Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
16 Feb 2024
16 Feb 2024
Historique:
received:
21
04
2023
accepted:
02
02
2024
medline:
17
2
2024
pubmed:
17
2
2024
entrez:
16
2
2024
Statut:
epublish
Résumé
Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gα
Identifiants
pubmed: 38365905
doi: 10.1038/s41467-024-45734-w
pii: 10.1038/s41467-024-45734-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1368Subventions
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : R01MH124778
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : R21MH126073
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
ID : R21NS133681
Organisme : U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
ID : F31HD106632
Informations de copyright
© 2024. The Author(s).
Références
Katz, L. C. & Shatz, C. J. Synaptic Activity and the Construction of Cortical Circuits. Science 274, 1133–1138 (1996).
pubmed: 8895456
doi: 10.1126/science.274.5290.1133
Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E. & Svoboda, K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441, 979–983 (2006).
pubmed: 16791195
doi: 10.1038/nature04783
Lidov, H. G. W. & Molliver, M. E. An immunohistochemical study of serotonin neuron development in the rat: Ascending pathways and terminal fields. Brain Res. Bull. 8, 389–430 (1982).
pubmed: 6178481
doi: 10.1016/0361-9230(82)90077-6
Hohmann, C. F., Hamon, R., Batshaw, M. L. & Coyle, J. T. Transient postanatal elevation of serotonin levels in mouse neocortex. Developmental Brain Res. 43, 163–166 (1988).
doi: 10.1016/0165-3806(88)90163-0
Suri, D., Teixeira, C. M., Cagliostro, M. K., Mahadevia, D. & Ansorge, M. S. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 40, 88–112 (2015).
pubmed: 25178408
doi: 10.1038/npp.2014.231
Castrogiovanni, P. et al. Effects of high-tryptophan diet on pre- and postnatal development in rats: a morphological study. Eur. J. Nutr. 53, 297–308 (2014).
pubmed: 23644750
doi: 10.1007/s00394-013-0528-4
Boukhris, T., Sheehy, O., Mottron, L. & Berard, A. Antidepressant Use During Pregnancy and the Risk of Autism Spectrum Disorder in Children. JAMA Pediatr. 170, 117–124 (2016).
pubmed: 26660917
doi: 10.1001/jamapediatrics.2015.3356
Kim, J. Y. et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry 6, 590–600 (2019).
pubmed: 31230684
doi: 10.1016/S2215-0366(19)30181-6
Ansorge, M. S., Zhou, M., Lira, A., Hen, R. & Gingrich, J. A. Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice. Science 306, 879–881 (2004).
pubmed: 15514160
doi: 10.1126/science.1101678
Lesch, K. P. & Waider, J. Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76, 175–191 (2012).
pubmed: 23040814
doi: 10.1016/j.neuron.2012.09.013
Rebello, T. J. et al. Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC function. J. Neurosci. 34, 12379–12393 (2014).
pubmed: 25209278
pmcid: 4160773
doi: 10.1523/JNEUROSCI.1020-13.2014
Brummelte, S., Mc Glanaghy, E., Bonnin, A. & Oberlander, T. F. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience 342, 212–231 (2017).
pubmed: 26905950
doi: 10.1016/j.neuroscience.2016.02.037
Shah, R., Courtiol, E., Castellanos, F. X. & Teixeira, C. M. Abnormal Serotonin Levels During Perinatal Development Lead to Behavioral Deficits in Adulthood. Front. Behav. Neurosci. 12, 114 (2018).
pubmed: 29928194
pmcid: 5997829
doi: 10.3389/fnbeh.2018.00114
Yan, Z. & Rein, B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol. Psychiatry 27, 445–465 (2022).
pubmed: 33875802
doi: 10.1038/s41380-021-01092-3
Azimitia, E. C. & Segal, M. An autoradiogradphic analysis of the differential ascending projections of the dorsal and median raphe nuclei in rat. J. Comp. Neur 179, 641–668 (1978).
doi: 10.1002/cne.901790311
Hill, T. C. & Zito, K. LTP-induced long-term stabilization of individual nascent dendritic spines. J. Neurosci. 33, 678–686 (2013).
