed: 34298191
Prevention of group B streptococcal early-onset disease in newborns: ACOG Committee Opinion, number 797. Obstet Gynecol. 2020;135(2):e51–72. https://doi.org/10.1097/AOG.0000000000003668 (Erratum in: Obstet Gynecol. 2020;135(4):978–979. PMID: 31977795).
National Collaborating Centre for Women's and Children's Health (UK). Antibiotics for Early-Onset Neonatal Infection: Antibiotics for the Prevention and Treatment of Early-Onset Neonatal Infection. London: RCOG Press; 2012. (PMID: 23346609).
Palosse-Cantaloube L, Hurault-Delarue C, Beau AB, Montastruc JL, Lacroix I, Damase-Michel C. Risk of infections during the first year of life after in utero exposure to drugs acting on immunity: population-based cohort study. Pharmacol Res. 2016;113:557–62. https://doi.org/10.1016/j.phrs.2016.09.028 .
doi: 10.1016/j.phrs.2016.09.028
pubmed: 27697641
Ghosn W. Indicateurs écologiques synthétiques du niveau socio-économique pour la recherche en Santé. 2018. https://www.cepidc.inserm.fr/sites/default/files/2020-11/Note_indices_socioeco-2.pdf . Accessed 25 June 2023.
Albrecht M, Arck PC. Vertically transferred immunity in neonates: mothers, mechanisms and mediators. Front Immunol. 2020;11:555. https://doi.org/10.3389/fimmu.2020.00555 .
doi: 10.3389/fimmu.2020.00555
pubmed: 32296443
pmcid: 7136470
Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. 2007;7(5):379–90. https://doi.org/10.1038/nri2075 .
doi: 10.1038/nri2075
pubmed: 17457344
Ygberg S, Nilsson A. The developing immune system—from foetus to toddler: eveloping immune systemfrom foetus to toddler. Acta Paediatr. 2012;101(2):120–7. https://doi.org/10.1111/j.1651-2227.2011.02494.x .
doi: 10.1111/j.1651-2227.2011.02494.x
pubmed: 22003882
Nyangahu DD, Jaspan HB. Influence of maternal microbiota during pregnancy on infant immunity. Clin Exp Immunol. 2019;198(1):47–56. https://doi.org/10.1111/cei.13331 .
doi: 10.1111/cei.13331
pubmed: 31121057
pmcid: 6718277
Romano-Keeler J, Weitkamp JH. Maternal influences on fetal microbial colonization and immune development. Pediatr Res. 2015;77(1–2):189–95. https://doi.org/10.1038/pr.2014.163 .
doi: 10.1038/pr.2014.163
pubmed: 25310759
Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015;21(2):109–17. https://doi.org/10.1016/j.molmed.2014.12.002 .
doi: 10.1016/j.molmed.2014.12.002
pubmed: 25578246
Mishra A, Lai GC, Yao LJ, Aung TT, Shental N, Rotter-Maskowitz A, et al. Microbial exposure during early human development primes fetal immune cells. Cell. 2021;184(13):3394-3409.e20. https://doi.org/10.1016/j.cell.2021.04.039 .
doi: 10.1016/j.cell.2021.04.039
pubmed: 34077752
pmcid: 8240556
Rackaityte E, Halkias J. Microbial exposure during early human development primes fetal immune cells. Front Immunol. 2020;11:588. https://doi.org/10.3389/fimmu.2020.00588 .
doi: 10.3389/fimmu.2020.00588
pubmed: 32328065
pmcid: 7160249
Goenka A, Kollmann T. Development of immunity in early life. J Infect. 2015;71(Suppl1):S112–20. https://doi.org/10.1016/j.jinf.2015.04.027 .
doi: 10.1016/j.jinf.2015.04.027
pubmed: 25934325
Loewen K, Monchka B, Mahmud SM, ’t Jong G, Azad MB. Prenatal antibiotic exposure and childhood asthma: a population-based study. Eur Respir J. 2018;52(1):1702070. https://doi.org/10.1183/13993003.02070-2017 .
