Host avian species and environmental conditions influence the microbial ecology of brood parasitic brown-headed cowbird nestlings: What rules the roost?
bacteria
birds
brood parasitism
community ecology
host-parasite interactions
microbiome
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
07 Feb 2024
07 Feb 2024
Historique:
revised:
17
01
2024
received:
29
09
2023
accepted:
23
01
2024
medline:
8
2
2024
pubmed:
8
2
2024
entrez:
8
2
2024
Statut:
aheadofprint
Résumé
The role of species interactions, as well as genetic and environmental factors, all likely contribute to the composition and structure of the gut microbiome; however, disentangling these independent factors under field conditions represents a challenge for a functional understanding of gut microbial ecology. Avian brood parasites provide unique opportunities to investigate these questions, as brood parasitism results in parasite and host nestlings being raised in the same nest, by the same parents. Here we utilized obligate brood parasite brown-headed cowbird nestlings (BHCO; Molothrus ater) raised by several different host passerine species to better understand, via 16S rRNA sequencing, the microbial ecology of brood parasitism. First, we compared faecal microbial communities of prothonotary warbler nestlings (PROW; Protonotaria citrea) that were either parasitized or non-parasitized by BHCO and communities among BHCO nestlings from PROW nests. We found that parasitism by BHCO significantly altered both the community membership and community structure of the PROW nestling microbiota, perhaps due to the stressful nest environment generated by brood parasitism. In a second dataset, we compared faecal microbiotas from BHCO nestlings raised by six different host passerine species. Here, we found that the microbiota of BHCO nestlings was significantly influenced by the parental host species and the presence of an inter-specific nestmate. Thus, early rearing environment is important in determining the microbiota of brood parasite nestlings and their companion nestlings. Future work may aim to understand the functional effects of this microbiota variability on nestling performance and fitness.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e17289Subventions
Organisme : US National Science Foundation
ID : 1953226
Organisme : US National Science Foundation
ID : 2026836
Organisme : US National Science Foundation
ID : 2139321
Organisme : US National Science Foundation
ID : 2305848
Informations de copyright
© 2024 John Wiley & Sons Ltd.
Références
Anderson, M. J. (2001a). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26(1), 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Anderson, M. J. (2001b). A new method for non-parametric multivariate analysis of variance in ecology.
Antonson, N. D., Schelsky, W. M., Tolman, D., Kilner, R. M., & Hauber, M. E. (2022). Niche construction through a Goldilocks principle maximizes fitness for a nest-sharing brood parasite. Proceedings of the Royal Society B: Biological Sciences, 289(1982), 20221223. https://doi.org/10.1098/rspb.2022.1223
Bisanz, J. E. (2018). qiime2R: Importing QIIME2 artifacts and associated data into R sessions. https://github.com/jbisanz/qiime2R
Bodawatta, K. H., Hird, S. M., Grond, K., Poulsen, M., & Jønsson, K. A. (2022). Avian gut microbiomes taking flight. Trends in Microbiology, 30(3), 268-280. https://doi.org/10.1016/j.tim.2021.07.003
Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J., & Bordenstein, S. R. (2016). Phylosymbiosis: Relationships and functional effects of microbial communities across host evolutionary history. PLoS Biology, 14(11), e2000225. https://doi.org/10.1371/journal.pbio.2000225
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nature Methods, 13(7), 581-583. https://doi.org/10.1038/nmeth.3869
Callaway, T. R., Edrington, T. S., & Nisbet, D. J. (2014). Isolation of Escherichia coli O157:H7 and Salmonella from migratory brown-headed cowbirds (Molothrus ater), common grackles (Quiscalus quiscula), and cattle egrets (Bubulcus ibis). Foodborne Pathogens and Disease, 11(10), 791-794. https://doi.org/10.1089/fpd.2014.1800
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335-336. https://doi.org/10.1038/nmeth.f.303
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., & Knight, R. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8), 1621-1624. https://doi.org/10.1038/ismej.2012.8
Capunitan, D. C., Johnson, O., Terrill, R. S., & Hird, S. M. (2020). Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Molecular Ecology, 29(4), 829-847. https://doi.org/10.1111/mec.15354
Chen, C. Y., Chen, C. K., Chen, Y. Y., Fang, A., Shaw, G. T. W., Hung, C. M., & Wang, D. (2020). Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests. Microbiome, 8(1), 129. https://doi.org/10.1186/s40168-020-00896-9
Colston, T. J., & Jackson, C. R. (2016). Microbiome evolution along divergent branches of the vertebrate tree of life: What is known and unknown. Molecular Ecology, 25(16), 3776-3800. https://doi.org/10.1111/mec.13730
Core Team. (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Cox, W. A., Thompson, F. R., & Faaborg, J. (2012). Landscape forest cover and edge effects on songbird nest predation vary by nest predator. Landscape Ecology, 27(5), 659-669. https://doi.org/10.1007/s10980-012-9711-x
Cox, W. A., Thompson, F. R., III, Root, B., & Faaborg, J. (2012). Declining brown-headed cowbird (Molothrus ater) populations are associated with landscape-specific reductions in brood parasitism and increases in songbird productivity. PLoS One, 7(10), e47591. https://doi.org/10.1371/journal.pone.0047591
Craven, S. E., Stern, N. J., Line, E., Bailey, J. S., Cox, N. A., & Fedorka-Cray, P. (2000). Determination of the incidence of Salmonella spp., Campylobacter jejuni, and Clostridium perfringens in wild birds near broiler chicken houses by sampling intestinal droppings. Avian Diseases, 44(3), 715-720.