pubmed: 23303946
pmcid: 6704923
doi: 10.1523/JNEUROSCI.1404-12.2013
Koleske, A. J. Molecular mechanisms of dendrite stability. Nat. Rev. Neurosci. 14, 536–550 (2013).
pubmed: 23839597
pmcid: 3947514
doi: 10.1038/nrn3486
Chen, S. X., Kim, A. N., Peters, A. J. & Komiyama, T. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18, 1109–1115 (2015).
pubmed: 26098758
pmcid: 4519436
doi: 10.1038/nn.4049
Berry, K. P. & Nedivi, E. Spine Dynamics: Are They All the Same? Neuron 96, 43–55 (2017).
pubmed: 28957675
pmcid: 5661952
doi: 10.1016/j.neuron.2017.08.008
Hayashi, Y. Molecular mechanism of hippocampal long-term potentiation - Towards multiscale understanding of learning and memory. Neurosci. Res. 175, 3–15 (2022).
pubmed: 34375719
doi: 10.1016/j.neures.2021.08.001
Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).
pubmed: 16261181
doi: 10.1038/nrn1787
Jones, K. A. et al. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl. Acad. Sci. USA 106, 19575–19580 (2009).
pubmed: 19889983
pmcid: 2780750
doi: 10.1073/pnas.0905884106
Kobe, F. et al. 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J. Neurosci. 32, 2915–2930 (2012).
pubmed: 22378867
pmcid: 3369253
doi: 10.1523/JNEUROSCI.2765-11.2012
Kim, H. et al. Early postnatal serotonin modulation prevents adult-stage deficits in Arid1b-deficient mice through synaptic transcriptional reprogramming. Nat. Commun. 13, 5051 (2022).
pubmed: 36030255
pmcid: 9420115
doi: 10.1038/s41467-022-32748-5
Jakab, R. L. & Goldman-Rakic, P. S. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc. Natl. Acad. Sci. 1998, 735–740 (1997).
Barnes, N. M. & Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–1152 (1999).
pubmed: 10462127
doi: 10.1016/S0028-3908(99)00010-6
Masson, J., Emerit, M. B., Hamon, M. & Darmon, M. Serotonergic signaling: multiple effectors and pleiotropic effects. Wiley Interdiscip. Rev. Membr. Transp. Signal 1, 685–713 (2012).
doi: 10.1002/wmts.50
Santana, N. & Artigas, F. Laminar and Cellular Distribution of Monoamine Receptors in Rat Medial Prefrontal Cortex. Front. Neuroanat. 11, 87 (2017).
pubmed: 29033796
pmcid: 5625028
doi: 10.3389/fnana.2017.00087
Wirth, A., Holst, K. & Ponimaskin, E. How serotonin receptors regulate morphogenic signalling in neurons. Prog. Neurobiol. 151, 35–56 (2017).
pubmed: 27013076
doi: 10.1016/j.pneurobio.2016.03.007
Sargin, D., Jeoung, H. S., Goodfellow, N. M. & Lambe, E. K. Serotonin Regulation of the Prefrontal Cortex: Cognitive Relevance and the Impact of Developmental Perturbation. ACS Chem. Neurosci. 10, 3078–3093 (2019).
pubmed: 31259523
doi: 10.1021/acschemneuro.9b00073
Sharp, T. & Barnes, N. M. Central 5-HT receptors and their function; present and future. Neuropharmacology 177, 108155 (2020).
pubmed: 32522572
doi: 10.1016/j.neuropharm.2020.108155
Shao, L. X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109, 2535–2544 e2534 (2021).
pubmed: 34228959
pmcid: 8376772
doi: 10.1016/j.neuron.2021.06.008
Bijata, M. et al. Synaptic Remodeling Depends on Signaling between Serotonin Receptors and the Extracellular Matrix. Cell Rep. 19, 1767–1782 (2017).
pubmed: 28564597
doi: 10.1016/j.celrep.2017.05.023
Pati, S. et al. Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior. Elife 9, e56171 (2020).
pubmed: 32955432
pmcid: 7652419
doi: 10.7554/eLife.56171
Oh, W. C. et al. Dysregulation of the mesoprefrontal dopamine circuit mediates an early-life stress-induced synaptic imbalance in the prefrontal cortex. Cell Rep. 35, 109074 (2021).
