Serotonin modulates excitatory synapse maturation in the developing prefrontal cortex.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
16 Feb 2024
Historique:
received: 21 04 2023
accepted: 02 02 2024
medline: 17 2 2024
pubmed: 17 2 2024
entrez: 16 2 2024
Statut: epublish

Résumé

Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gα

Identifiants

pubmed: 38365905
doi: 10.1038/s41467-024-45734-w
pii: 10.1038/s41467-024-45734-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1368

Subventions

Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : R01MH124778
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH)
ID : R21MH126073
Organisme : U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
ID : R21NS133681
Organisme : U.S. Department of Health & Human Services | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
ID : F31HD106632

Informations de copyright

© 2024. The Author(s).

Références

Katz, L. C. & Shatz, C. J. Synaptic Activity and the Construction of Cortical Circuits. Science 274, 1133–1138 (1996).
pubmed: 8895456 doi: 10.1126/science.274.5290.1133
Holtmaat, A., Wilbrecht, L., Knott, G. W., Welker, E. & Svoboda, K. Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441, 979–983 (2006).
pubmed: 16791195 doi: 10.1038/nature04783
Lidov, H. G. W. & Molliver, M. E. An immunohistochemical study of serotonin neuron development in the rat: Ascending pathways and terminal fields. Brain Res. Bull. 8, 389–430 (1982).
pubmed: 6178481 doi: 10.1016/0361-9230(82)90077-6
Hohmann, C. F., Hamon, R., Batshaw, M. L. & Coyle, J. T. Transient postanatal elevation of serotonin levels in mouse neocortex. Developmental Brain Res. 43, 163–166 (1988).
doi: 10.1016/0165-3806(88)90163-0
Suri, D., Teixeira, C. M., Cagliostro, M. K., Mahadevia, D. & Ansorge, M. S. Monoamine-sensitive developmental periods impacting adult emotional and cognitive behaviors. Neuropsychopharmacology 40, 88–112 (2015).
pubmed: 25178408 doi: 10.1038/npp.2014.231
Castrogiovanni, P. et al. Effects of high-tryptophan diet on pre- and postnatal development in rats: a morphological study. Eur. J. Nutr. 53, 297–308 (2014).
pubmed: 23644750 doi: 10.1007/s00394-013-0528-4
Boukhris, T., Sheehy, O., Mottron, L. & Berard, A. Antidepressant Use During Pregnancy and the Risk of Autism Spectrum Disorder in Children. JAMA Pediatr. 170, 117–124 (2016).
pubmed: 26660917 doi: 10.1001/jamapediatrics.2015.3356
Kim, J. Y. et al. Environmental risk factors and biomarkers for autism spectrum disorder: an umbrella review of the evidence. Lancet Psychiatry 6, 590–600 (2019).
pubmed: 31230684 doi: 10.1016/S2215-0366(19)30181-6
Ansorge, M. S., Zhou, M., Lira, A., Hen, R. & Gingrich, J. A. Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice. Science 306, 879–881 (2004).
pubmed: 15514160 doi: 10.1126/science.1101678
Lesch, K. P. & Waider, J. Serotonin in the modulation of neural plasticity and networks: implications for neurodevelopmental disorders. Neuron 76, 175–191 (2012).
pubmed: 23040814 doi: 10.1016/j.neuron.2012.09.013
Rebello, T. J. et al. Postnatal day 2 to 11 constitutes a 5-HT-sensitive period impacting adult mPFC function. J. Neurosci. 34, 12379–12393 (2014).
