An individually adjusted approach for communicating epidemiological results on health and lifestyle to patients.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 02 2024
Historique:
received: 13 06 2023
accepted: 30 01 2024
medline: 9 2 2024
pubmed: 9 2 2024
entrez: 8 2 2024
Statut: epublish

Résumé

If scientific research on modifiable risk factors was more accessible to the general population there is a potential to prevent disease and promote health. Mobile applications can automatically combine individual characteristics and statistical models of health to present scientific information as individually tailored visuals, and thus there is untapped potential in incorporating scientific research into apps aimed at promoting healthier lifestyles. As a proof-of-concept, we develop a statistical model of the relationship between Self-rated-health (SRH) and lifestyle-related factors, and a simple app for conveying its effects through a visualisation that sets the individual as the frame of reference. Using data from the 6th (n = 12 981, 53.4% women and 46.6% men) and 7th (n = 21 083, 52.5% women and 47.5% men) iteration of the Tromsø population survey, we fitted a mixed effects linear regression model that models mean SRH as a function of self-reported intensity and frequency of physical activity (PA), BMI, mental health symptoms (HSCL-10), smoking, support from friends, and HbA1c ≥ 6.5%. We adjusted for socioeconomic and demographic factors and comorbidity. We designed a simple proof-of-concept app to register relevant user information, and use the SRH-model to translate the present status of the user into suggestions for lifestyle changes along with predicted health effects. SRH was strongly related to modifiable health factors. The strongest modifiable predictors of SRH were mental health symptoms and PA. The mean adjusted difference in SRH between those with 10-HSCL index = 1.85 (threshold for mental distress) and HSCL-10 = 1 was 0.59 (CI 0.61-0.57). Vigorous physical activity (exercising to exhaustion ≥ 4 days/week relative to sedentary) was associated with an increase on the SRH scale of 0.64 (CI 0.56-0.73). Physical activity intensity and frequency interacted positively, with large PA-volume (frequency ⨯ intensity) being particularly predictive of high SRH. Incorporating statistical models of health into lifestyle apps have great potential for effectively communicating complex health research to a general audience. Such an approach could improve lifestyle apps by helping to make the recommendations more scientifically rigorous and personalised, and offer a more comprehensive overview of lifestyle factors and their importance.

Identifiants

pubmed: 38331938
doi: 10.1038/s41598-024-53275-x
pii: 10.1038/s41598-024-53275-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

3199

Informations de copyright

© 2024. The Author(s).