pubmed: 33951422
pmcid: 8138943
doi: 10.1016/j.celrep.2021.109074
Schalbetter, S. M. et al. Oral application of clozapine-N-oxide using the micropipette-guided drug administration (MDA) method in mouse DREADD systems. Lab. Anim. (NY) 50, 69–75 (2021).
pubmed: 33619409
doi: 10.1038/s41684-021-00723-0
Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4, 1086–1092 (2001).
pubmed: 11687814
pmcid: 4229049
doi: 10.1038/nn736
Igelstrom, K. M. & Heyward, P. M. Inhibition of hippocampal excitability by citalopram. Epilepsia 53, 2034–2042 (2012).
pubmed: 22946760
doi: 10.1111/j.1528-1167.2012.03660.x
Lopez, E. R. et al. Serotonin enhances depolarizing spontaneous fluctuations, excitability, and ongoing activity in isolated rat DRG neurons via 5-HT(4) receptors and cAMP-dependent mechanisms. Neuropharmacology 184, 108408 (2021).
pubmed: 33220305
doi: 10.1016/j.neuropharm.2020.108408
Wang, J. et al. Aberrant serotonergic signaling contributes to the hyperexcitability of CA1 pyramidal neurons in a mouse model of Alzheimer’s disease. Cell Rep. 42, 112152 (2023).
pubmed: 36821438
doi: 10.1016/j.celrep.2023.112152
Beique, J. C. et al. Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J. Neurosci. 24, 4807–4817 (2004).
pubmed: 15152041
pmcid: 6729457
doi: 10.1523/JNEUROSCI.5113-03.2004
Puig, M. V. & Gulledge, A. T. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol. Neurobiol. 44, 449–464 (2011).
pubmed: 22076606
pmcid: 3282112
doi: 10.1007/s12035-011-8214-0
Teissier, A. et al. Activity of Raphe Serotonergic Neurons Controls Emotional Behaviors. Cell Rep. 13, 1965–1976 (2015).
pubmed: 26655908
pmcid: 4756479
doi: 10.1016/j.celrep.2015.10.061
Mlinar, B., Montalbano, A., Piszczek, L., Gross, C. & Corradetti, R. Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices. Front. Cell Neurosci. 10, 195 (2016).
pubmed: 27536220
pmcid: 4971071
doi: 10.3389/fncel.2016.00195
Dong, C. et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184, 2779–2792 (2021).
pubmed: 33915107
pmcid: 8122087
doi: 10.1016/j.cell.2021.03.043
Beique, J. C., Chapin-Penick, E. M., Mladenovic, L. & Andrade, R. Serotonergic facilitation of synaptic activity in the developing rat prefrontal cortex. J Physiol 556, 739–754 (2004).
pubmed: 14742723
pmcid: 1665004
doi: 10.1113/jphysiol.2003.051284
Beique, J. C., Imad, M., Mladenovic, L., Gingrich, J. A. & Andrade, R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc. Natl. Acad. Sci. USA 104, 9870–9875 (2007).
pubmed: 17535909
pmcid: 1887564
doi: 10.1073/pnas.0700436104
Colgan, L. A. et al. PKCalpha integrates spatiotemporally distinct Ca(2+) and autocrine BDNF signaling to facilitate synaptic plasticity. Nat. Neurosci. 21, 1027–1037 (2018).
pubmed: 30013171
pmcid: 6100743
doi: 10.1038/s41593-018-0184-3
Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).
pubmed: 15190253
pmcid: 4158816
doi: 10.1038/nature02617
Oh, W. C., Parajuli, L. K. & Zito, K. Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. Cell Rep. 10, 162–169 (2015).
pubmed: 25558061
doi: 10.1016/j.celrep.2014.12.016
Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).
pubmed: 9671304
doi: 10.1038/28190
Chater, T. E. & Goda, Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front. Synaptic Neurosci. 14, 833782 (2022).
pubmed: 35387308
pmcid: 8979068
doi: 10.3389/fnsyn.2022.833782
Kwag, R. et al. Discovery of G Protein-Biased Antagonists against 5-HT7R. J. Med. Chem. 64, 13766–13779 (2021).