pubmed: 25209278 pmcid: 4160773 doi: 10.1523/JNEUROSCI.1020-13.2014
Brummelte, S., Mc Glanaghy, E., Bonnin, A. & Oberlander, T. F. Developmental changes in serotonin signaling: Implications for early brain function, behavior and adaptation. Neuroscience 342, 212–231 (2017).
pubmed: 26905950 doi: 10.1016/j.neuroscience.2016.02.037
Shah, R., Courtiol, E., Castellanos, F. X. & Teixeira, C. M. Abnormal Serotonin Levels During Perinatal Development Lead to Behavioral Deficits in Adulthood. Front. Behav. Neurosci. 12, 114 (2018).
pubmed: 29928194 pmcid: 5997829 doi: 10.3389/fnbeh.2018.00114
Yan, Z. & Rein, B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol. Psychiatry 27, 445–465 (2022).
pubmed: 33875802 doi: 10.1038/s41380-021-01092-3
Azimitia, E. C. & Segal, M. An autoradiogradphic analysis of the differential ascending projections of the dorsal and median raphe nuclei in rat. J. Comp. Neur 179, 641–668 (1978).
doi: 10.1002/cne.901790311
Hill, T. C. & Zito, K. LTP-induced long-term stabilization of individual nascent dendritic spines. J. Neurosci. 33, 678–686 (2013).
pubmed: 23303946 pmcid: 6704923 doi: 10.1523/JNEUROSCI.1404-12.2013
Koleske, A. J. Molecular mechanisms of dendrite stability. Nat. Rev. Neurosci. 14, 536–550 (2013).
pubmed: 23839597 pmcid: 3947514 doi: 10.1038/nrn3486
Chen, S. X., Kim, A. N., Peters, A. J. & Komiyama, T. Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning. Nat. Neurosci. 18, 1109–1115 (2015).
pubmed: 26098758 pmcid: 4519436 doi: 10.1038/nn.4049
Berry, K. P. & Nedivi, E. Spine Dynamics: Are They All the Same? Neuron 96, 43–55 (2017).
pubmed: 28957675 pmcid: 5661952 doi: 10.1016/j.neuron.2017.08.008
Hayashi, Y. Molecular mechanism of hippocampal long-term potentiation - Towards multiscale understanding of learning and memory. Neurosci. Res. 175, 3–15 (2022).
pubmed: 34375719 doi: 10.1016/j.neures.2021.08.001
Hensch, T. K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).
pubmed: 16261181 doi: 10.1038/nrn1787
Jones, K. A. et al. Rapid modulation of spine morphology by the 5-HT2A serotonin receptor through kalirin-7 signaling. Proc. Natl. Acad. Sci. USA 106, 19575–19580 (2009).
pubmed: 19889983 pmcid: 2780750 doi: 10.1073/pnas.0905884106
Kobe, F. et al. 5-HT7R/G12 signaling regulates neuronal morphology and function in an age-dependent manner. J. Neurosci. 32, 2915–2930 (2012).
pubmed: 22378867 pmcid: 3369253 doi: 10.1523/JNEUROSCI.2765-11.2012
Kim, H. et al. Early postnatal serotonin modulation prevents adult-stage deficits in Arid1b-deficient mice through synaptic transcriptional reprogramming. Nat. Commun. 13, 5051 (2022).
pubmed: 36030255 pmcid: 9420115 doi: 10.1038/s41467-022-32748-5
Jakab, R. L. & Goldman-Rakic, P. S. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: Possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell  apical  dendrites. Proc. Natl. Acad. Sci. 1998, 735–740 (1997).
Barnes, N. M. & Sharp, T. A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–1152 (1999).
pubmed: 10462127 doi: 10.1016/S0028-3908(99)00010-6
Masson, J., Emerit, M. B., Hamon, M. & Darmon, M. Serotonergic signaling: multiple effectors and pleiotropic effects. Wiley Interdiscip. Rev. Membr. Transp. Signal 1, 685–713 (2012).
