Imaging mass cytometry analysis of Becker muscular dystrophy muscle samples reveals different stages of muscle degeneration.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
09 Feb 2024
Historique:
received: 21 04 2023
accepted: 11 01 2024
medline: 10 2 2024
pubmed: 10 2 2024
entrez: 9 2 2024
Statut: epublish

Résumé

Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.

Identifiants

pubmed: 38336890
doi: 10.1038/s41598-024-51906-x
pii: 10.1038/s41598-024-51906-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3365

Subventions

Organisme : Academy of Medical Sciences
ID : Professorship Scheme (APR4/1007)
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/W019086/1
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Hoffman, E. P. & Kunkel, L. M. Dystrophin abnormalities in Duchenne/Becker muscular dystrophy. Neuron. 2, 1019–1029 (1989).
doi: 10.1016/0896-6273(89)90226-2 pubmed: 2696500
Wallace, G. Q. & McNally, E. M. Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies. Annu. Rev. Physiol. 71, 37–57 (2009).
doi: 10.1146/annurev.physiol.010908.163216 pubmed: 18808326
Bencze, M. Mechanisms of myofibre death in muscular dystrophies: The emergence of the regulated forms of necrosis in myology. Int. J. Mol. Sci. 24(1), 362 (2022).
doi: 10.3390/ijms24010362 pubmed: 36613804 pmcid: 9820579
Cappellari, O., Mantuano, P. & De Luca, A. “The social network” and muscular dystrophies: The lesson learnt about the niche environment as a target for therapeutic strategies. Cells 9(7), 1659 (2020).
doi: 10.3390/cells9071659 pubmed: 32660168 pmcid: 7407800
Chang, N. C. & Rudnicki, M. A. Satellite cells: The architects of skeletal muscle. Curr. Top. Dev. Biol. 107, 161–181 (2014).
doi: 10.1016/B978-0-12-416022-4.00006-8 pubmed: 24439806
Dumont, N. A. et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat. Med. 21, 1455–1463 (2015).
doi: 10.1038/nm.3990 pubmed: 26569381 pmcid: 4839960
Boldrin, L., Zammit, P. S. & Morgan, J. E. Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Res. 14, 20–29 (2015).
doi: 10.1016/j.scr.2014.10.007 pubmed: 25460248 pmcid: 4305370
Joe, A. W. et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat. Cell Biol. 12, 153–163 (2010).
doi: 10.1038/ncb2015 pubmed: 20081841 pmcid: 4580288
Pinol-Jurado, P. et al. Platelet-derived growth factor BB influences muscle regeneration in duchenne muscle dystrophy. Am. J. Pathol. 187, 1814–1827 (2017).
doi: 10.1016/j.ajpath.2017.04.011 pubmed: 28618254
Serrano, A. L. & Munoz-Canoves, P. Regulation and dysregulation of fibrosis in skeletal muscle. Exp. Cell Res. 316, 3050–3058 (2010).
doi: 10.1016/j.yexcr.2010.05.035 pubmed: 20570674
Lemos, D. R. et al. Nilotinib reduces muscle fibrosis in chronic muscle injury by promoting TNF-mediated apoptosis of fibro/adipogenic progenitors. Nat. Med. 21, 786–794 (2015).
doi: 10.1038/nm.3869 pubmed: 26053624
Chen, W., You, W., Valencak, T. G. & Shan, T. Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res. Rev. 80, 101682 (2022).
doi: 10.1016/j.arr.2022.101682 pubmed: 35809776
Biferali, B., Proietti, D., Mozzetta, C. & Madaro, L. Fibro-adipogenic progenitors cross-talk in skeletal muscle: The social network. Front. Physiol. 10, 1074 (2019).
doi: 10.3389/fphys.2019.01074 pubmed: 31496956 pmcid: 6713247
Hatton, C. F. et al. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nat. Commun. 12, 7092 (2021).
doi: 10.1038/s41467-021-27318-0 pubmed: 34876592 pmcid: 8651658
Petrany, M. J. et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat. Commun. 11, 6374 (2020).
doi: 10.1038/s41467-020-20063-w pubmed: 33311464 pmcid: 7733460
Dubuisson, N. et al. Histological methods to assess skeletal muscle degeneration and regeneration in duchenne muscular dystrophy. Int. J. Mol. Sci. 23, 16080 (2022).
doi: 10.3390/ijms232416080 pubmed: 36555721 pmcid: 9786356
Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).
doi: 10.1038/nmeth.2869 pubmed: 24584193
FCS express software version 7, Dotmatics, USA. https://denovosoftware.com
MCD viewer software, v1.0.560.6, 12 Aug 2021. https://www.standardbio.com/products/software
Hunter, B., Nicorescu, I., Foster, E., McDonald, D., Hulme, G., Thomson, A., Hilkens, C.M.U. et al. OPTIMAL: And optimised imaging mass cytometry analysis framework for segmentation and data exploration. bioRxiv (2023). https://doi.org/10.1101/2023.02.21.526083
HIPO Software version 1.0, 2022 https://github.com/Jose-Verdu-Diaz/hipo .
Qu-Path software version 0.4.3. https://qupath.github.io , version 0.4.3
Napari Software version 0.4.18. https://napari.org/stable/
Bayram, B. et al. Human outgrowth knee fibroblasts from patients undergoing total knee arthroplasty exhibit a unique gene expression profile and undergo myofibroblastogenesis upon TGFbeta1 stimulation. J. Cell Biochem. 123, 878–892 (2022).
doi: 10.1002/jcb.30230 pubmed: 35224764 pmcid: 9133128
