Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 Feb 2024
08 Feb 2024
Historique:
received:
28
02
2023
accepted:
28
11
2023
medline:
9
2
2024
pubmed:
9
2
2024
entrez:
8
2
2024
Statut:
epublish
Résumé
Brain dynamic functional connectivity characterises transient connections between brain regions. Features of brain dynamics have been linked to emotion and cognition in adult individuals, and atypical patterns have been associated with neurodevelopmental conditions such as autism. Although reliable functional brain networks have been consistently identified in neonates, little is known about the early development of dynamic functional connectivity. In this study we characterise dynamic functional connectivity with functional magnetic resonance imaging (fMRI) in the first few weeks of postnatal life in term-born (n = 324) and preterm-born (n = 66) individuals. We show that a dynamic landscape of brain connectivity is already established by the time of birth in the human brain, characterised by six transient states of neonatal functional connectivity with changing dynamics through the neonatal period. The pattern of dynamic connectivity is atypical in preterm-born infants, and associated with atypical social, sensory, and repetitive behaviours measured by the Quantitative Checklist for Autism in Toddlers (Q-CHAT) scores at 18 months of age.
Identifiants
pubmed: 38331941
doi: 10.1038/s41467-023-44050-z
pii: 10.1038/s41467-023-44050-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
16Subventions
Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 319456
Organisme : Wellcome Trust (Wellcome)
ID : 203148/Z/16/Z
Organisme : Wellcome Trust (Wellcome)
ID : 206675/Z/17/Z
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/K006355/1
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/P502108/1
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/N026063/1
Informations de copyright
© 2024. The Author(s).
Références
Fox, M. D. & Raichle, M. E. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007).
pubmed: 17704812
doi: 10.1038/nrn2201
Smith, S. M. et al. Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17, 666–682 (2013).
pubmed: 24238796
pmcid: 4004765
doi: 10.1016/j.tics.2013.09.016
Sakoğlu, Ü. et al. A method for evaluating dynamic functional network connectivity and task-modulation: application to schizophrenia. Magn. Reson. Mater. Phys. Biol. Med. 23, 351–366 (2010).
doi: 10.1007/s10334-010-0197-8
Chang, C. & Glover, G. H. Time-frequency dynamics of resting-state brain connectivity measured with fMRI. NeuroImage 50, 81–98 (2010).
pubmed: 20006716
doi: 10.1016/j.neuroimage.2009.12.011
França, L. G. S., Fenn-Moltu, S. & Batalle, D. Dynamic functional connectivity. Connectome Analysis 219–245 (Elsevier, 2023). https://doi.org/10.1016/B978-0-323-85280-7.00006-3 .
Chyl, K., Fraga-González, G., Brem, S. & Jednoróg, K. Brain dynamics of (a)typical reading development—a review of longitudinal studies. npj Sci. Learn 6, 4 (2021).
pubmed: 33526791
pmcid: 7851393
doi: 10.1038/s41539-020-00081-5
Erb, J., Henry, M. J., Eisner, F. & Obleser, J. The brain dynamics of rapid perceptual adaptation to adverse listening conditions. J. Neurosci. 33, 10688–10697 (2013).
pubmed: 23804092
pmcid: 6618499
doi: 10.1523/JNEUROSCI.4596-12.2013
Calhoun, V. D., Miller, R., Pearlson, G. & Adalı, T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014).
pubmed: 25374354
pmcid: 4372723
doi: 10.1016/j.neuron.2014.10.015
Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. NeuroImage 80, 360–378 (2013).
pubmed: 23707587
doi: 10.1016/j.neuroimage.2013.05.079
Tagliazucchi, E. & Laufs, H. Decoding wakefulness levels from typical fMRI resting-state data reveals reliable drifts between wakefulness and sleep. Neuron 82, 695–708 (2014).
pubmed: 24811386
doi: 10.1016/j.neuron.2014.03.020
Hellyer, P. J., Scott, G., Shanahan, M., Sharp, D. J. & Leech, R. Cognitive flexibility through metastable neural dynamics is disrupted by damage to the structural connectome. J. Neurosci. 35, 9050–9063 (2015).
pubmed: 26085630
pmcid: 4469735
doi: 10.1523/JNEUROSCI.4648-14.2015
Engels, G., Vlaar, A., McCoy, B., Scherder, E. & Douw, L. Dynamic functional connectivity and symptoms of Parkinson’s disease: a resting-state fMRI study. Front. Aging Neurosci. 10, 388 (2018).