doi: 10.1002/wmts.50
Santana, N. & Artigas, F. Laminar and Cellular Distribution of Monoamine Receptors in Rat Medial Prefrontal Cortex. Front. Neuroanat. 11, 87 (2017).
pubmed: 29033796 pmcid: 5625028 doi: 10.3389/fnana.2017.00087
Wirth, A., Holst, K. & Ponimaskin, E. How serotonin receptors regulate morphogenic signalling in neurons. Prog. Neurobiol. 151, 35–56 (2017).
pubmed: 27013076 doi: 10.1016/j.pneurobio.2016.03.007
Sargin, D., Jeoung, H. S., Goodfellow, N. M. & Lambe, E. K. Serotonin Regulation of the Prefrontal Cortex: Cognitive Relevance and the Impact of Developmental Perturbation. ACS Chem. Neurosci. 10, 3078–3093 (2019).
pubmed: 31259523 doi: 10.1021/acschemneuro.9b00073
Sharp, T. & Barnes, N. M. Central 5-HT receptors and their function; present and future. Neuropharmacology 177, 108155 (2020).
pubmed: 32522572 doi: 10.1016/j.neuropharm.2020.108155
Shao, L. X. et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron 109, 2535–2544 e2534 (2021).
pubmed: 34228959 pmcid: 8376772 doi: 10.1016/j.neuron.2021.06.008
Bijata, M. et al. Synaptic Remodeling Depends on Signaling between Serotonin Receptors and the Extracellular Matrix. Cell Rep. 19, 1767–1782 (2017).
pubmed: 28564597 doi: 10.1016/j.celrep.2017.05.023
Pati, S. et al. Chronic postnatal chemogenetic activation of forebrain excitatory neurons evokes persistent changes in mood behavior. Elife 9, e56171 (2020).
pubmed: 32955432 pmcid: 7652419 doi: 10.7554/eLife.56171
Oh, W. C. et al. Dysregulation of the mesoprefrontal dopamine circuit mediates an early-life stress-induced synaptic imbalance in the prefrontal cortex. Cell Rep. 35, 109074 (2021).
pubmed: 33951422 pmcid: 8138943 doi: 10.1016/j.celrep.2021.109074
Schalbetter, S. M. et al. Oral application of clozapine-N-oxide using the micropipette-guided drug administration (MDA) method in mouse DREADD systems. Lab. Anim. (NY) 50, 69–75 (2021).
pubmed: 33619409 doi: 10.1038/s41684-021-00723-0
Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4, 1086–1092 (2001).
pubmed: 11687814 pmcid: 4229049 doi: 10.1038/nn736
Igelstrom, K. M. & Heyward, P. M. Inhibition of hippocampal excitability by citalopram. Epilepsia 53, 2034–2042 (2012).
pubmed: 22946760 doi: 10.1111/j.1528-1167.2012.03660.x
Lopez, E. R. et al. Serotonin enhances depolarizing spontaneous fluctuations, excitability, and ongoing activity in isolated rat DRG neurons via 5-HT(4) receptors and cAMP-dependent mechanisms. Neuropharmacology 184, 108408 (2021).
pubmed: 33220305 doi: 10.1016/j.neuropharm.2020.108408
Wang, J. et al. Aberrant serotonergic signaling contributes to the hyperexcitability of CA1 pyramidal neurons in a mouse model of Alzheimer’s disease. Cell Rep. 42, 112152 (2023).
pubmed: 36821438 doi: 10.1016/j.celrep.2023.112152
Beique, J. C. et al. Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J. Neurosci. 24, 4807–4817 (2004).
pubmed: 15152041 pmcid: 6729457 doi: 10.1523/JNEUROSCI.5113-03.2004
Puig, M. V. & Gulledge, A. T. Serotonin and prefrontal cortex function: neurons, networks, and circuits. Mol. Neurobiol. 44, 449–464 (2011).
pubmed: 22076606 pmcid: 3282112 doi: 10.1007/s12035-011-8214-0
