Genetic background modulates the effect of glucocorticoids on proliferation, differentiation and myelin formation of oligodendrocyte lineage cells.
anxiety disorders
inbred mouse strain
myelin
oligodendrocyte
primary cell culture model
Journal
The European journal of neuroscience
ISSN: 1460-9568
Titre abrégé: Eur J Neurosci
Pays: France
ID NLM: 8918110
Informations de publication
Date de publication:
22 Feb 2024
22 Feb 2024
Historique:
revised:
23
12
2023
received:
14
08
2023
accepted:
01
02
2024
medline:
22
2
2024
pubmed:
22
2
2024
entrez:
22
2
2024
Statut:
aheadofprint
Résumé
Anxiety disorders are prevalent mental disorders. Their predisposition involves a combination of genetic and environmental risk factors, such as psychosocial stress. Myelin plasticity was recently associated with chronic stress in several mouse models. Furthermore, we found that changes in both myelin thickness and node of Ranvier morphology after chronic social defeat stress are influenced by the genetic background of the mouse strain. To understand cellular and molecular effects of stress-associated myelin plasticity, we established an oligodendrocyte (OL) model consisting of OL primary cell cultures isolated from the C57BL/6NCrl (B6; innately non-anxious and mostly stress-resilient strain) and DBA/2NCrl (D2; innately anxious and mostly stress-susceptible strain) mice. Characterization of naïve cells revealed that D2 cultures contained more pre-myelinating and mature OLs compared with B6 cultures. However, B6 cultures contained more proliferating oligodendrocyte progenitor cells (OPCs) than D2 cultures. Acute exposure to corticosterone, the major stress hormone in mice, reduced OPC proliferation and increased OL maturation and myelin production in D2 cultures compared with vehicle treatment, whereas only OL maturation was reduced in B6 cultures. In contrast, prolonged exposure to the synthetic glucocorticoid dexamethasone reduced OPC proliferation in both D2 and B6 cultures, but only D2 cultures displayed a reduction in OPC differentiation and myelin production. Taken together, our results reveal that genetic factors influence OL sensitivity to glucocorticoids, and this effect is dependent on the cellular maturation stage. Our model provides a novel framework for the identification of cellular and molecular mechanisms underlying stress-associated myelin plasticity.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Academy of Finland
ID : 316282
Organisme : Sigrid Jusélius Foundation
Organisme : University of Helsinki
Organisme : Alfred Kordelin Foundation
Organisme : Jalmari and Rauha Ahokas Foundation
Informations de copyright
© 2024 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Références
Almazan, G., Honegger, P., Du Pasquier, P., & Matthieu, J. M. (1986). Dexamethasone stimulates the biochemical differentiation of fetal forebrain cells in reaggregating cultures. Developmental Neuroscience, 8(1), 14-23. https://doi.org/10.1159/000112237
Alonso, G. (2000). Prolonged corticosterone treatment of adult rats inhibits the proliferation of oligodendrocyte progenitors present throughout white and gray matter regions of the brain. Glia, 31(3), 219-231. https://doi.org/10.1002/1098-1136(200009)31:3<219::AID-GLIA30>3.0.CO;2-R
Bandelow, B., & Michaelis, S. (2015). Epidemiology of anxiety disorders in the 21st century. Dialogues in Clinical Neuroscience, 17(3), 327-335. https://doi.org/10.31887/DCNS.2015.17.3/bbandelow
Bandelow, B., Michaelis, S., & Wedekind, D. (2017). Treatment of anxiety disorders. Dialogues in Clinical Neuroscience, 19(2), 93-107. https://doi.org/10.31887/DCNS.2017.19.2/bbandelow
Barres, B. A., Lazar, M. A., & Raff, M. C. (1994). A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development. Development, 120(5), 1097-1108. https://doi.org/10.1242/dev.120.5.1097
Bonetto, G., Belin, D., & Káradóttir, R. T. (2021). Myelin: A gatekeeper of activity-dependent circuit plasticity? Science (New York, N.Y.), 374(6569), eaba6905. https://doi.org/10.1126/science.aba6905
Bonnefil, V., Dietz, K., Amatruda, M., Wentling, M., Aubry, A. V., Dupree, J. L., Temple, G., Park, H.-J., Burghardt, N. S., Casaccia, P., & Liu, J. (2019). Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. eLife, 8, e40855. https://doi.org/10.7554/eLife.40855
Clarner, T., Parabucki, A., Beyer, C., & Kipp, M. (2011). Corticosteroids impair remyelination in the corpus callosum of cuprizone-treated mice. Journal of Neuroendocrinology, 23(7), 601-611. https://doi.org/10.1111/j.1365-2826.2011.02140.x