Davies, N. B. (2000). Cuckoos, cowbirds and other cheats. T & A D Poyser.
Dearborn, D. C. (1999). Brown-headed cowbird nestling vocalizations and risk of nest predation. The Auk, 116(2), 448-457. https://doi.org/10.2307/4089378
Dheilly, N. M., Martínez Martínez, J., Rosario, K., Brindley, P. J., Fichorova, R. N., Kaye, J. Z., Knoll, L. J., Lukeš, J., Perkins, S. L., Poulin, R., Schriml, L., & Thompson, L. R. (2019). Parasite microbiome project: Grand challenges. PLoS Pathogens, 15(10), e1008028. https://doi.org/10.1371/journal.ppat.1008028
Evans, J. K., Buchanan, K. L., Griffith, S. C., Klasing, K. C., & Addison, B. (2017). Ecoimmunology and microbial ecology: Contributions to avian behavior, physiology, and life history. Hormones and Behavior, 88, 112-121. https://doi.org/10.1016/j.yhbeh.2016.12.003
Faaborg, J., Brittingham, M. C., Donovan, T., & Blake, J. (1995). Habitat fragmentation in the temperate zone. Oxford University Press.
Fadel, H. M., Afifi, R., & Al-Qabili, D. M. (2017). Characterization and zoonotic impact of Shiga toxin producing Escherichia coli in some wild bird species. Veterinary World, 10(9), 1118-1128. https://doi.org/10.14202/vetworld.2017.1118-1128
Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61(1), 1-10. https://doi.org/10.1016/0006-3207(92)91201-3
Franks, S. E., Pearce-Higgins, J. W., Atkinson, S., Bell, J. R., Botham, M. S., Brereton, T. M., Harrington, R., & Leech, D. I. (2018). The sensitivity of breeding songbirds to changes in seasonal timing is linked to population change but cannot be directly attributed to the effects of trophic asynchrony on productivity. Global Change Biology, 24(3), 957-971. https://doi.org/10.1111/gcb.13960
Giacopello, C., Foti, M., Mascetti, A., Grosso, F., Ricciardi, D., Fisichella, V., & Lo Piccolo, F. (2016). Antimicrobial resistance patterns of Enterobacteriaceae in European wild bird species admitted in a wildlife rescue centre. Veterinaria Italiana, 52(2), 139-144. https://doi.org/10.12834/VetIt.327.1374.2
Grond, K., Lanctot, R. B., Jumpponen, A., & Sandercock, B. K. (2017). Recruitment and establishment of the gut microbiome in arctic shorebirds. FEMS Microbiology Ecology, 93(12), fix142. https://doi.org/10.1093/femsec/fix142
Grond, K., Sandercock, B. K., Jumpponen, A., & Zeglin, L. H. (2018). The avian gut microbiota: Community, physiology and function in wild birds. Journal of Avian Biology, 49(11), e01788. https://doi.org/10.1111/jav.01788
Guenther, S., Grobbel, M., Lübke-Becker, A., Goedecke, A., Friedrich, N. D., Wieler, L. H., & Ewers, C. (2010). Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Veterinary Microbiology, 144(1), 219-225. https://doi.org/10.1016/j.vetmic.2009.12.016
Guzy, M. J., & Ritchison, G. (1999). Common yellowthroat (Geothlypis trichas), version 2.0. Retrieved from Ithaca, New York, USA.