Références

Bayán-Bravo, A. et al. Combined impact of traditional and non-traditional healthy behaviors on health-related quality of life: A prospective study in older adults. PLoS ONE 12(1), e0170513 (2017).
pubmed: 28122033 pmcid: 5266310 doi: 10.1371/journal.pone.0170513
Budreviciute A, Damiati S, Sabir DK, Onder K, Schuller-Goetzburg P, Plakys G, et al. Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. Front Public Health [Internet]. 2020 [cited 2023 Feb 28];8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7726193/ .
Riediger, N. D., Bombak, A. E. & Mudryj, A. N. Health-related behaviours and their relationship with self-rated health among Canadian adults. BMC Public Health 19(1), 960 (2019).
pubmed: 31319817 pmcid: 6637547 doi: 10.1186/s12889-019-7249-4
Kotseva, K. et al. Cardiovascular prevention guidelines in daily practice: A comparison of EUROASPIRE I, II, and III surveys in eight European countries. Lancet Lond. Engl. 373(9667), 929–940 (2009).
doi: 10.1016/S0140-6736(09)60330-5
Nelson, M. E. et al. Physical activity and public health in older adults: Recommendation from the American College of Sports Medicine and the American Heart Association. Med. Sci. Sports Exerc. 39(8), 1435–1445 (2007).
pubmed: 17762378 doi: 10.1249/mss.0b013e3180616aa2
Amini, M., Zayeri, F. & Salehi, M. Trend analysis of cardiovascular disease mortality, incidence, and mortality-to-incidence ratio: Results from global burden of disease study 2017. BMC Public Health 21(1), 401 (2021).
pubmed: 33632204 pmcid: 7905904 doi: 10.1186/s12889-021-10429-0
Benziger, C. P., Roth, G. A. & Moran, A. E. The global burden of disease study and the preventable burden of NCD. Glob. Heart 11(4), 393–397 (2016).
pubmed: 27938824 doi: 10.1016/j.gheart.2016.10.024
Roth, G. A. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 sudy. J. Am. Coll. Cardiol. 76(25), 2982–3021 (2020).
pubmed: 33309175 pmcid: 7755038 doi: 10.1016/j.jacc.2020.11.010
Willett, W. C. Balancing life-style and genomics research for disease prevention. Science 296(5568), 695–698 (2002).
pubmed: 11976443 doi: 10.1126/science.1071055
Sverre, E. et al. Preventable clinical and psychosocial factors predicted two out of three recurrent cardiovascular events in a coronary population. BMC Cardiovasc. Disord. 20(1), 61 (2020).
pubmed: 32024471 pmcid: 7003324 doi: 10.1186/s12872-020-01368-6
Li, Y. et al. Impact of healthy lifestyle factors on life expectancies in the US population. Circulation 138(4), 345–355 (2018).
pubmed: 29712712 pmcid: 6207481 doi: 10.1161/CIRCULATIONAHA.117.032047
Burgess, E., Hassmén, P. & Pumpa, K. L. Determinants of adherence to lifestyle intervention in adults with obesity: A systematic review. Clin. Obes. 7(3), 123–135 (2017).
pubmed: 28296261 doi: 10.1111/cob.12183
Kotseva, K. et al. EUROASPIRE IV: A European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur. J. Prev. Cardiol. 23(6), 636–648 (2016).
pubmed: 25687109 doi: 10.1177/2047487315569401
Collado-Mateo, D. et al. Key factors associated with adherence to physical exercise in patients with chronic diseases and older adults: An umbrella review. Int. J. Environ. Res. Public Health 18(4), 2023 (2021).
pubmed: 33669679 pmcid: 7922504 doi: 10.3390/ijerph18042023
Kotsev, K. et al. Cardiac rehabilitation for coronary patients: Lifestyle, risk factor and therapeutic management. Results from the EUROASPIRE II survey. Eur. Heart J. 6(suppl_j), j17-26 (2004).
doi: 10.1093/eurheartj/6.suppl_j.j17
Anderson, L. et al. Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst. Rev. 2016(1), CD001800 (2016).
pubmed: 26730878 pmcid: 6491180
Janssen, V., De Gucht, V., Dusseldorp, E. & Maes, S. Lifestyle modification programmes for patients with coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Prev. Cardiol. 20(4), 620–640 (2013).
pubmed: 23022703 doi: 10.1177/2047487312462824
Sverre, E. et al. Challenges in coronary heart disease prevention—Experiences from a long-term follow-up study in Norway. Scand. Cardiovasc. J. SCJ. 55(2), 73–81 (2021).