Covault, J. & Sanes, J. R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc. Natl. Acad. Sci. U. S. A. 82, 4544–4548 (1985).
doi: 10.1073/pnas.82.13.4544 pubmed: 3892537 pmcid: 391139
Morales, M. G., Acuna, M. J., Cabrera, D., Goldschmeding, R. & Brandan, E. The pro-fibrotic connective tissue growth factor (CTGF/CCN2) correlates with the number of necrotic-regenerative foci in dystrophic muscle. J. Cell Commun. Signal. 12, 413–421 (2018).
doi: 10.1007/s12079-017-0409-3 pubmed: 28887614
Rebolledo, D. L., Lipson, K. E. & Brandan, E. Driving fibrosis in neuromuscular diseases: Role and regulation of Connective tissue growth factor (CCN2/CTGF). Matrix Biol. Plus. 11, 100059 (2021).
doi: 10.1016/j.mbplus.2021.100059 pubmed: 34435178 pmcid: 8377001
Heslop, L., Morgan, J. E. & Partridge, T. A. Evidence for a myogenic stem cell that is exhausted in dystrophic muscle. J. Cell Sci. 113(Pt 12), 2299–2308 (2000).
doi: 10.1242/jcs.113.12.2299 pubmed: 10825301
Vita, G. L. et al. Effect of exercise on telomere length and telomere proteins expression in mdx mice. Mol. Cell Biochem. 470, 189–197 (2020).
doi: 10.1007/s11010-020-03761-3 pubmed: 32447718
Arsic, N. et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in vivo. Mol. Ther. 10, 844–854 (2004).
doi: 10.1016/j.ymthe.2004.08.007 pubmed: 15509502
Christov, C. et al. Muscle satellite cells and endothelial cells: Close neighbors and privileged partners. Mol. Biol. Cell. 18, 1397–1409 (2007).
doi: 10.1091/mbc.e06-08-0693 pubmed: 17287398 pmcid: 1838982
Rhoads, R. P. et al. Satellite cells isolated from aged or dystrophic muscle exhibit a reduced capacity to promote angiogenesis in vitro. Biochem. Biophys. Res. Commun. 440, 399–404 (2013).
doi: 10.1016/j.bbrc.2013.09.085 pubmed: 24070607
De Luna, N. et al. Hypoxia triggers IFN-I production in muscle: Implications in dermatomyositis. Sci. Rep. 7, 8595 (2017).
doi: 10.1038/s41598-017-09309-8 pubmed: 28819164 pmcid: 5561123
Valle-Tenney, R., Rebolledo, D., Acuna, M. J. & Brandan, E. HIF-hypoxia signaling in skeletal muscle physiology and fibrosis. J. Cell Commun. Signal. 14, 147–158 (2020).
doi: 10.1007/s12079-020-00553-8 pubmed: 32088838 pmcid: 7272527
Valle-Tenney, R., Rebolledo, D. L., Lipson, K. E. & Brandan, E. Role of hypoxia in skeletal muscle fibrosis: Synergism between hypoxia and TGF-beta signaling upregulates CCN2/CTGF expression specifically in muscle fibers. Matrix Biol. 87, 48–65 (2020).
doi: 10.1016/j.matbio.2019.09.003 pubmed: 31669521
Dellavalle, A. et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat. Commun. 2, 499 (2011).
doi: 10.1038/ncomms1508 pubmed: 21988915
Diaz-Manera, J. et al. The increase of pericyte population in human neuromuscular disorders supports their role in muscle regeneration in vivo. J. Pathol. 228, 544–553 (2012).
doi: 10.1002/path.4083 pubmed: 22847756
Pannerec, A., Formicola, L., Besson, V., Marazzi, G. & Sassoon, D. A. Defining skeletal muscle resident progenitors and their cell fate potentials. Development 140, 2879–2891 (2013).
doi: 10.1242/dev.089326 pubmed: 23739133
Capitanio, D. et al. Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: Changes contributing to preserve muscle function in Becker muscular dystrophy patients. J. Cachexia Sarcopenia Muscle. 11, 547–563 (2020).
doi: 10.1002/jcsm.12527 pubmed: 31991054 pmcid: 7113522
Goetsch, K. P., Kallmeyer, K. & Niesler, C. U. Decorin modulates collagen I-stimulated, but not fibronectin-stimulated, migration of C2C12 myoblasts. Matrix Biol. 30, 109–117 (2011).
doi: 10.1016/j.matbio.2010.10.009 pubmed: 21059388
Liu, X. et al. Type I collagen promotes the migration and myogenic differentiation of C2C12 myoblasts via the release of interleukin-6 mediated by FAK/NF-kappaB p65 activation. Food Funct. 11, 328–338 (2020).
doi: 10.1039/C9FO01346F pubmed: 31799535
Macfelda, K., Kapeller, B., Wilbacher, I. & Losert, U. M. Behavior of cardiomyocytes and skeletal muscle cells on different extracellular matrix components–relevance for cardiac tissue engineering. Artif. Organs. 31, 4–12 (2007).
doi: 10.1111/j.1525-1594.2007.00334.x pubmed: 17209955
Schnoor, M. et al. Production of type VI collagen by human macrophages: A new dimension in macrophage functional heterogeneity. J. Immunol. 180, 5707–5719 (2008).
doi: 10.4049/jimmunol.180.8.5707 pubmed: 18390756
Spencer, M. et al. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab. 299, E1016–E1027 (2010).
doi: 10.1152/ajpendo.00329.2010 pubmed: 20841504 pmcid: 3006260
Loomis, T. et al. Matrix stiffness and architecture drive fibro-adipogenic progenitors’ activation into myofibroblasts. Sci. Rep. 12, 13582 (2022).
doi: 10.1038/s41598-022-17852-2 pubmed: 35945422 pmcid: 9363488
Stearns-Reider, K. M. et al. Aging of the skeletal muscle extracellular matrix drives a stem cell fibrogenic conversion. Aging Cell. 16, 518–528 (2017).
doi: 10.1111/acel.12578 pubmed: 28371268 pmcid: 5418187