Hird, S. M., Carstens, B. C., Cardiff, S. W., Dittmann, D. L., & Brumfield, R. T. (2014). Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater). PeerJ, 2, e321. https://doi.org/10.7717/peerj.321
Hird, S. M., Sánchez, C., Carstens, B. C., & Brumfield, R. T. (2015). Comparative gut microbiota of 59 neotropical bird species. Frontiers in Microbiology, 6, 1403. https://doi.org/10.3389/fmicb.2015.01403
Hoover, J. P. (2003). Experiments and observations of prothonotary warblers indicate a lack of adaptive responses to brood parasitism. Animal Behaviour, 65(5), 935-944. https://doi.org/10.1006/anbe.2003.2154
Hosoi, S. A., & Rothstein, S. I. (2000). Nest desertion and cowbird parasitism: Evidence for evolved responses and evolutionary lag. Animal Behaviour, 59(4), 823-840. https://doi.org/10.1006/anbe.1999.1370
Jawahar, J., McCumber, A. W., Lickwar, C. R., Amoroso, C. R., de la Torre Canny, S. G., Wong, S., Morash, M., Thierer, J. H., Farber, S. A., Bohannan, B. J. M., Guillemin, K., & Rawls, J. F. (2022). Starvation causes changes in the intestinal transcriptome and microbiome that are reversed upon refeeding. BMC Genomics, 23(1), 225. https://doi.org/10.1186/s12864-022-08447-2
Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990-993. https://doi.org/10.1038/nature06536
Kilner, R. M., Madden, J. R., & Hauber, M. E. (2004). Brood parasitic cowbird nestlings use host young to procure resources. Science, 305(5685), 877-879. https://doi.org/10.1126/science.1098487
Kindt, R., & Coe, R. (2005). Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. World Agroforestry Centre (ICRAF).
Köck, R., Daniels-Haardt, I., Becker, K., Mellmann, A., Friedrich, A. W., Mevius, D., Schwarz, S., & Jurke, A. (2018). Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clinical Microbiology and Infection, 24(12), 1241-1250. https://doi.org/10.1016/j.cmi.2018.04.004
Kohl, K. D. (2012). Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B, 182(5), 591-602. https://doi.org/10.1007/s00360-012-0645-z
Kumari, A., Singh, N. A., & Koli, V. K. (2024). Avian reservoirs or vectors? Unravelling the relationship between waterbirds and E. coli contamination. Ornithology Research. https://doi.org/10.1007/s43388-023-00166-w
Lee, C. Y., Peralta-Sánchez, J. M., Martínez-Bueno, M., Møller, A. P., Rabelo-Ruiz, M., Zamora-Muñoz, C., & Soler, J. J. (2020). The gut microbiota of brood parasite and host nestlings reared within the same environment: Disentangling genetic and environmental effects. The ISME Journal, 14(11), 2691-2702. https://doi.org/10.1038/s41396-020-0719-y
Ley, D. H., Hawley, D. M., Geary, S. J., & Dhondt, A. A. (2016). House finch (Haemorhous mexicanus) conjunctivitis, and Mycoplasma spp. isolated from North American wild birds, 1994-2015. Journal of Wildlife Diseases, 52(3), 669-673. https://doi.org/10.7589/2015-09-244
Lichtenstein, G., & Sealy, S. G. (1998). Nestling competition, rather than supernormal stimulus, explains the success of parasitic brown-headed cowbird chicks in yellow warbler nests. Proceedings of the Royal Society of London, Series B: Biological Sciences, 265(1392), 249-254. https://doi.org/10.1098/rspb.1998.0289
Lim, S. J., & Bordenstein, S. R. (2020). An introduction to phylosymbiosis. Proceedings of the Royal Society B: Biological Sciences, 287(1922), 20192900. https://doi.org/10.1098/rspb.2019.2900
Lowther, P. E. (1993). Brown-headed cowbird (Molothrus ater), version 2.0. Retrieved from Ithaca, New York, USA.