Teissier, A. et al. Activity of Raphe Serotonergic Neurons Controls Emotional Behaviors. Cell Rep. 13, 1965–1976 (2015).
pubmed: 26655908 pmcid: 4756479 doi: 10.1016/j.celrep.2015.10.061
Mlinar, B., Montalbano, A., Piszczek, L., Gross, C. & Corradetti, R. Firing Properties of Genetically Identified Dorsal Raphe Serotonergic Neurons in Brain Slices. Front. Cell Neurosci. 10, 195 (2016).
pubmed: 27536220 pmcid: 4971071 doi: 10.3389/fncel.2016.00195
Dong, C. et al. Psychedelic-inspired drug discovery using an engineered biosensor. Cell 184, 2779–2792 (2021).
pubmed: 33915107 pmcid: 8122087 doi: 10.1016/j.cell.2021.03.043
Beique, J. C., Chapin-Penick, E. M., Mladenovic, L. & Andrade, R. Serotonergic facilitation of synaptic activity in the developing rat prefrontal cortex. J Physiol 556, 739–754 (2004).
pubmed: 14742723 pmcid: 1665004 doi: 10.1113/jphysiol.2003.051284
Beique, J. C., Imad, M., Mladenovic, L., Gingrich, J. A. & Andrade, R. Mechanism of the 5-hydroxytryptamine 2A receptor-mediated facilitation of synaptic activity in prefrontal cortex. Proc. Natl. Acad. Sci. USA 104, 9870–9875 (2007).
pubmed: 17535909 pmcid: 1887564 doi: 10.1073/pnas.0700436104
Colgan, L. A. et al. PKCalpha integrates spatiotemporally distinct Ca(2+) and autocrine BDNF signaling to facilitate synaptic plasticity. Nat. Neurosci. 21, 1027–1037 (2018).
pubmed: 30013171 pmcid: 6100743 doi: 10.1038/s41593-018-0184-3
Matsuzaki, M., Honkura, N., Ellis-Davies, G. C. & Kasai, H. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004).
pubmed: 15190253 pmcid: 4158816 doi: 10.1038/nature02617
Oh, W. C., Parajuli, L. K. & Zito, K. Heterosynaptic structural plasticity on local dendritic segments of hippocampal CA1 neurons. Cell Rep. 10, 162–169 (2015).
pubmed: 25558061 doi: 10.1016/j.celrep.2014.12.016
Miesenbock, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).
pubmed: 9671304 doi: 10.1038/28190
Chater, T. E. & Goda, Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front. Synaptic Neurosci. 14, 833782 (2022).
pubmed: 35387308 pmcid: 8979068 doi: 10.3389/fnsyn.2022.833782
Kwag, R. et al. Discovery of G Protein-Biased Antagonists against 5-HT7R. J. Med. Chem. 64, 13766–13779 (2021).
pubmed: 34519505 doi: 10.1021/acs.jmedchem.1c01093
Sommi, R. W., Crimson, M. L. & Bowden, C. L. Fluoxetine: A Serotonin‐specific Second‐generation Antidepressant. Pharmacotherapy 7, 001–015 (1987).
doi: 10.1002/j.1875-9114.1987.tb03496.x
Dudley, M. W. et al. Pharmacological effects of MDL 11,939: A Selective, Centrally Acting Antagonist of 5-HT2 Receptors. Drug Dev Res. 13, 29–43 (1988).
doi: 10.1002/ddr.430130104
Kikuchi, C., Suzuki, H., Hiranuma, T. & Koyama, M. New Tetrahydrobenzindoles as Potent and Selective 5-HT7 Antagonists with Increased In Vitro Metabolic Stability. Bioorganic Med. Chem. Lett. 13, 61–64 (2003).
doi: 10.1016/S0960-894X(02)00842-9
Zhai, S., Ark, E. D., Parra-Bueno, P. & Yasuda, R. Long-distance integration of nuclear ERK signaling triggered by activation of a few dendritic spines. Science 342, 1107–1111 (2013).
pubmed: 24288335 pmcid: 4318497 doi: 10.1126/science.1245622
Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).