pubmed: 34519505
doi: 10.1021/acs.jmedchem.1c01093
Sommi, R. W., Crimson, M. L. & Bowden, C. L. Fluoxetine: A Serotonin‐specific Second‐generation Antidepressant. Pharmacotherapy 7, 001–015 (1987).
doi: 10.1002/j.1875-9114.1987.tb03496.x
Dudley, M. W. et al. Pharmacological effects of MDL 11,939: A Selective, Centrally Acting Antagonist of 5-HT2 Receptors. Drug Dev Res. 13, 29–43 (1988).
doi: 10.1002/ddr.430130104
Kikuchi, C., Suzuki, H., Hiranuma, T. & Koyama, M. New Tetrahydrobenzindoles as Potent and Selective 5-HT7 Antagonists with Increased In Vitro Metabolic Stability. Bioorganic Med. Chem. Lett. 13, 61–64 (2003).
doi: 10.1016/S0960-894X(02)00842-9
Zhai, S., Ark, E. D., Parra-Bueno, P. & Yasuda, R. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342, 1107–1111 (2013).
pubmed: 24288335
pmcid: 4318497
doi: 10.1126/science.1245622
Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).
pubmed: 24656254
pmcid: 4411946
doi: 10.1016/j.neuron.2014.02.010
Sengupta, A., Bocchio, M., Bannerman, D. M., Sharp, T. & Capogna, M. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission. J. Neurosci. 37, 1785–1796 (2017).
pubmed: 28087766
pmcid: 5320609
doi: 10.1523/JNEUROSCI.2238-16.2016
Sobczyk, A., Scheuss, V. & Svoboda, K. NMDA receptor subunit-dependent [Ca
pubmed: 15987933
pmcid: 6725044
doi: 10.1523/JNEUROSCI.1221-05.2005
Hedrick, N. G. & Yasuda, R. Regulation of Rho GTPase proteins during spine structural plasticity for the control of local dendritic plasticity. Curr. Opin. Neurobiol. 45, 193–201 (2017).
pubmed: 28709063
doi: 10.1016/j.conb.2017.06.002
Harris, K. M. Structural LTP: from synaptogenesis to regulated synapse enlargement and clustering. Curr. Opin. Neurobiol. 63, 189–197 (2020).
pubmed: 32659458
pmcid: 7484443
doi: 10.1016/j.conb.2020.04.009
Nicoll, R. A. A Brief History of Long-Term Potentiation. Neuron 93, 281–290 (2017).
pubmed: 28103477
doi: 10.1016/j.neuron.2016.12.015
Diering, G. H. & Huganir, R. L. The AMPA Receptor Code of Synaptic Plasticity. Neuron 100, 314–329 (2018).
pubmed: 30359599
pmcid: 6214363
doi: 10.1016/j.neuron.2018.10.018
Kasai, H., Ziv, N. E., Okazaki, H., Yagishita, S. & Toyoizumi, T. Spine dynamics in the brain, mental disorders and artificial neural networks. Nat. Rev. Neurosci. 22, 407–422 (2021).
pubmed: 34050339
doi: 10.1038/s41583-021-00467-3
Lanfumey, L. & Hamon, L. Central 5-HT1A Receptors- Regional Distribution and Functional Characteristics. Nucl. Med. Biol. 27, 429–435 (2000).
pubmed: 10962246
doi: 10.1016/S0969-8051(00)00107-4
Middlemiss, D. N. & Hutson, P. H. The 5-HT1B receptors. Ann. NY Acad. Sci. 600, 132–147 (1990).
pubmed: 2252306
doi: 10.1111/j.1749-6632.1990.tb16878.x
Parsey, R. V. et al. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using 1A C-11WAY-100635. Brain Res. 954, 173–182 (2002).
pubmed: 12414100
doi: 10.1016/S0006-8993(02)03243-2
Jovanovic, H. et al. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET. Neuroimage 39, 1408–1419 (2008).