pubmed: 30532703
pmcid: 6266764
doi: 10.3389/fnagi.2018.00388
Wang, L. et al. Dynamic functional reorganization of the motor execution network after stroke. Brain 133, 1224–1238 (2010).
pubmed: 20354002
doi: 10.1093/brain/awq043
de Lacy, N. & Calhoun, V. D. Dynamic connectivity and the effects of maturation in youth with attention deficit hyperactivity disorder. Netw. Neurosci. 3, 195–216 (2019).
pubmed: 30793080
doi: 10.1162/netn_a_00063
Watanabe, T. & Rees, G. Brain network dynamics in high-functioning individuals with autism. Nat. Commun. 8, 16048 (2017).
pubmed: 28677689
pmcid: 5504272
doi: 10.1038/ncomms16048
Doria, V. et al. Emergence of resting state networks in the preterm human brain. Proc. Natl. Acad. Sci. 107, 20015–20020 (2010).
pubmed: 21041625
pmcid: 2993415
doi: 10.1073/pnas.1007921107
Fransson, P. et al. Resting-state networks in the infant brain. Proc. Natl. Acad. Sci. USA 104, 15531–15536 (2007).
pubmed: 17878310
pmcid: 2000516
doi: 10.1073/pnas.0704380104
Fransson, P. et al. Spontaneous brain activity in the newborn brain during natural sleep—an fMRI study in infants born at full term. Pediatr. Res. 66, 301–305 (2009).
pubmed: 19531974
doi: 10.1203/PDR.0b013e3181b1bd84
Eyre, M. et al. The Developing Human Connectome Project: typical and disrupted perinatal functional connectivity. Brain 144, 2199–2213 (2021).
pubmed: 33734321
pmcid: 8370420
doi: 10.1093/brain/awab118
Gao, W. et al. Functional network development during the first year: relative sequence and socioeconomic correlations. Cereb. Cortex 25, 2919–2928 (2015).
pubmed: 24812084
doi: 10.1093/cercor/bhu088
Gao, W., Alcauter, S., Smith, J. K., Gilmore, J. H. & Lin, W. Development of human brain cortical network architecture during infancy. Brain Struct. Funct. 220, 1173–1186 (2015).
pubmed: 24469153
doi: 10.1007/s00429-014-0710-3
Boardman, J. P. & Counsell, S. J. Invited Review: Factors associated with atypical brain development in preterm infants: insights from magnetic resonance imaging. Neuropathol. Appl. Neurobiol. 46, 413–421 (2020).
pubmed: 31747472
doi: 10.1111/nan.12589
Edwards, A. D. et al. The developing human connectome project neonatal data release. Front. Neurosci. 16, 886772 (2022).
pubmed: 35677357
pmcid: 9169090
doi: 10.3389/fnins.2022.886772
Kuramoto, Y. Chemical Oscillations, Waves, and Turbulence. vol. 19 (Springer Berlin Heidelberg, 1984).
Deco, G., Kringelbach, M. L., Jirsa, V. K. & Ritter, P. The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Sci. Rep. 7, 3095 (2017).
pubmed: 28596608
pmcid: 5465179
doi: 10.1038/s41598-017-03073-5
Wildie, M. & Shanahan, M. Metastability and chimera states in modular delay and pulse-coupled oscillator networks. Chaos 22, 043131 (2012).
pubmed: 23278066
doi: 10.1063/1.4766592
Hellyer, P. J. et al. The control of global brain dynamics: opposing actions of frontoparietal control and default mode networks on attention. J. Neurosci. 34, 451–461 (2014).
pubmed: 24403145
pmcid: 3870930
doi: 10.1523/JNEUROSCI.1853-13.2014
Cabral, J. et al. Cognitive performance in healthy older adults relates to spontaneous switching between states of functional connectivity during rest. Sci. Rep. 7, 5135 (2017).
pubmed: 28698644
pmcid: 5506029
doi: 10.1038/s41598-017-05425-7
Lord, L.-D. et al. Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. NeuroImage 199, 127–142 (2019).
pubmed: 31132450
doi: 10.1016/j.neuroimage.2019.05.060
Bayley, N. Bayley Scales of Infant and Toddler Development–Third Edition: Technical manual. (2006).