Lozupone, C., & Knight, R. (2005). UniFrac: A new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 71(12), 8228-8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., & Knight, R. (2011). UniFrac: An effective distance metric for microbial community comparison. The ISME Journal, 5(2), 169-172. https://doi.org/10.1038/ismej.2010.133
Lozupone, C. A., Hamady, M., Kelley, S. T., & Knight, R. (2007). Quantitative and qualitative beta diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73(5), 1576-1585. https://doi.org/10.1128/AEM.01996-06
Mallott, E. K., & Amato, K. R. (2021). Host specificity of the gut microbiome. Nature Reviews Microbiology, 19(10), 639-653. https://doi.org/10.1038/s41579-021-00562-3
Maraci, Ö., Antonatou-Papaioannou, A., Jünemann, S., Engel, K., Castillo-Gutiérrez, O., Busche, T., Kalinowski, J., & Caspers, B. A. (2022). Timing matters: Age-dependent impacts of the social environment and host selection on the avian gut microbiota. Microbiome, 10(1), 202. https://doi.org/10.1186/s40168-022-01401-0
Matheen, M. I. A., Gillings, M. R., & Dudaniec, R. Y. (2022). Dominant factors shaping the gut microbiota of wild birds. Emu - Austral Ornithology, 122(3-4), 255-268. https://doi.org/10.1080/01584197.2022.2114088
McDonald, J. H. (2014). Handbook of biological statistics (3rd ed.). Sparky House Publishing.
McKim-Louder, M. I., Hoover, J. P., Benson, T. J., & Schelsky, W. M. (2013). Juvenile survival in a neotropical migratory songbird is lower than expected. PLoS One, 8(2), e56059. https://doi.org/10.1371/journal.pone.0056059
Mora, Z. V., Macías-Rodríguez, M. E., Arratia-Quijada, J., Gonzalez-Torres, Y. S., Nuño, K., & Villarruel-López, A. (2020). Clostridium perfringens as foodborne pathogen in broiler production: Pathophysiology and potential strategies for controlling necrotic enteritis. Animals, 10(9), 1718. https://doi.org/10.3390/ani10091718
Nearing, J. T., Douglas, G. M., Hayes, M. G., MacDonald, J., Desai, D. K., Allward, N., Jones, C. M. A., Wright, R. J., Dhanani, A. S., Comeau, A. M., & Langille, M. G. I. (2022). Microbiome differential abundance methods produce different results across 38 datasets. Nature Communications, 13(1), 342. https://doi.org/10.1038/s41467-022-28034-z
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., & Wagner, H. (2020). vegan: Community ecology package.
Ortega, C. P. (1998). Cowbirds and other brood parasites. The University of Arizona Press.
Pascoe, E. L., Hauffe, H. C., Marchesi, J. R., & Perkins, S. E. (2017). Network analysis of gut microbiota literature: An overview of the research landscape in non-human animal studies. The ISME Journal, 11(12), 2644-2651. https://doi.org/10.1038/ismej.2017.133
Pedersen, K., & Clark, L. (2007). A review of Shiga toxin Escherichia coli and Salmonella enterica in cattle and free-ranging birds: Potential association and epidemiological links. Human-Wildlife Interactions, 1(1), 68-77. https://doi.org/10.26077/fn01-a919
Peterson, S. M., Streby, H. M., & Andersen, D. E. (2012). Effects of parasitism by brown-headed cowbirds may persist into post-fledging. The Wilson Journal of Ornithology, 124(1), 179-183. https://doi.org/10.1676/11-050.1
Petit, L. J. (1999). Prothonotary warbler (Protonotaria citrea), version 2.0. Retrieved from Ithaca, New York, USA.
Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
Podlesak, D. W., & Blem, C. R. (2001). Factors associated with growth of nestling prothonotary warblers. The Wilson Bulletin, 113(3), 263-272.
Pollock, H. S., Hoover, J. P., Uy, F. M. K., & Hauber, M. E. (2021). Brood parasites are a heterogeneous and functionally distinct class of natural enemies. Trends in Parasitology, 37(7), 588-596. https://doi.org/10.1016/j.pt.2021.02.005
Ponz, A., & Gil-Delgado, J. A. (2004). Breeding biology of Magpie Pica pica in a montane area of Aragon. Ardeola, 51(2), 411-423.
Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2-Approximately maximum-likelihood trees for large alignments. PLoS One, 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490
Ravichandran, K., Anbazhagan, S., Karthik, K., Angappan, M., & Dhayananth, B. (2021). A comprehensive review on avian chlamydiosis: A neglected zoonotic disease. Tropical Animal Health and Production, 53(4), 414. https://doi.org/10.1007/s11250-021-02859-0
Ronchetti, F., Polidori, C., Schmitt, T., Steffan-Dewenter, I., & Keller, A. (2022). Bacterial gut microbiomes of aculeate brood parasites overlap with their aculeate hosts', but have higher diversity and specialization. FEMS Microbiology Ecology, 98(12), fiac137. https://doi.org/10.1093/femsec/fiac137
Rosamond, K. M., Goded, S., Soultan, A., Kaplan, R. H., Glass, A., Kim, D. H., & Arcilla, N. (2020). Not singing in the rain: Linking migratory songbird declines with increasing precipitation and brood parasitism vulnerability. Frontiers in Ecology and Evolution, 8, 536769. https://doi.org/10.3389/fevo.2020.536769
Rosenberg, K. V., Dokter, A. M., Blancher, P. J., Sauer, J. R., Smith, A. C., Smith, P. A., Stanton, J. C., Panjabi, A., Helft, L., Parr, M., & Marra, P. P. (2019). Decline of the North American avifauna. Science, 366(6461), 120-124. https://doi.org/10.1126/science.aaw1313
Rothstein, S. I. (1994). The cowbird's invasion of the far west: History, causes, and consequences experienced by host species. Studies in Avian Biology, 15, 301-315.
Rudzki, E. N., Antonson, N. D., Schelsky, W. M., Trevelline, B. K., Hauber, M. E., & Kohl, K. D. (2023). 16S rRNA gene sequencing of Molothrus ater, Protonotaria citrea, and Geothlypis trichas nestlings. Raw sequence reads; NCBI SRA; PRJNA1020578. [dataset].
Ruiz-Rodríguez, M., Lucas, F. S., Heeb, P., & Soler, J. J. (2009). Differences in intestinal microbiota between avian brood parasites and their hosts. Biological Journal of the Linnean Society, 96(2), 406-414. https://doi.org/10.1111/j.1095-8312.2008.01127.x
Ruiz-Rodríguez, M., Martín-Vivaldi, M., Martínez-Bueno, M., & Soler, J. J. (2018). Gut microbiota of great spotted cuckoo nestlings is a mixture of those of their foster magpie siblings and of cuckoo adults. Genes, 9(8), 381. https://doi.org/10.3390/genes9080381
Sallabanks, R., Walters, J. R., & Collazo, J. A. (2000). Breeding bird abundance in bottomland hardwood forests: Habitat, edge, and patch size effects. The Condor, 102(4), 748-758. https://doi.org/10.1093/condor/102.4.748
Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Moffatt, M. F., Turner, P., Parkhill, J., Loman, N. J., & Walker, A. W. (2014). Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 12(1), 87. https://doi.org/10.1186/s12915-014-0087-z
Scharf, H. M., Abolins-Abols, M., Stenstrom, K. H., Tolman, D. T., Schelsky, W. M., & Hauber, M. E. (2021). Exposure to a mimetic or non-mimetic model avian brood parasite egg does not produce differential glucocorticoid responses in an egg-accepter host species. General and Comparative Endocrinology, 304, 113723. https://doi.org/10.1016/j.ygcen.2021.113723
Scharf, H. M., Hauber, M. E., Mommer, B. C., Hoover, J. P., & Schelsky, W. M. (2021). The effect of avian brood parasitism on physiological responses of host nestlings. Oecologia, 195(4), 861-872. https://doi.org/10.1007/s00442-021-04888-w
Scharf, H. M., Schelsky, W. M., Chamberlain, M. L., & Hauber, M. E. (2022). Host parent responses to heterospecific parasite nestling alarm calls are independent of past and current experience with experimental brood parasitism. Animal Cognition, 25(5), 1289-1298. https://doi.org/10.1007/s10071-022-01612-w