pubmed: 18036835
doi: 10.1016/j.neuroimage.2007.10.016
Soloff, P. H., Price, J. C., Mason, N. S., Becker, C. & Meltzer, C. C. Gender, personality, and serotonin-2A receptor binding in healthy subjects. Psychiatry Res. 181, 77–84 (2010).
pubmed: 19959344
pmcid: 2795067
doi: 10.1016/j.pscychresns.2009.08.007
Gunther, L. et al. 5-HT(1A)-receptor over-expressing mice: genotype and sex dependent responses to antidepressants in the forced swim-test. Neuropharmacology 61, 433–441 (2011).
pubmed: 21419787
doi: 10.1016/j.neuropharm.2011.03.004
Soloff, P. H., Chiappetta, L., Mason, N. S., Becker, C. & Price, J. C. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder. Psychiatry Res. 222, 140–148 (2014).
pubmed: 24751216
pmcid: 4115284
doi: 10.1016/j.pscychresns.2014.03.008
Henley, J. M. & Wilkinson, K. A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17, 337–350 (2016).
pubmed: 27080385
doi: 10.1038/nrn.2016.37
Greger, I. H., Watson, J. F. & Cull-Candy, S. G. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 94, 713–730 (2017).
pubmed: 28521126
doi: 10.1016/j.neuron.2017.04.009
Chen, H., Tang, A. H. & Blanpied, T. A. Subsynaptic spatial organization as a regulator of synaptic strength and plasticity. Curr. Opin. Neurobiol. 51, 147–153 (2018).
pubmed: 29902592
pmcid: 6295321
doi: 10.1016/j.conb.2018.05.004
Heine, M. & Holcman, D. Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication. Trends Neurosci. 43, 182–196 (2020).
pubmed: 32101710
doi: 10.1016/j.tins.2020.01.005
Stoppini, L., Buchs, P.-A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).
pubmed: 1715499
doi: 10.1016/0165-0270(91)90128-M
Oh, W. C., Lutzu, S., Castillo, P. E. & Kwon, H.-B. De novo synaptogenesis induced by GABA in the developing mouse cortex. Science 353, 1037–1040 (2016).
pubmed: 27516412
pmcid: 5104171
doi: 10.1126/science.aaf5206
Wan, J. et al. A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24, 746–752 (2021).
pubmed: 33821000
pmcid: 8544647
doi: 10.1038/s41593-021-00823-7
Woods, G. F., Oh, W. C., Boudewyn, L. C., Mikula, S. K. & Zito, K. Loss of PSD-95 enrichment is not a prerequisite for spine retraction. J. Neurosci. 31, 12129–12138 (2011).
pubmed: 21865455
pmcid: 3164954
doi: 10.1523/JNEUROSCI.6662-10.2011
Sigler, A. et al. Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release. Neuron 94, 304–311. e304 (2017).
pubmed: 28426965
pmcid: 5418202
doi: 10.1016/j.neuron.2017.03.029
Kleinjan, M. S. et al. Dually innervated dendritic spines develop in the absence of excitatory activity and resist plasticity through tonic inhibitory crosstalk. Neuron 111, 362–371. e366 (2023).
pubmed: 36395772
doi: 10.1016/j.neuron.2022.11.002
Oh, W. C., Hill, T. C. & Zito, K. Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening. Proc. Natl. Acad. Sci. USA. 110, E305–312 (2013).
pubmed: 23269840
doi: 10.1073/pnas.1214705110
Hatanaka, Y., Watase, K., Wada, K. & Nagai, Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci. Rep. 5, 16102 (2015).
pubmed: 26531852
pmcid: 4632040
doi: 10.1038/srep16102
Adler, A. et al. Sleep promotes the formation of dendritic filopodia and spines near learning-inactive existing spines. Proc. Natl. Acad. Sci. USA 118, e2114856118 (2021).
pubmed: 34873044
pmcid: 8685900
doi: 10.1073/pnas.2114856118
Sarkar, A., Chachra, P. & Vaidya, V. A. Postnatal fluoxetine-evoked anxiety is prevented by concomitant 5-HT2A/C receptor blockade and mimicked by postnatal 5-HT2A/C receptor stimulation. Biol. Psychiatry 76, 858–868 (2014).
pubmed: 24315410
doi: 10.1016/j.biopsych.2013.11.005