Allison, C. et al. The Q-CHAT (Quantitative CHecklist for Autism in Toddlers): a normally distributed quantitative measure of autistic traits at 18–24 months of age: preliminary report. J. Autism Dev. Disord. 38, 1414–1425 (2008).
pubmed: 18240013
doi: 10.1007/s10803-007-0509-7
Shi, F. et al. Infant brain atlases from neonates to 1- and 2-year-olds. PLoS One 6, e18746 (2011).
Glerean, E., Salmi, J., Lahnakoski, J. M., Jääskeläinen, I. P. & Sams, M. Functional magnetic resonance imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect. 2, 91–101 (2012).
pubmed: 22559794
pmcid: 3624768
doi: 10.1089/brain.2011.0068
Tooley, U. A., Bassett, D. S. & Mackey, A. P. Environmental influences on the pace of brain development. Nat. Rev. Neurosci. 22, 372–384 (2021).
pubmed: 33911229
pmcid: 8081006
doi: 10.1038/s41583-021-00457-5
Padilla, N. et al. Breakdown of whole-brain dynamics in preterm-born children. Cerebr. Cortex 30, 1159–1170 (2020).
doi: 10.1093/cercor/bhz156
Rogers, C. E., Lean, R. E., Wheelock, M. D. & Smyser, C. D. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J. Neurodev. Disord. 10, 38 (2018).
pubmed: 30541449
pmcid: 6291944
doi: 10.1186/s11689-018-9253-x
Ment, L. R., Hirtz, D. & Hüppi, P. S. Imaging biomarkers of outcome in the developing preterm brain. Lancet Neurol. 8, 1042–1055 (2009).
pubmed: 19800293
doi: 10.1016/S1474-4422(09)70257-1
Ball, G. et al. Machine-learning to characterise neonatal functional connectivity in the preterm brain. NeuroImage 124, 267–275 (2016).
pubmed: 26341027
doi: 10.1016/j.neuroimage.2015.08.055
Batalle, D. et al. Early development of structural networks and the impact of prematurity on brain connectivity. NeuroImage 149, 379–392 (2017).
pubmed: 28153637
doi: 10.1016/j.neuroimage.2017.01.065
Fischi-Gomez, E. et al. Brain network characterization of high-risk preterm-born school-age children. NeuroImage: Clin. 11, 195–209 (2016).
pubmed: 26955515
doi: 10.1016/j.nicl.2016.02.001
Nosarti, C. et al. Preterm birth and structural brain alterations in early adulthood. NeuroImage: Clin. 6, 180–191 (2014).
pubmed: 25379430
doi: 10.1016/j.nicl.2014.08.005
Karolis, V. R. et al. Reinforcement of the brain’s rich-club architecture following early neurodevelopmental disruption caused by very preterm birth. Cereb. Cortex 26, 1322–1335 (2016).
pubmed: 26742566
pmcid: 4737614
doi: 10.1093/cercor/bhv305
Allison, C. et al. Quantitative Checklist for Autism in Toddlers (Q-CHAT). A population screening study with follow-up: the case for multiple time-point screening for autism. bmjpo 5, e000700 (2021).
doi: 10.1136/bmjpo-2020-000700
Smyser, C. D. et al. Longitudinal analysis of neural network development in preterm infants. Cerebr. Cortex 20, 2852–2862 (2010).
doi: 10.1093/cercor/bhq035
Ma, X., Wu, X. & Shi, Y. Changes of dynamic functional connectivity associated with maturity in late preterm infants. Front. Pediatr. 8, 412 (2020).
pubmed: 32793532
pmcid: 7390889
doi: 10.3389/fped.2020.00412
Wen, X. et al. Development of dynamic functional architecture during early infancy. Cerebr. Cortex 30, 5626–5638 (2020).
doi: 10.1093/cercor/bhaa128
Tokariev, A. et al. Large-scale brain modes reorganize between infant sleep states and carry prognostic information for preterms. Nat. Commun. 10, 2619 (2019).
pubmed: 31197175
pmcid: 6565810
doi: 10.1038/s41467-019-10467-8
Tau, G. Z. & Peterson, B. S. Normal development of brain circuits. Neuropsychopharmacology 35, 147–168 (2010).
pubmed: 19794405
doi: 10.1038/npp.2009.115
Damaraju, E. et al. Functional connectivity in the developing brain: a longitudinal study from 4 to 9months of age. NeuroImage 84, 169–180 (2014).