pubmed: 24656254 pmcid: 4411946 doi: 10.1016/j.neuron.2014.02.010
Sengupta, A., Bocchio, M., Bannerman, D. M., Sharp, T. & Capogna, M. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission. J. Neurosci. 37, 1785–1796 (2017).
pubmed: 28087766 pmcid: 5320609 doi: 10.1523/JNEUROSCI.2238-16.2016
Sobczyk, A., Scheuss, V. & Svoboda, K. NMDA receptor subunit-dependent [Ca
pubmed: 15987933 pmcid: 6725044 doi: 10.1523/JNEUROSCI.1221-05.2005
Hedrick, N. G. & Yasuda, R. Regulation of Rho GTPase proteins during spine structural plasticity for the control of local dendritic plasticity. Curr. Opin. Neurobiol. 45, 193–201 (2017).
pubmed: 28709063 doi: 10.1016/j.conb.2017.06.002
Harris, K. M. Structural LTP: from synaptogenesis to regulated synapse enlargement and clustering. Curr. Opin. Neurobiol. 63, 189–197 (2020).
pubmed: 32659458 pmcid: 7484443 doi: 10.1016/j.conb.2020.04.009
Nicoll, R. A. A Brief History of Long-Term Potentiation. Neuron 93, 281–290 (2017).
pubmed: 28103477 doi: 10.1016/j.neuron.2016.12.015
Diering, G. H. & Huganir, R. L. The AMPA Receptor Code of Synaptic Plasticity. Neuron 100, 314–329 (2018).
pubmed: 30359599 pmcid: 6214363 doi: 10.1016/j.neuron.2018.10.018
Kasai, H., Ziv, N. E., Okazaki, H., Yagishita, S. & Toyoizumi, T. Spine dynamics in the brain, mental disorders and artificial neural networks. Nat. Rev. Neurosci. 22, 407–422 (2021).
pubmed: 34050339 doi: 10.1038/s41583-021-00467-3
Lanfumey, L. & Hamon, L. Central 5-HT1A Receptors- Regional Distribution and Functional Characteristics. Nucl. Med. Biol. 27, 429–435 (2000).
pubmed: 10962246 doi: 10.1016/S0969-8051(00)00107-4
Middlemiss, D. N. & Hutson, P. H. The 5-HT1B receptors. Ann. NY Acad. Sci. 600, 132–147 (1990).
pubmed: 2252306 doi: 10.1111/j.1749-6632.1990.tb16878.x
Parsey, R. V. et al. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using 1A C-11WAY-100635. Brain Res. 954, 173–182 (2002).
pubmed: 12414100 doi: 10.1016/S0006-8993(02)03243-2
Jovanovic, H. et al. Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET. Neuroimage 39, 1408–1419 (2008).
pubmed: 18036835 doi: 10.1016/j.neuroimage.2007.10.016
Soloff, P. H., Price, J. C., Mason, N. S., Becker, C. & Meltzer, C. C. Gender, personality, and serotonin-2A receptor binding in healthy subjects. Psychiatry Res. 181, 77–84 (2010).
pubmed: 19959344 pmcid: 2795067 doi: 10.1016/j.pscychresns.2009.08.007
Gunther, L. et al. 5-HT(1A)-receptor over-expressing mice: genotype and sex dependent responses to antidepressants in the forced swim-test. Neuropharmacology 61, 433–441 (2011).
pubmed: 21419787 doi: 10.1016/j.neuropharm.2011.03.004
Soloff, P. H., Chiappetta, L., Mason, N. S., Becker, C. & Price, J. C. Effects of serotonin-2A receptor binding and gender on personality traits and suicidal behavior in borderline personality disorder. Psychiatry Res. 222, 140–148 (2014).
pubmed: 24751216 pmcid: 4115284 doi: 10.1016/j.pscychresns.2014.03.008
Henley, J. M. & Wilkinson, K. A. Synaptic AMPA receptor composition in development, plasticity and disease. Nat. Rev. Neurosci. 17, 337–350 (2016).
pubmed: 27080385 doi: 10.1038/nrn.2016.37
Greger, I. H., Watson, J. F. & Cull-Candy, S. G. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 94, 713–730 (2017).