Dugas, J. C., Tai, Y. C., Speed, T. P., Ngai, J., & Barres, B. A. (2006). Functional genomic analysis of oligodendrocyte differentiation. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 26(43), 10967-10983. https://doi.org/10.1523/JNEUROSCI.2572-06.2006
Elbaz, B., & Popko, B. (2019). Molecular control of oligodendrocyte development. Trends in Neurosciences, 42(4), 263-277. https://doi.org/10.1016/j.tins.2019.01.002
de Faria, O., Pivonkova, H., Varga, B., Timmler, S., Evans, K. A., & Káradóttir, R. T. (2021). Periods of synchronized myelin changes shape brain function and plasticity. Nature Neuroscience, 24(11), Article 11. https://doi.org/10.1038/s41593-021-00917-2
Gao, Y., Yao, Y., Liang, X., Tang, J., Ma, J., Qi, Y.-Q., Huang, C.-X., Zhang, Y., Chen, L.-M., Chao, F.-L., Zhang, L., Luo, Y.-M., Xiao, Q., Du, L., Xiao, Q., Wang, S.-R., & Tang, Y. (2019). Changes in white matter and the effects of fluoxetine on such changes in the CUS rat model of depression. Neuroscience Letters, 694, 104-110. https://doi.org/10.1016/j.neulet.2018.11.013
Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., Inema, I., Miller, S. E., Bieri, G., Zuchero, J. B., Barres, B. A., Woo, P. J., Vogel, H., & Monje, M. (2014). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science (New York, N.Y.), 344(6183), 1252304. https://doi.org/10.1126/science.1252304
Goudriaan, A., Loos, M., Spijker, S., Smit, A. B., & Verheijen, M. H. G. (2020). Genetic variation in CNS myelination and functional brain connectivity in recombinant inbred mice. Cell, 9(9), 2119. https://doi.org/10.3390/cells9092119
Hagemeyer, N., Hanft, K.-M., Akriditou, M.-A., Unger, N., Park, E. S., Stanley, E. R., Staszewski, O., Dimou, L., & Prinz, M. (2017). Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathologica, 134(3), 441-458. https://doi.org/10.1007/s00401-017-1747-1
Hindmarsh, P. C., & Geertsma, K. (2017). Chapter 31-Other treatments for congenital adrenal hyperplasia-Prednisolone, dexamethasone and adrenalectomy. In P. C. Hindmarsh & K. Geertsma (Eds.), Congenital adrenal hyperplasia (pp. 413-421). Academic Press. https://doi.org/10.1016/B978-0-12-811483-4.00031-3
Hovatta, I., Tennant, R. S., Helton, R., Marr, R. A., Singer, O., Redwine, J. M., Ellison, J. A., Schadt, E. E., Verma, I. M., Lockhart, D. J., & Barlow, C. (2005). Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature, 438(7068), 662-666. https://doi.org/10.1038/nature04250
Jenkins, S. I., Pickard, M. R., Khong, M., Smith, H. L., Mann, C. L. A., Emes, R. D., & Chari, D. M. (2013). Identifying the cellular targets of drug action in the central nervous system following corticosteroid therapy. ACS Chemical Neuroscience, 5(1), 51-63. https://doi.org/10.1021/cn400167n
Joubert, L., Foucault, I., Sagot, Y., Bernasconi, L., Duval, F., Alliod, C., Frossard, M.-J., Pescini Gobert, R., Curchod, M.-L., Salvat, C., Nichols, A., Pouly, S., Rommel, C., Roach, A., & Hooft van Huijsduijnen, R. (2010). Chemical inducers and transcriptional markers of oligodendrocyte differentiation. Journal of Neuroscience Research, 88(12), 2546-2557. https://doi.org/10.1002/jnr.22434
Koskinen, M.-K., Laine, M., Abdollahzadeh, A., Gigliotta, A., Mazzini, G., Journée, S., Alenius, V., Trontti, K., Tohka, J., Hyytiä, P., Sierra, A., & Hovatta, I. (2023). Node of Ranvier remodeling in chronic psychosocial stress and anxiety. Neuropsychopharmacology, 1-9, 1532-1540. https://doi.org/10.1038/s41386-023-01568-6
Kumar, S., Cole, R., Chiappelli, F., & de Vellis, J. (1989). Differential regulation of oligodendrocyte markers by glucocorticoids: Post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 86(17), 6807-6811. https://doi.org/10.1073/pnas.86.17.6807
Laine, M. A., Trontti, K., Misiewicz, Z., Sokolowska, E., Kulesskaya, N., Heikkinen, A., Saarnio, S., Balcells, I., Ameslon, P., Greco, D., Mattila, P., Ellonen, P., Paulin, L., Auvinen, P., Jokitalo, E., & Hovatta, I. (2018). Genetic control of myelin plasticity after chronic psychosocial stress. eNeuro, 5(4), ENEURO.0166-18.2018. https://doi.org/10.1523/ENEURO.0166-18.2018
Lehmann, M. L., Weigel, T. K., Elkahloun, A. G., & Herkenham, M. (2017). Chronic social defeat reduces myelination in the mouse medial prefrontal cortex. Scientific Reports, 7(1), Article 1. https://doi.org/10.1038/srep46548