pubmed: 23994454
doi: 10.1016/j.neuroimage.2013.08.038
Cao, M. et al. Early development of functional network segregation revealed by connectomic analysis of the preterm human brain. Cerebral Cortex 27, 1949–1963 (2017).
pubmed: 26941380
Dall’Orso, S. et al. Development of functional organization within the sensorimotor network across the perinatal period. Hum. Brain Mapp. 43, 2249–2261 (2022).
pubmed: 35088920
pmcid: 8996360
doi: 10.1002/hbm.25785
Allievi, A. G. et al. Maturation of sensori-motor functional responses in the preterm brain. Cerebr. Cortex 26, 402–413 (2016).
doi: 10.1093/cercor/bhv203
Dall’Orso, S. et al. Somatotopic mapping of the developing sensorimotor cortex in the preterm human brain. Cerebr. Cortex 28, 2507–2515 (2018).
doi: 10.1093/cercor/bhy050
Buckner, R. L., Andrews-Hanna, J. R. & Schacter, D. L. The brain’s default network anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci. 1124, 1–38 (2008).
pubmed: 18400922
doi: 10.1196/annals.1440.011
Culham, J. C., Cavina-Pratesi, C. & Singhal, A. The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? Neuropsychologia 44, 2668–2684 (2006).
pubmed: 16337974
doi: 10.1016/j.neuropsychologia.2005.11.003
Paredes, M. F. et al. Extensive migration of young neurons into the infant human frontal lobe. Science 354, aaf7073 (2016).
pubmed: 27846470
pmcid: 5436574
doi: 10.1126/science.aaf7073
Joseph, R. M. et al. Prevalence and associated features of autism spectrum disorder in extremely low gestational age newborns at age 10 years: Prevalence of ASD among ELGANs. Autism Res. 10, 224–232 (2017).
pubmed: 27220677
doi: 10.1002/aur.1644
Leviton, A. et al. The risk of neurodevelopmental disorders at age 10 years associated with blood concentrations of interleukins 4 and 10 during the first postnatal month of children born extremely preterm. Cytokine 110, 181–188 (2018).
pubmed: 29763840
pmcid: 6668706
doi: 10.1016/j.cyto.2018.05.004
Limperopoulos, C. et al. Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics 121, 758–765 (2008).
pubmed: 18381541
doi: 10.1542/peds.2007-2158
Raybaud, C., Ahmad, T., Rastegar, N., Shroff, M. & Al Nassar, M. The premature brain: developmental and lesional anatomy. Neuroradiology 55, 23–40 (2013).
pubmed: 23832006
doi: 10.1007/s00234-013-1231-0
Schieve, L. A. et al. Population impact of preterm birth and low birth weight on developmental disabilities in US children. Ann. Epidemiol. 26, 267–274 (2016).
pubmed: 27085382
pmcid: 4978423
doi: 10.1016/j.annepidem.2016.02.012
Agrawal, S., Rao, S. C., Bulsara, M. K. & Patole, S. K. Prevalence of autism spectrum disorder in preterm infants: a meta-analysis. Pediatrics 142, e20180134 (2018).
pubmed: 30076190
doi: 10.1542/peds.2018-0134
Brydges, C. R. et al. Cognitive outcomes in children and adolescents born very preterm: a meta-analysis. Dev. Med. Child Neurol. 60, 452–468 (2018).
pubmed: 29453812
doi: 10.1111/dmcn.13685
Kroll, J. et al. Real-life impact of executive function impairments in adults who were born very preterm. J. Int. Neuropsychol. Soc. 23, 381–389 (2017).
pubmed: 28438232
doi: 10.1017/S1355617717000169
Esfahlani, F. Z. et al. Edge-centric analysis of time-varying functional brain networks with applications in autism spectrum disorder. NeuroImage 263, 119591 (2022).
doi: 10.1016/j.neuroimage.2022.119591
Rogers, S. J. & Ozonoff, S. Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. J. Child Psychol. Psychiatr. 46, 1255–1268 (2005).
doi: 10.1111/j.1469-7610.2005.01431.x
Carter Leno, V. et al. Infant excitation/inhibition balance interacts with executive attention to predict autistic traits in childhood. Mol. Autism 13, 46 (2022).
pubmed: 36482366
pmcid: 9733024
doi: 10.1186/s13229-022-00526-1
Fish, L. A. et al. Development of the pupillary light reflex from 9 to 24 months: association with common autism spectrum disorder (ASD) genetic liability and 3‐year ASD diagnosis. J. Child Psychol. Psychiatr. 62, 1308–1319 (2021).