pubmed: 33274648 doi: 10.1080/14017431.2020.1852308
Beswick, A. D. et al. Provision, uptake and cost of cardiac rehabilitation programmes: Improving services to under-represented groups. Health Technol. Assess. Winch Engl. 8(41), 1–152 (2004).
Suaya, J. A. et al. Use of cardiac rehabilitation by Medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation 116(15), 1653–1662 (2007).
pubmed: 17893274 doi: 10.1161/CIRCULATIONAHA.107.701466
Pal, K. et al. Computer-based diabetes self-management interventions for adults with type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2013(3), CD008776 (2013).
pubmed: 23543567 pmcid: 6486319
Lunde, P., Nilsson, B. B., Bergland, A. & Bye, A. Feasibility of a mobile phone app to promote adherence to a heart-healthy lifestyle: Single-arm study. JMIR Form. Res. 3(2), e12679 (2019).
pubmed: 31066684 pmcid: 6528433 doi: 10.2196/12679
Jackson, L., Leclerc, J., Erskine, Y. & Linden, W. Getting the most out of cardiac rehabilitation: A review of referral and adherence predictors. Heart Br. Card. Soc. 91(1), 10–14 (2005).
doi: 10.1136/hrt.2004.045559
Fukuoka, Y., Vittinghoff, E., Jong, S. S. & Haskell, W. Innovation to Motivation—Pilot study of a mobile phone intervention to increase physical activity among sedentary women. Prev. Med. 51(3–4), 287–289 (2010).
pubmed: 20600263 pmcid: 2939294 doi: 10.1016/j.ypmed.2010.06.006
Lunde, P. et al. Long-term follow-up with a smartphone application improves exercise capacity post cardiac rehabilitation: A randomized controlled trial. Eur. J. Prev. Cardiol. 27(16), 1782–1792 (2020).
pubmed: 32106713 pmcid: 7564298 doi: 10.1177/2047487320905717
Stephens, J. & Allen, J. Mobile phone interventions to increase physical activity and reduce weight: A systematic review. J. Cardiovasc. Nurs. 28(4), 320–329 (2013).
pubmed: 22635061 pmcid: 3681804 doi: 10.1097/JCN.0b013e318250a3e7
Tong, H. L. et al. Personalized mobile technologies for lifestyle behavior change: A systematic review, meta-analysis, and meta-regression. Prev. Med. 148, 106532 (2021).
pubmed: 33774008 doi: 10.1016/j.ypmed.2021.106532
Varnfield, M. et al. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: Results from a randomised controlled trial. Heart Br. Card. Soc. 100(22), 1770–1779 (2014).
Lunde, P., Nilsson, B. B., Bergland, A., Kværner, K. J. & Bye, A. The effectiveness of smartphone apps for lifestyle improvement in noncommunicable diseases: Systematic review and meta-analyses. J. Med. Internet Res. 20(5), e162 (2018).
pubmed: 29728346 pmcid: 5960039 doi: 10.2196/jmir.9751
Widmer, R. J. et al. Using an online, personalized program reduces cardiovascular risk factor profiles in a motivated, adherent population of participants. Am. Heart J. 167(1), 93–100 (2014).
pubmed: 24332147 doi: 10.1016/j.ahj.2013.09.019
Beatty, A. L., Fukuoka, Y. & Whooley, M. A. Using mobile technology for cardiac rehabilitation: A review and framework for development and evaluation. J. Am. Heart Assoc. Cardiovasc. Cerebrovasc. Dis. 2(6), e000568 (2013).
doi: 10.1161/JAHA.113.000568
Masterson Creber, R. M. et al. Review and analysis of existing mobile phone apps to support heart failure symptom monitoring and self-care management using the mobile application rating scale (MARS). JMIR MHealth UHealth 4(2), e74 (2016).
pubmed: 27302310 pmcid: 4925936 doi: 10.2196/mhealth.5882
Larsen, M. E. et al. Using science to sell apps: Evaluation of mental health app store quality claims. Npj Digit. Med. 2(1), 1–6 (2019).
doi: 10.1038/s41746-019-0093-1
Ganna, A. & Ingelsson, E. 5 year mortality predictors in 498 103 UK Biobank participants: A prospective population-based study. Lancet 386(9993), 533–540 (2015).
pubmed: 26049253 doi: 10.1016/S0140-6736(15)60175-1
Cho, H. et al. Estimating life expectancy adjusted by self-rated health status in the United States: National health interview survey linked to the mortality. BMC Public Health 22(1), 141 (2022).
