Probabilistic coverage of the frontal aslant tract in young adults: Insights into individual variability, lateralization, and language functions.

frontal aslant tract population differences tractography

Journal

Human brain mapping
ISSN: 1097-0193
Titre abrégé: Hum Brain Mapp
Pays: United States
ID NLM: 9419065

Informations de publication

Date de publication:
15 Feb 2024
Historique:
revised: 03 02 2024
received: 30 06 2023
accepted: 06 02 2024
medline: 20 2 2024
pubmed: 20 2 2024
entrez: 20 2 2024
Statut: ppublish

Résumé

The frontal aslant tract (FAT) is a crucial neural pathway of language and speech, but little is known about its connectivity and segmentation differences across populations. In this study, we investigate the probabilistic coverage of the FAT in a large sample of 1065 young adults. Our primary goal was to reveal individual variability and lateralization of FAT and its structure-function correlations in language processing. The study utilized diffusion MRI data from 1065 subjects obtained from the Human Connectome Project. Automated tractography using DSI Studio software was employed to map white matter bundles, and the results were examined to study the population variation of the FAT. Additionally, anatomical dissections were performed to validate the fiber tracking results. The tract-to-region connectome, based on Human Connectome Project-MMP parcellations, was utilized to provide population probability of the tract-to-region connections. Our results showed that the left anterior FAT exhibited the most substantial individual differences, particularly in the superior and middle frontal gyrus, with greater variability in the superior than the inferior region. Furthermore, we found left lateralization in FAT, with a greater difference in coverage in the inferior and posterior portions. Additionally, our analysis revealed a significant positive correlation between the left FAT inferior coverage area and the performance on the oral reading recognition (p = .016) and picture vocabulary (p = .0026) tests. In comparison, fractional anisotropy of the right FAT exhibited marginal significance in its correlation (p = .056) with Picture Vocabulary Test. Our findings, combined with the connectivity patterns of the FAT, allowed us to segment its structure into anterior and posterior segments. We found significant variability in FAT coverage among individuals, with left lateralization observed in both macroscopic shape measures and microscopic diffusion metrics. Our findings also suggested a potential link between the size of the left FAT's inferior coverage area and language function tests. These results enhance our understanding of the FAT's role in brain connectivity and its potential implications for language and executive functions.

Identifiants

pubmed: 38376145
doi: 10.1002/hbm.26630
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e26630

Subventions

Organisme : NIDCD NIH HHS
ID : R01 DC013803
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS120954
Pays : United States
Organisme : NIMH NIH HHS
ID : R56 MH113634
Pays : United States