Liu, J., Dietz, K., DeLoyht, J. M., Pedre, X., Kelkar, D., Kaur, J., Vialou, V., Lobo, M. K., Dietz, D. M., Nestler, E. J., Dupree, J., & Casaccia, P. (2012). Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nature Neuroscience, 15(12), 1621-1623. https://doi.org/10.1038/nn.3263
Liu, J., Dietz, K., Hodes, G. E., Russo, S. J., & Casaccia, P. (2018). Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress. Developmental Neurobiology, 78(2), 152-162. https://doi.org/10.1002/dneu.22533
Liu, S., Li, A., Zhu, M., Li, J., & Liu, B. (2019). Genetic influences on cortical myelination in the human brain. Genes, Brain and Behavior, 18(4), e12537. https://doi.org/10.1111/gbb.12537
Long, K. L. P., Chao, L. L., Kazama, Y., An, A., Hu, K. Y., Peretz, L., Muller, D. C. Y., Roan, V. D., Misra, R., Toth, C. E., Breton, J. M., Casazza, W., Mostafavi, S., Huber, B. R., Woodward, S. H., Neylan, T. C., & Kaufer, D. (2021). Regional gray matter oligodendrocyte- and myelin-related measures are associated with differential susceptibility to stress-induced behavior in rats and humans. Translational. Psychiatry, 11(1), Article 1. https://doi.org/10.1038/s41398-021-01745-5
Makinodan, M., Rosen, K. M., Ito, S., & Corfas, G. (2012). A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science (New York, N.Y.), 337(6100), 1357-1360. https://doi.org/10.1126/science.1220845
Matsusue, Y., Horii-Hayashi, N., Kirita, T., & Nishi, M. (2014). Distribution of corticosteroid receptors in mature oligodendrocytes and oligodendrocyte progenitors of the adult mouse brain. Journal of Histochemistry and Cytochemistry, 62(3), 211-226. https://doi.org/10.1369/0022155413517700
Miguel-Hidalgo, J. J., Carter, K., Deloach, P. H., Sanders, L., & Pang, Y. (2019). Glucocorticoid-induced reductions of myelination and connexin 43 in mixed central nervous system cell cultures are prevented by mifepristone. Neuroscience, 411, 255-269. https://doi.org/10.1016/j.neuroscience.2019.05.050
Miyata, S., Taniguchi, M., Koyama, Y., Shimizu, S., Tanaka, T., Yasuno, F., Yamamoto, A., Iida, H., Kudo, T., Katayama, T., & Tohyama, M. (2016). Association between chronic stress-induced structural abnormalities in Ranvier nodes and reduced oligodendrocyte activity in major depression. Scientific Reports, 6, 23084. https://doi.org/10.1038/srep23084
O'Meara, R. W., Ryan, S. D., Colognato, H., & Kothary, R. (2011). Derivation of enriched oligodendrocyte cultures and oligodendrocyte/neuron myelinating co-cultures from post-natal murine tissues. Journal of Visualized Experiments: JoVE, 54, 3324. https://doi.org/10.3791/3324
Osso, L. A., Rankin, K. A., & Chan, J. R. (2021). Experience-dependent myelination following stress is mediated by the neuropeptide dynorphin. Neuron, 109(22), 3619-3632.e5. https://doi.org/10.1016/j.neuron.2021.08.015
Pan, S., Mayoral, S. R., Choi, H. S., Chan, J. R., & Kheirbek, M. A. (2020). Preservation of a remote fear memory requires new myelin formation. Nature Neuroscience, 23(4), 487-499. https://doi.org/10.1038/s41593-019-0582-1
Pfeiffer, S. E., Warrington, A. E., & Bansal, R. (1993). The oligodendrocyte and its many cellular processes. Trends in Cell Biology, 3(6), 191-197. https://doi.org/10.1016/0962-8924(93)90213-K
Poggi, G., Albiez, J., & Pryce, C. R. (2022). Effects of chronic social stress on oligodendrocyte proliferation-maturation and myelin status in prefrontal cortex and amygdala in adult mice. Neurobiology of Stress, 18, 100451. https://doi.org/10.1016/j.ynstr.2022.100451
Racine, N., McArthur, B. A., Cooke, J. E., Eirich, R., Zhu, J., & Madigan, S. (2021). Global prevalence of depressive and anxiety symptoms in children and adolescents during COVID-19: A meta-analysis. JAMA Pediatrics, 175(11), 1142-1150. https://doi.org/10.1001/jamapediatrics.2021.2482
Robinson, O. J., Pike, A. C., Cornwell, B., & Grillon, C. (2019). The translational neural circuitry of anxiety. Journal of Neurology, Neurosurgery & Psychiatry, 90(12), 1353-1360. https://doi.org/10.1136/jnnp-2019-321400
Schröter, A., Lustenberger, R. M., Obermair, F. J., & Thallmair, M. (2009). High-dose corticosteroids after spinal cord injury reduce neural progenitor cell proliferation. Neuroscience, 161(3), 753-763. https://doi.org/10.1016/j.neuroscience.2009.04.016
Sholl, D. A. (1953). Dendritic organization in the neurons of the visual and motor cortices of the cat. Journal of Anatomy, 87(Pt 4), 387-406.1.