doi: 10.1183/13993003.02070-2017
pubmed: 29678946
Wu P, Feldman AS, Rosas-Salazar C, James K, Escobar G, Gebretsadik T, et al. Relative importance and additive effects of maternal and infant risk factors on childhood asthma. PLoS One. 2016;11(3): e0151705. https://doi.org/10.1371/journal.pone.0151705 .
doi: 10.1371/journal.pone.0151705
pubmed: 27002979
pmcid: 4803347
Stokholm J, Sevelsted A, Bønnelykke K, Bisgaard H. Maternal propensity for infections and risk of childhood asthma: a registry-based cohort study. Lancet Respir Med. 2014;2(8):631–7. https://doi.org/10.1016/S2213-2600(14)70152-3 .
doi: 10.1016/S2213-2600(14)70152-3
pubmed: 25066330
Ng SC, Peng Y, Zhang L, Mok CK, Zhao S, Li A, et al. Gut microbiota composition is associated with SARS-CoV-2 vaccine immunogenicity and adverse events. Gut. 2022;71(6):1106–16. https://doi.org/10.1136/gutjnl-2021-326563 .
doi: 10.1136/gutjnl-2021-326563
pubmed: 35140064
Lacroix I, Damase-Michel C, Lapeyre-Mestre M, Montastruc J. Prescription of drugs during pregnancy in France. Lancet. 2000;356(9243):1735–6. https://doi.org/10.1016/s0140-6736(00)03209-8 .
doi: 10.1016/s0140-6736(00)03209-8
pubmed: 11095263
de Jonge L, de Walle HEK, de Jong-van den Berg LTW, van Langen IM, Bakker MK. Actual use of medications prescribed during pregnancy: a cross-sectional study using data from a population-based congenital anomaly registry. Drug Saf. 2015;38(8):737–47. https://doi.org/10.1007/s40264-015-0302-z .
doi: 10.1007/s40264-015-0302-z
pubmed: 26041497
pmcid: 4513216
Størdal K, Lundeby KM, Brantsæter AL, Haugen M, Nakstad B, Lund-Blix NA, et al. Breast‐feeding and Infant Hospitalization for Infections: large cohort and sibling analysis. J Pediatr Gastroenterol Nutr. 2017;65(2):225–31. https://doi.org/10.1097/MPG.0000000000001539 .
doi: 10.1097/MPG.0000000000001539
pubmed: 28737571
pmcid: 5527760
Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90. https://doi.org/10.1016/S0140-6736(15)01024-7 .
doi: 10.1016/S0140-6736(15)01024-7
pubmed: 26869575
Tsao NW, Lynd LD, Sayre EC, Sadatsafavi M, Hanley G, De Vera MA. Use of biologics during pregnancy and risk of serious infections in the mother and baby: a Canadian population-based cohort study. BMJ Open. 2019;9(2): e023714. https://doi.org/10.1136/bmjopen-2018-023714 .
doi: 10.1136/bmjopen-2018-023714
pubmed: 30787081
pmcid: 6398640
Muenchhoff M, Goulder PJR. Sex differences in pediatric infectious diseases. J Infect Dis. 2014;209(suppl 3):S120–6. https://doi.org/10.1093/infdis/jiu232 .
doi: 10.1093/infdis/jiu232
pubmed: 24966192
pmcid: 4072001
Carroll KN, Gebretsadik T, Minton P, Woodward K, Liu Z, Miller EK, et al. Influence of maternal asthma on the cause and severity of infant acute respiratory tract infections. J Allergy Clin Immunol. 2012;129(5):1236–42. https://doi.org/10.1016/j.jaci.2012.01.045 .
doi: 10.1016/j.jaci.2012.01.045
pubmed: 22336082
pmcid: 3340428