doi: 10.1111/jcpp.13518
Haartsen, R. et al. Functional EEG connectivity in infants associates with later restricted and repetitive behaviours in autism; a replication study. Transl Psychiatry 9, 66 (2019).
pubmed: 30718487
pmcid: 6361892
doi: 10.1038/s41398-019-0380-2
Kolesnik, A. et al. Increased cortical reactivity to repeated tones at 8 months in infants with later ASD. Transl. Psychiatry 9, 46 (2019).
pubmed: 30700699
pmcid: 6353960
doi: 10.1038/s41398-019-0393-x
Lloyd-Fox, S. et al. Cortical responses before 6 months of life associate with later autism. Eur. J. Neurosci. 47, 736–749 (2018).
pubmed: 29057543
doi: 10.1111/ejn.13757
Pote, I. et al. Familial risk of autism alters subcortical and cerebellar brain anatomy in infants and predicts the emergence of repetitive behaviors in early childhood. Autism Res. 12, 614–627 (2019).
pubmed: 30801993
pmcid: 6519039
doi: 10.1002/aur.2083
Tomchek, S. D. & Dunn, W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am. J. Occup. Ther. 61, 190–200 (2007).
pubmed: 17436841
doi: 10.5014/ajot.61.2.190
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. (American Psychiatric Association, 2013). https://doi.org/10.1176/appi.books.9780890425596 .
Ciarrusta, J. et al. Emerging functional connectivity differences in newborn infants vulnerable to autism spectrum disorders. Transl. Psychiatry 10, 131 (2020).
pubmed: 32376820
pmcid: 7203016
doi: 10.1038/s41398-020-0805-y
Martineau, J., Andersson, F., Barthélémy, C., Cottier, J.-P. & Destrieux, C. Atypical activation of the mirror neuron system during perception of hand motion in autism. Brain Res. 1320, 168–175 (2010).
pubmed: 20096269
doi: 10.1016/j.brainres.2010.01.035
Puts, N. A. J. et al. Reduced GABA and altered somatosensory function in children with autism spectrum disorder: abnormal GABA and touch in ASD. Autism Res. 10, 608–619 (2017).
pubmed: 27611990
doi: 10.1002/aur.1691
Huang, Q. et al. GABA
pubmed: 34985973
doi: 10.1126/scitranslmed.abg7859
Fitzgibbon, S. P. et al. The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants. NeuroImage 223, 117303 (2020).
pubmed: 32866666
doi: 10.1016/j.neuroimage.2020.117303
Leonardi, N. & Van De Ville, D. On spurious and real fluctuations of dynamic functional connectivity during rest. NeuroImage 104, 430–436 (2015).
pubmed: 25234118
doi: 10.1016/j.neuroimage.2014.09.007
Preti, M. G., Bolton, T. A. & Van De Ville, D. The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage 160, 41–54 (2017).
pubmed: 28034766
doi: 10.1016/j.neuroimage.2016.12.061
Savva, A. D., Mitsis, G. D. & Matsopoulos, G. K. Assessment of dynamic functional connectivity in resting‐state fMRI using the sliding window technique. Brain Behav. 9, e01255 (2019).
pubmed: 30884215
pmcid: 6456784
doi: 10.1002/brb3.1255
Chen, S., Langley, J., Chen, X. & Hu, X. Spatiotemporal modeling of brain dynamics using resting-state functional magnetic resonance imaging with gaussian hidden Markov model. Brain Connect. 6, 326–334 (2016).
pubmed: 27008543
doi: 10.1089/brain.2015.0398
Sala-Llonch, R., Smith, S. M., Woolrich, M. & Duff, E. P. Spatial parcellations, spectral filtering, and connectivity measures in fMRI: Optimizing for discrimination. Hum. Brain Mapp. 40, 407–419 (2019).
pubmed: 30259597
doi: 10.1002/hbm.24381
Glasser, M. F. et al. A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016).
pubmed: 27437579
pmcid: 4990127
doi: 10.1038/nature18933
Blencowe, H. et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet 379, 2162–2172 (2012).
pubmed: 22682464
doi: 10.1016/S0140-6736(12)60820-4
To, T. et al. Risk markers for poor developmental attainment in young children: results from a longitudinal national survey. Arch. Pediatr. Adolesc. Med. 158, 643 (2004).