pubmed: 35057780 pmcid: 8772174 doi: 10.1186/s12889-021-12332-0
Idler, E. L. & Kasl, S. Health perceptions and survival: Do global evaluations of health status really predict mortality?. J. Gerontol. 46(2), S55-65 (1991).
pubmed: 1997583 doi: 10.1093/geronj/46.2.S55
Idler, E., Leventhal, H., Mclaughlin, J. & Leventhal, E. In sickness but not in health: Self-ratings, identity, and mortality. J. Health Soc. Behav. 45(3), 336–356 (2004).
pubmed: 15595511 doi: 10.1177/002214650404500307
The Tromsø Study | UiT [Internet]. [cited 2023 Apr 14]. https://uit.no/research/tromsostudy?p_document_id=708030&Baseurl=%2Fresearch%2F .
Eggen, A. E., Mathiesen, E. B., Wilsgaard, T., Jacobsen, B. K. & Njølstad, I. The sixth survey of the Tromso Study (Tromso 6) in 2007–08: Collaborative research in the interface between clinical medicine and epidemiology: Study objectives, design, data collection procedures, and attendance in a multipurpose population-based health survey. Scand. J. Public Health 41(1), 65–80 (2013).
pubmed: 23341355 doi: 10.1177/1403494812469851
Hopstock, L. A. et al. The seventh survey of the Tromsø Study (Tromsø7) 2015–2016: Study design, data collection, attendance, and prevalence of risk factors and disease in a multipurpose population-based health survey. Scand. J. Public Health 50(7), 919–929 (2022).
pubmed: 35509230 pmcid: 9578102 doi: 10.1177/14034948221092294
Lorem, G. F., Schirmer, H. & Emaus, N. Health impact index. Development and validation of a method for classifying comorbid disease measured against self-reported health. PLOS ONE 11(2), e0148830 (2016).
pubmed: 26849044 pmcid: 4746071 doi: 10.1371/journal.pone.0148830
Kleppang, A. L. & Hagquist, C. The psychometric properties of the Hopkins Symptom Checklist-10: A Rasch analysis based on adolescent data from Norway. Fam. Pract. 33(6), 740–745 (2016).
pubmed: 27614099 doi: 10.1093/fampra/cmw091
Derogatis, L. R., Lipman, R. S., Rickels, K., Uhlenhuth, E. H. & Covi, L. The Hopkins Symptom Checklist (HSCL): A self-report symptom inventory. Behav. Sci. 19(1), 1–15 (1974).
pubmed: 4808738 doi: 10.1002/bs.3830190102
M.fl AJS. A comparison of the CONOR Mental Health Index to the HSCL-10 and HADS: Measuring mental health status in The Oslo Health Study and the Nord-Trøndelag Health Study. Nor Epidemiol [Internet]. 2003 [cited 2023 Mar 3];13(2). https://www.ntnu.no/ojs/index.php/norepid/article/view/296 .
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4(2), 133–142 (2013).
doi: 10.1111/j.2041-210x.2012.00261.x
Liddell, T. M. & Kruschke, J. K. Analyzing ordinal data with metric models: What could possibly go wrong?. J. Exp. Soc. Psychol. 79, 328–348 (2018).
doi: 10.1016/j.jesp.2018.08.009
Opdal, I. M., Larsen, L. S., Hopstock, L. A., Schirmer, H. & Lorem, G. F. A prospective study on the effect of self-reported health and leisure time physical activity on mortality among an ageing population: Results from the Tromsø study. BMC Public Health 20(1), 575 (2020).
pubmed: 32345261 pmcid: 7189588 doi: 10.1186/s12889-020-08681-x
Häkkinen, A. et al. Association of physical fitness with health-related quality of life in Finnish young men. Health Qual. Life Outcomes 8(1), 15 (2010).
pubmed: 20109241 pmcid: 2835678 doi: 10.1186/1477-7525-8-15
Duncan, M. J. et al. Cross-sectional associations between multiple lifestyle behaviors and health-related quality of life in the 10,000 Steps cohort. PloS One 9(4), e94184 (2014).
pubmed: 24714564 pmcid: 3979761 doi: 10.1371/journal.pone.0094184
Dalmases, M. et al. Impact of sleep health on self-perceived health status. Sci. Rep. 9(1), 7284 (2019).
pubmed: 31086269 pmcid: 6513841 doi: 10.1038/s41598-019-43873-5
J H, Ij P, J L, Ap F, F S, H M, et al. Living longer and feeling better: Healthy lifestyle, self-rated health, obesity and depression in Ireland. Eur. J. Public Health [Internet]. 2010 Feb [cited 2023 Feb 17];20(1). https://pubmed.ncbi.nlm.nih.gov/19587230/ .