Teissier, A., Le Magueresse, C., Olusakin, J., Andrade da Costa, B. L. S., De Stasi, A. M., Bacci, A., Imamura Kawasawa, Y., Vaidya, V. A., & Gaspar, P. (2020). Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Molecular Psychiatry, 25(6), 1159-1174. https://doi.org/10.1038/s41380-019-0493-2
Tognatta, R., Karl, M. T., Fyffe-Maricich, S. L., Popratiloff, A., Garrison, E. D., Schenck, J. K., Abu-Rub, M., & Miller, R. H. (2020). Astrocytes are required for oligodendrocyte survival and maintenance of myelin compaction and integrity. Frontiers in Cellular Neuroscience, 14, 74. https://doi.org/10.3389/fncel.2020.00074
Vielkind, U., Walencewicz, A., Levine, J. M., & Bohn, M. C. (1990). Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. Journal of Neuroscience Research, 27(3), 360-373. https://doi.org/10.1002/jnr.490270315
Warringa, R. A. J., Hoeben, R. C., Koper, J. W., Sykes, J. E. C., van Golde, L. M. G., & Lopes-Cardozo, M. (1987). Hydrocortisone stimulates the development of oligodendrocytes in primary glial cultures and affects glucose metabolism and lipid synthesis in these cultures. Developmental Brain Research, 34(1), 79-86. https://doi.org/10.1016/0165-3806(87)90197-0
Williams, R., Lim, J. E., Har, B., Wing, C., Walters, R., Distler, M. G., Tesckhe, M., Wu, C., Wiltshire, T., Su, A. I., Sokoloff, G., Tarantino, L. M., Borevitz, J. O., & Palmer, A. A. (2009). A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior. PLoS ONE, 4(3), e4649. https://doi.org/10.1371/journal.pone.0004649
Wittchen, H. U., Jacobi, F., Rehm, J., Gustavsson, A., Svensson, M., Jönsson, B., Olesen, J., Allgulander, C., Alonso, J., Faravelli, C., Fratiglioni, L., Jennum, P., Lieb, R., Maercker, A., van Os, J., Preisig, M., Salvador-Carulla, L., Simon, R., & Steinhausen, H.-C. (2011). The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology: the Journal of the European College of Neuropsychopharmacology, 21(9), 655-679. https://doi.org/10.1016/j.euroneuro.2011.07.018
Xiao, L., Ohayon, D., McKenzie, I. A., Sinclair-Wilson, A., Wright, J. L., Fudge, A. D., Emery, B., Li, H., & Richardson, W. D. (2016). Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nature Neuroscience, 19(9), 1210-1217. https://doi.org/10.1038/nn.4351
Xin, W., & Chan, J. R. (2020). Myelin plasticity: Sculpting circuits in learning and memory. Nature Reviews. Neuroscience, 21(12), 682-694. https://doi.org/10.1038/s41583-020-00379-8
Yasir, M., Goyal, A., & Sonthalia, S. (2022). Corticosteroid adverse effects. In StatPearls. StatPearls Publishing. http://www.ncbi.nlm.nih.gov/books/NBK531462/
Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R., O'Keeffe, S., Phatnani, H. P., Guarnieri, P., Caneda, C., Ruderisch, N., Deng, S., Liddelow, S. A., Zhang, C., Daneman, R., Maniatis, T., Barres, B. A., & Wu, J. Q. (2014). An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 34(36), 11929-11947. https://doi.org/10.1523/JNEUROSCI.1860-14.2014