Auteurs

Patricia Piñol-Jurado (P)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

José Verdú-Díaz (J)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Esther Fernández-Simón (E)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Cristina Domínguez-González (C)

Neuromuscular Disorders Unit, Neurology Department, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain.
Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain.

Aurelio Hernández-Lain (A)

Neuropathology Unit, imas12 Research Institute, Hospital Universitario, 12 de Octubre, Madrid, Spain.

Conor Lawless (C)

Translational and Clinical Research Institute, Newcastle University, Newcastle, UK.

Amy Vincent (A)

Faculty of Medical Sciences, Welcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.

Alejandro González-Chamorro (A)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Elisa Villalobos (E)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Alexandra Monceau (A)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Zoe Laidler (Z)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Priyanka Mehra (P)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

James Clark (J)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Andrew Filby (A)

Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK.

David McDonald (D)

Newcastle University Biosciences Institute and Innovation Methodology and Application Research Theme, Newcastle University, Newcastle Upon Tyne, UK.

Paul Rushton (P)

Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK.

Andrew Bowey (A)

Department of Orthopaedic Spine Surgery, Great North Children's Hospital, Royal Victoria Infirmary, Newcastle Upon Tyne, UK.

Jorge Alonso Pérez (J)

Neuromuscular Disease Unit, Neurology Department, Hospital Universitario Nuestra Señora de Candelaria, Fundación Canaria Instituto de Investigación Sanitaria de Canarias (FIISC), Tenerife, Spain.

Giorgio Tasca (G)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Chiara Marini-Bettolo (C)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Michela Guglieri (M)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Volker Straub (V)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK.

Xavier Suárez-Calvet (X)

Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain.

Jordi Díaz-Manera (J)

John Walton Muscular Dystrophy Research Centre, Newcastle University Translational and Clinical Research Institute, Center for Life, Central Parkway, Newcastle Upon Tyne, NE13BZ, UK. jordi.diaz-manera@newcastle.ac.uk.
Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Barcelona, Spain. jordi.diaz-manera@newcastle.ac.uk.
Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Institut d'Investigació Biomèdica Sant Pau (IBB SANT PAU), Barcelona, Spain. jordi.diaz-manera@newcastle.ac.uk.

Classifications MeSH