Loprinzi, P. D. & Joyner, C. Meeting sleep guidelines is associated with better health-related quality of life and reduced premature all-cause mortality risk. Am. J. Health Promot. AJHP. 32(1), 68–71 (2018).
pubmed: 29214822 doi: 10.1177/0890117116687459
Anokye, N. K., Trueman, P., Green, C., Pavey, T. G. & Taylor, R. S. Physical activity and health related quality of life. BMC Public Health 12(1), 624 (2012).
pubmed: 22871153 pmcid: 3490805 doi: 10.1186/1471-2458-12-624
Oftedal, S., Rayward, A. T., Fenton, S. & Duncan, M. J. Sleep, diet, activity, and incident poor self-rated health: A population-based cohort study. Health Psychol. 40(4), 252–62 (2021).
pubmed: 33856832 doi: 10.1037/hea0001066
Eriksen, L., Curtis, T., Grønbæk, M., Helge, J. W. & Tolstrup, J. S. The association between physical activity, cardiorespiratory fitness and self-rated health. Prev. Med. 57(6), 900–902 (2013).
pubmed: 24099878 doi: 10.1016/j.ypmed.2013.09.024
Wu, S. et al. The relationship between self-rated health and objective health status: A population-based study. BMC Public Health 13(1), 320 (2013).
pubmed: 23570559 pmcid: 3637052 doi: 10.1186/1471-2458-13-320
Physical activity level and health-related quality of life in the general adult population: a systematic review - PubMed [Internet]. [cited 2023 Nov 10]. https://pubmed.ncbi.nlm.nih.gov/17707498/ .
Kaplan, G. A. et al. Perceived health status and morbidity and mortality: Evidence from the Kuopio ischaemic heart disease risk factor study. Int. J. Epidemiol. 25(2), 259–265 (1996).
pubmed: 9119550 doi: 10.1093/ije/25.2.259
Holmlund, T. et al. Change in cardiorespiratory fitness on self-rated health: Prospective cohort study in 98 718 Swedish adults. Scand. J. Public Health 51(4), 542–551 (2023).
pubmed: 34664534 doi: 10.1177/14034948211047140
Cullati, S., Mukhopadhyay, S., Sieber, S., Chakraborty, A. & Burton-Jeangros, C. Is the single self-rated health item reliable in India? A construct validity study. BMJ Glob. Health 3(6), e000856 (2018).
pubmed: 30483411 pmcid: 6231101 doi: 10.1136/bmjgh-2018-000856
Jakob, R. et al. Factors influencing adherence to mhealth apps for prevention or management of noncommunicable diseases: Systematic review. J. Med. Internet Res. 24(5), e35371 (2022).
pubmed: 35612886 pmcid: 9178451 doi: 10.2196/35371
Lee, D. H. et al. Long-term leisure-time physical activity intensity and all-cause and cause-specific mortality: A prospective cohort of US adults. Circulation 146(7), 523–534 (2022).
pubmed: 35876019 pmcid: 9378548 doi: 10.1161/CIRCULATIONAHA.121.058162
Arem, H. et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 175(6), 959 (2015).
pubmed: 25844730 pmcid: 4451435 doi: 10.1001/jamainternmed.2015.0533
Wen, C. P. et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet Lond. Engl. 378(9798), 1244–1253 (2011).
doi: 10.1016/S0140-6736(11)60749-6
Ruthig, J. C., Chipperfield, J. G. & Payne, B. J. A five-year study of older adults’ health incongruence: Consistency, functional changes and subsequent survival. Psychol. Health 26(11), 1463–1478 (2011).
pubmed: 21500100 doi: 10.1080/08870446.2010.515307
Jakicic, J. M. & Davis, K. K. Obesity and physical activity. Psychiatr. Clin. North Am. 34(4), 829–840 (2011).
pubmed: 22098807 doi: 10.1016/j.psc.2011.08.009
Dolezal, B. A., Neufeld, E. V., Boland, D. M., Martin, J. L. & Cooper, C. B. Interrelationship between sleep and exercise: A systematic review. Adv. Prev. Med. 2017, 1364387 (2017).
pubmed: 28458924 pmcid: 5385214

Auteurs

Per Niklas Waaler (PN)

Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway.

Lars Ailo Bongo (LA)

Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway.

Christina Rolandsen (C)

Department of Computer Science, UiT The Arctic University of Norway, Tromsø, Norway.
Deloitte AS, Oslo, Norway.

Geir F Lorem (GF)

Department of Psychology, UiT The Arctic University of Norway, Tromsø, Norway. geir.lorem@uit.no.

Classifications MeSH