pubmed: 28521126 doi: 10.1016/j.neuron.2017.04.009
Chen, H., Tang, A. H. & Blanpied, T. A. Subsynaptic spatial organization as a regulator of synaptic strength and plasticity. Curr. Opin. Neurobiol. 51, 147–153 (2018).
pubmed: 29902592 pmcid: 6295321 doi: 10.1016/j.conb.2018.05.004
Heine, M. & Holcman, D. Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication. Trends Neurosci. 43, 182–196 (2020).
pubmed: 32101710 doi: 10.1016/j.tins.2020.01.005
Stoppini, L., Buchs, P.-A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).
pubmed: 1715499 doi: 10.1016/0165-0270(91)90128-M
Oh, W. C., Lutzu, S., Castillo, P. E. & Kwon, H.-B. De novo synaptogenesis induced by GABA in the developing mouse cortex. Science 353, 1037–1040 (2016).
pubmed: 27516412 pmcid: 5104171 doi: 10.1126/science.aaf5206
Wan, J. et al. A genetically encoded sensor for measuring serotonin dynamics. Nat. Neurosci. 24, 746–752 (2021).
pubmed: 33821000 pmcid: 8544647 doi: 10.1038/s41593-021-00823-7
Woods, G. F., Oh, W. C., Boudewyn, L. C., Mikula, S. K. & Zito, K. Loss of PSD-95 enrichment is not a prerequisite for spine retraction. J. Neurosci. 31, 12129–12138 (2011).
pubmed: 21865455 pmcid: 3164954 doi: 10.1523/JNEUROSCI.6662-10.2011
Sigler, A. et al. Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release. Neuron 94, 304–311. e304 (2017).
pubmed: 28426965 pmcid: 5418202 doi: 10.1016/j.neuron.2017.03.029
Kleinjan, M. S. et al. Dually innervated dendritic spines develop in the absence of excitatory activity and resist plasticity through tonic inhibitory crosstalk. Neuron 111, 362–371. e366 (2023).
pubmed: 36395772 doi: 10.1016/j.neuron.2022.11.002
Oh, W. C., Hill, T. C. & Zito, K. Synapse-specific and size-dependent mechanisms of spine structural plasticity accompanying synaptic weakening. Proc. Natl. Acad. Sci. USA. 110, E305–312 (2013).
pubmed: 23269840 doi: 10.1073/pnas.1214705110
Hatanaka, Y., Watase, K., Wada, K. & Nagai, Y. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1. Sci. Rep. 5, 16102 (2015).
pubmed: 26531852 pmcid: 4632040 doi: 10.1038/srep16102
Adler, A. et al. Sleep promotes the formation of dendritic filopodia and spines near learning-inactive existing spines. Proc. Natl. Acad. Sci. USA 118, e2114856118 (2021).
pubmed: 34873044 pmcid: 8685900 doi: 10.1073/pnas.2114856118
Sarkar, A., Chachra, P. & Vaidya, V. A. Postnatal fluoxetine-evoked anxiety is prevented by concomitant 5-HT2A/C receptor blockade and mimicked by postnatal 5-HT2A/C receptor stimulation. Biol. Psychiatry 76, 858–868 (2014).
pubmed: 24315410 doi: 10.1016/j.biopsych.2013.11.005

Auteurs

Roberto Ogelman (R)

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.

Luis E Gomez Wulschner (LE)

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.

Victoria M Hoelscher (VM)

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.

In-Wook Hwang (IW)

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.

Victoria N Chang (VN)

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.

Won Chan Oh (WC)

Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, 80045, USA. wonchan.oh@cuanschutz.edu.

Classifications MeSH