Schmiedová, L., Kreisinger, J., Požgayová, M., Honza, M., Martin, J.-F., & Procházka, P. (2020). Gut microbiota in a host-brood parasite system: Insights from common cuckoos raised by two warbler species. FEMS Microbiology Ecology, 96(9), fiaa143. https://doi.org/10.1093/femsec/fiaa143
Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Shi, R., Yang, X., Chen, L., Chang, H. T., Liu, H. Y., Zhao, J., Wang, X. W., & Wang, C. Q. (2014). Pathogenicity of Shigella in chickens. PLoS One, 9(6), e100264. https://doi.org/10.1371/journal.pone.0100264
Shivaprasad, H. L., & Palmieri, C. (2012). Pathology of mycobacteriosis in birds. The Veterinary Clinics of North America. Exotic Animal Practice, 15(1), 41-55, v-vi. https://doi.org/10.1016/j.cvex.2011.11.004
Slany, M., Ulmann, V., & Slana, I. (2016). Avian mycobacteriosis: Still existing threat to humans. BioMed Research International, 2016, 4387461. https://doi.org/10.1155/2016/4387461
Soler, M., & Soler, J. J. (1991). Growth and development of great spotted cuckoos and their magpie host. The Condor, 93(1), 49-54. https://doi.org/10.2307/1368605
Song, S. J., Sanders, J. G., Delsuc, F., Metcalf, J., Amato, K., Taylor, M. W., Mazel, F., Lutz, H. L., Winker, K., Graves, G. R., Humphrey, G., Gilbert, J. A., Hackett, S. J., White, K. P., Skeen, H. R., Kurtis, S. M., Withrow, J., Braile, T., Miller, M., … Knight, R. (2020). Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. MBio, 11(1), e02901-19. https://doi.org/10.1128/mBio.02901-19
Spooner, F. E. B., Pearson, R. G., & Freeman, R. (2018). Rapid warming is associated with population decline among terrestrial birds and mammals globally. Global Change Biology, 24(10), 4521-4531. https://doi.org/10.1111/gcb.14361
Stokes, H. S., Berg, M. L., & Bennett, A. T. D. (2021). A review of Chlamydial infections in wild birds. Pathogens, 10(8), 948. https://doi.org/10.3390/pathogens10080948
Sun, F., Chen, J., Liu, K., Tang, M., & Yang, Y. (2022). The avian gut microbiota: Diversity, influencing factors, and future directions. Frontiers in Microbiology, 13, 934272. https://doi.org/10.3389/fmicb.2022.934272
Teyssier, A., Lens, L., Matthysen, E., & White, J. (2018). Dynamics of gut microbiota diversity during the early development of an avian host: Evidence from a cross-foster experiment. Frontiers in Microbiology, 9, 1524. https://doi.org/10.3389/fmicb.2018.01524
Thie, N., Corl, A., Turjeman, S., Efrat, R., Kamath, P. L., Getz, W. M., Bowie, R. C. K., & Nathan, R. (2022). Linking migration and microbiota at a major stopover site in a long-distance avian migrant. Movement Ecology, 10(1), 46. https://doi.org/10.1186/s40462-022-00347-0
Trevelline, B. K., Sosa, J., Hartup, B. K., & Kohl, K. D. (2020). A bird's-eye view of phylosymbiosis: Weak signatures of phylosymbiosis among all 15 species of cranes. Proceedings of the Royal Society B: Biological Sciences, 287(1923), 20192988. https://doi.org/10.1098/rspb.2019.2988
Uzal, F. A., Freedman, J. C., Shrestha, A., Theoret, J. R., Garcia, J., Awad, M. M., Moore, R. J., Rood, J. I., & McClane, B. A. (2014). Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease. Future Microbiology, 9(3), 361-377. https://doi.org/10.2217/fmb.13.168
Waite, D., & Taylor, M. (2015). Exploring the avian gut microbiota: Current trends and future directions. Frontiers in Microbiology, 6, 673.
Waite, D. W., & Taylor, M. W. (2014). Characterizing the avian gut microbiota: Membership, driving influences, and potential function. Frontiers in Microbiology, 5, 223. https://doi.org/10.3389/fmicb.2014.00223
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
Yang, W. Y., Lee, Y., Lu, H., Chou, C. H., & Wang, C. (2019). Analysis of gut microbiota and the effect of lauric acid against necrotic enteritis in Clostridium perfringens and Eimeria side-by-side challenge model. PLoS One, 14(5), e0205784. https://doi.org/10.1371/journal.pone.0205784