Informations de copyright

© 2024 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Références

Alyahya, R. S. W., Halai, A. D., Conroy, P., & Lambon Ralph, M. A. (2020). A unified model of post-stroke language deficits including discourse production and their neural correlates. Brain, 143(5), 1541-1554. https://doi.org/10.1093/brain/awaa074
Aron, A. R., Behrens, T. E., Smith, S., Frank, M. J., & Poldrack, R. A. (2007). Triangulating a cognitive control network using diffusion-weighted magnetic resonance imaging (MRI) and functional MRI. The Journal of Neuroscience, 27(14), 3743-3752. https://doi.org/10.1523/JNEUROSCI.0519-07.2007
Aron, A. R., Herz, D. M., Brown, P., Forstmann, B. U., & Zaghloul, K. (2016). Frontosubthalamic circuits for control of action and cognition. The Journal of Neuroscience, 36(45), 11489-11495. https://doi.org/10.1523/JNEUROSCI.2348-16.2016
Bohland, J. W., Bullock, D., & Guenther, F. H. (2010). Neural representations and mechanisms for the performance of simple speech sequences. Journal of Cognitive Neuroscience, 22(7), 1504-1529. https://doi.org/10.1162/jocn.2009.21306
Bozkurt, B., Yagmurlu, K., Middlebrooks, E. H., Karadag, A., Ovalioglu, T. C., Jagadeesan, B., & Grande, A. W. (2016). Microsurgical and tractographic anatomy of the supplementary motor area complex in humans. World Neurosurgery, 95, 99-107. https://doi.org/10.1016/j.wneu.2016.07.072
Briggs, R. G., Khan, A. B., Chakraborty, A. R., Abraham, C. J., Anderson, C. D., Karas, P. J., Bonney, P. A., Palejwala, A. H., Conner, A. K., O'Donoghue, D. L., & Sughrue, M. E. (2020). Anatomy and white matter connections of the superior frontal gyrus. Clinical Anatomy, 33(6), 823-832. https://doi.org/10.1002/ca.23523
Carroll, R., Warzybok, A., Kollmeier, B., & Ruigendijk, E. (2016). Age-related differences in lexical access relate to speech recognition in noise. Frontiers in Psychology, 7, 990. https://doi.org/10.3389/fpsyg.2016.00990
Catani, M., Dell'Acqua, F., Vergani, F., Malik, F., Hodge, H., Roy, P., Valabregue, R., & De Schotten, M. T. (2012). Short frontal lobe connections of the human brain. Cortex, 48(2), 273-291.
Catani, M., Mesulam, M. M., Jakobsen, E., Malik, F., Martersteck, A., Wieneke, C., Thompson, C. K., Thiebaut de Schotten, M., Dell'Acqua, F., Weintraub, S.. & Rogalski, E. (2013). A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain, 136(Pt 8), 2619-2628. https://doi.org/10.1093/brain/awt163
Chernoff, B. L., Teghipco, A., Garcea, F. E., Sims, M. H., Paul, D. A., Tivarus, M. E., Smith, S. O., Pilcher, W. H., & Mahon, B. Z. (2018). A role for the frontal aslant tract in speech planning: A neurosurgical case study. Journal of Cognitive Neuroscience, 30(5), 752-769. https://doi.org/10.1162/jocn_a_01244
Cochereau, J., Lemaitre, A. L., Wager, M., Moritz-Gasser, S., Duffau, H., & Herbet, G. (2020). Network-behavior mapping of lasting executive impairments after low-grade glioma surgery. Brain Structure and Function, 225(8), 2415-2429. https://doi.org/10.1007/s00429-020-02131-5
Dick, A. S., Bernal, B., & Tremblay, P. (2014). The language connectome: New pathways, new concepts. Neuroscientist, 20(5), 453-467. https://doi.org/10.1177/1073858413513502
Dick, A. S., Garic, D., Graziano, P., & Tremblay, P. (2019). The frontal aslant tract (FAT) and its role in speech, language and executive function. Cortex, 111, 148-163. https://doi.org/10.1016/j.cortex.2018.10.015
Friederici, A. D., Rüschemeyer, S. A., Hahne, A., & Fiebach, C. J. (2003). The role of left inferior frontal and superior temporal cortex in sentence comprehension: Localizing syntactic and semantic processes. Cerebral Cortex, 13(2), 170-177. https://doi.org/10.1093/cercor/13.2.170
Garic, D., Broce, I., Graziano, P., Mattfeld, A., & Dick, A. S. (2019). Laterality of the frontal aslant tract (FAT) explains externalizing behaviors through its association with executive function. Developmental Science, 22(2), e12744. https://doi.org/10.1111/desc.12744
Glasser, M. F., Smith, S. M., Marcus, D. S., Andersson, J. L., Auerbach, E. J., Behrens, T. E., Coalson, T. S., Harms, M. P., Jenkinson, M., Moeller, S., Robinson, E. C., Sotiropoulos, S. N, Xu, J., Yacoub, E., Ugurbil, K., & Van Essen, D. C. (2016). The Human Connectome Project's neuroimaging approach. Nature Neuroscience, 19(9), 1175-1187. https://doi.org/10.1038/nn.4361
Gu, J., & Kanai, R. (2014). What contributes to individual differences in brain structure? Frontiers in Human Neuroscience, 8, 262. https://doi.org/10.3389/fnhum.2014.00262
Guenther, F. H. (2006). Cortical interactions underlying the production of speech sounds. Journal of Communication Disorders, 39(5), 350-365. https://doi.org/10.1016/j.jcomdis.2006.06.013
Hodes, R. J., Insel, T. R., Landis, S. C., & NIH Blueprint for Neuroscience Research. (2013). The NIH toolbox: Setting a standard for biomedical research. Neurology, 80(11 Suppl 3), S1. https://doi.org/10.1212/WNL.0b013e3182872e90
Kemerdere, R., de Champfleur, N. M., Deverdun, J., Cochereau, J., Moritz-Gasser, S., Herbet, G., & Duffau, H. (2016). Role of the left frontal aslant tract in stuttering: A brain stimulation and tractographic study. Journal of Neurology, 263(1), 157-167. https://doi.org/10.1007/s00415-015-7949-3
Kinoshita, M., de Champfleur, N. M., Deverdun, J., Moritz-Gasser, S., Herbet, G., & Duffau, H. (2015). Role of fronto-striatal tract and frontal aslant tract in movement and speech: An axonal mapping study. Brain Structure and Function, 220(6), 3399-3412. https://doi.org/10.1007/s00429-014-0863-0