pubmed: 15237063
doi: 10.1001/archpedi.158.7.643
Deave, T., Heron, J., Evans, J. & Emond, A. The impact of maternal depression in pregnancy on early child development. BJOG: Int. J. Obstetr. Gynaecol. 115, 1043–1051 (2008).
doi: 10.1111/j.1471-0528.2008.01752.x
Rice, F. et al. The links between prenatal stress and offspring development and psychopathology: disentangling environmental and inherited influences. Psychol. Med. 40, 335–345 (2010).
pubmed: 19476689
doi: 10.1017/S0033291709005911
Leonard, H. et al. Autism and intellectual disability are differentially related to sociodemographic background at birth. PLoS One 6, e17875 (2011).
pubmed: 21479223
pmcid: 3068153
doi: 10.1371/journal.pone.0017875
Gale-Grant, O. et al. Parental age effects on neonatal white matter development. NeuroImage: Clin. 27, 102283 (2020).
pubmed: 32526683
doi: 10.1016/j.nicl.2020.102283
Gale-Grant, O. et al. Clinical, socio-demographic, and parental correlates of early autism traits. bioRxiv 2022.09.26.508121 https://doi.org/10.1101/2022.09.26.508121 (2022).
Abel, G. A., Barclay, M. E. & Payne, R. A. Adjusted indices of multiple deprivation to enable comparisons within and between constituent countries of the UK including an illustration using mortality rates. BMJ Open 6, e012750 (2016).
pubmed: 27852716
pmcid: 5128942
doi: 10.1136/bmjopen-2016-012750
Hughes, E. J. et al. A dedicated neonatal brain imaging system. Magn. Reson. Med. 78, 794–804 (2017).
pubmed: 27643791
doi: 10.1002/mrm.26462
Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. NeuroImage 20, 870–888 (2003).
pubmed: 14568458
doi: 10.1016/S1053-8119(03)00336-7
Andersson, J. L. R. & Sotiropoulos, S. N. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage 125, 1063–1078 (2016).
pubmed: 26481672
doi: 10.1016/j.neuroimage.2015.10.019
Griffanti, L. et al. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage 95, 232–247 (2014).
pubmed: 24657355
doi: 10.1016/j.neuroimage.2014.03.034
Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154 (2012).
pubmed: 22019881
doi: 10.1016/j.neuroimage.2011.10.018
Makropoulos, A. et al. Automatic whole brain MRI segmentation of the developing neonatal brain. IEEE Trans. Med. Imaging 33, 1818–1831 (2014).
pubmed: 24816548
doi: 10.1109/TMI.2014.2322280
Tzourio-Mazoyer, N. et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15, 273–289 (2002).
pubmed: 11771995
doi: 10.1006/nimg.2001.0978
Schuh, A. et al. Unbiased construction of a temporally consistent morphological atlas of neonatal brain development. http://biorxiv.org/lookup/doi/10.1101/251512 (2018).
Avants, B. B. et al. A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage 54, 2033–2044 (2011).
pubmed: 20851191
doi: 10.1016/j.neuroimage.2010.09.025
Alexander, B. et al. A new neonatal cortical and subcortical brain atlas: the Melbourne Children’s Regional Infant Brain (M-CRIB) atlas. NeuroImage 147, 841–851 (2017).
pubmed: 27725314
doi: 10.1016/j.neuroimage.2016.09.068
Desikan, R. S. et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral-based regions of interest. NeuroImage 31, 968–980 (2006).
pubmed: 16530430
doi: 10.1016/j.neuroimage.2006.01.021
Boashash, B. Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals. Proc. IEEE 80, 520–538 (1992).
doi: 10.1109/5.135376
Newman, M. E. J. Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103, 8577–8582 (2006).
pubmed: 16723398
pmcid: 1482622
doi: 10.1073/pnas.0601602103
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Soft. 82, 1–26 (2017).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc.: Ser. B (Methodol.) 57, 289–300 (1995).
França, L. G. S. & Batalle, D. dynFC: CoDe-neuro’s dynamic functional connectivity tools. https://doi.org/10.5281/ZENODO.6615603 (2022).
França, L. G. S. et al. Neonatal brain dynamic functional connectivity in term and preterm infants and its association with early childhood neurodevelopment. https://doi.org/10.5281/ZENODO.10050537 (2023).