Kronfeld-Duenias, V., Amir, O., Ezrati-Vinacour, R., Civier, O., & Ben-Shachar, M. (2016). The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Structure and Function, 221(1), 365-381. https://doi.org/10.1007/s00429-014-0912-8
Lawes, I. N., Barrick, T. R., Murugam, V., Spierings, N., Evans, D. R., Song, M., & Clark, C. A. (2008). Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage, 39(1), 62-79. https://doi.org/10.1016/j.neuroimage.2007.06.041
Love, T., Swinney, D., Walenski, M., & Zurif, E. (2008). How left inferior frontal cortex participates in syntactic processing: Evidence from aphasia. Brain Language, 107(3), 203-219. https://doi.org/10.1016/j.bandl.2007.11.004
Marian-Magaña, R., González-González, A. C., Miranda-García, L. A., Villanueva-Solórzano, P., González-González, M. E., Mejía-Pérez, S. I., & Nuñez-Velasco, S. (2022). Frontal Aslant Tract: Anatomy and Tractography Description in the Mexican Population. Surgical Neurology International, 13, 349.
Martino, J., de Lucas, E. M., Ibáñez-Plágaro, F. J., Valle-Folgueral, J. M., & Vázquez-Barquero, A. (2012). Foix-Chavany-Marie syndrome caused by a disconnection between the right pars opercularis of the inferior frontal gyrus and the supplementary motor area: Case report. Journal of Neurosurgery, 117(5), 844-850.
Neef, N. E., Anwander, A., Bütfering, C., Schmidt-Samoa, C., Friederici, A. D., Paulus, W., & Sommer, M. (2018). Structural connectivity of right frontal hyperactive areas scales with stuttering severity. Brain, 141(1), 191-204. https://doi.org/10.1093/brain/awx316
Newman, S. D., Just, M. A., Keller, T. A., Roth, J., & Carpenter, P. A. (2003). Differential effects of syntactic and semantic processing on the subregions of Broca's area. Brain Research. Cognitive Brain Research, 16(2), 297-307. https://doi.org/10.1016/s0926-6410(02)00285-9
O'Muircheartaigh, J., Dean, D. C., Dirks, H., Waskiewicz, N., Lehman, K., Jerskey, B. A., & Deoni, S. C. (2013). Interactions between white matter asymmetry and language during neurodevelopment. The Journal of Neuroscience, 33(41), 16170-16177. https://doi.org/10.1523/JNEUROSCI.1463-13.2013
Purves, D. (2001). Neuroscience (2nd ed.). Sinauer Associates.
Schilling, K. G., Yeh, F. C., Nath, V., Hansen, C., Williams, O., Resnick, S., Anderson, A. W. & Landman, B. A. (2019). A fiber coherence index for quality control of B-table orientation in diffusion MRI scans. Magnetic resonance imaging, 58, 82-89. https://doi.org/10.1016/j.mri.2019.01.018
Sierpowska, J., Gabarrós, A., Fernandez-Coello, A., Camins, À., Castañer, S., Juncadella, M., de Diego-Balaguer, R. & Rodríguez-Fornells, A. (2015). Morphological derivation overflow as a result of disruption of the left frontal aslant white matter tract. Brain Language, 142, 54-64. https://doi.org/10.1016/j.bandl.2015.01.005
Swann, N. C., Cai, W., Conner, C. R., Pieters, T. A., Claffey, M. P., George, J. S., Aron, A. R. & Tandon, N. (2012). Roles for the pre-supplementary motor area and the right inferior frontal gyrus in stopping action: Electrophysiological responses and functional and structural connectivity. Neuroimage, 59(3), 2860-2870. https://doi.org/10.1016/j.neuroimage.2011.09.049
Szmuda, T., Rogowska, M., Słoniewski, P., Abuhaimed, A., Szmuda, M., Springer, J., Sabisz, A., Dzierżanowski, J., Starzyńska, A. & Przewoźny, T. (2017). Frontal aslant tract projections to the inferior frontal gyrus. Folia Morphologica, 76(4), 574-581. https://doi.org/10.5603/FM.a2017.0039
Yeh, F. C. (2020). Shape analysis of the human association pathways. NeuroImage, 223(117), 329. https://doi.org/10.1016/j.neuroimage.2020.117329
Yeh, F. C. (2022). Population-based tract-to-region connectome of the human brain and its hierarchical topology. Nature Communication, 13(1), 4933. https://doi.org/10.1038/s41467-022-32595-4
Yeh, F. C., Panesar, S., Barrios, J., Fernandes, D., Abhinav, K., Meola, A., & Fernandez-Miranda, J. C. (2019). Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP). Neurotherapeutics, 16(1), 52-58. https://doi.org/10.1007/s13311-018-0663-y
Yeh, F. C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M., Fernandez-Miranda, J. C., Vettel, J. M. & Verstynen, T. (2018). Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage, 178, 57-68. https://doi.org/10.1016/j.neuroimage.2018.05.027
Yeh, F. C., Verstynen, T. D., Wang, Y., Fernandez-Miranda, J. C., & Tseng, W. Y. (2013). Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One, 8(11), e80713. https://doi.org/10.1371/journal.pone.0080713
Yeh, F. C., Wedeen, V. J., & Tseng, W. Y. (2010). Generalized q-sampling imaging. IEEE Transactions on Medical Imaging, 29(9), 1626-1635. https://doi.org/10.1109/TMI.2010.2045126

Auteurs

Wen-Jieh Linn (WJ)

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Jessica Barrios-Martinez (J)

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

David Fernandes-Cabral (D)

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Timothée Jacquesson (T)

CHU de Lyon - Hôpital Neurologique et Neurochirurgical Pierre Wertheimer, Lyon, France.

Maximiliano Nuñez (M)

Department of Neurological Surgery, Hospital El Cruce, Buenos Aires, Argentina.

Ricardo Gomez (R)

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Yury Anania (Y)

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Juan Fernandez-Miranda (J)

Department of Neurological Surgery, Stanford University, Stanford, California, USA.

Fang-Cheng Yeh (FC)

Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Classifications MeSH