Parasites alter food-web topology of a subarctic lake food web and its pelagic and benthic compartments.

Connectance Food webs Parasite ecology Trematoda Trophic transmission

Journal

Oecologia
ISSN: 1432-1939
Titre abrégé: Oecologia
Pays: Germany
ID NLM: 0150372

Informations de publication

Date de publication:
07 Feb 2024
Historique:
received: 13 02 2023
accepted: 10 12 2023
medline: 8 2 2024
pubmed: 8 2 2024
entrez: 7 2 2024
Statut: aheadofprint

Résumé

We compared three sets of highly resolved food webs with and without parasites for a subarctic lake system corresponding to its pelagic and benthic compartments and the whole-lake food web. Key topological food-web metrics were calculated for each set of compartments to explore the role parasites play in food-web topology in these highly contrasting webs. After controlling for effects from differences in web size, we observed similar responses to the addition of parasites in both the pelagic and benthic compartments demonstrated by increases in trophic levels, linkage density, connectance, generality, and vulnerability despite the contrasting composition of free-living and parasitic species between the two compartments. Similar effects on food-web topology can be expected with the inclusion of parasites, regardless of the physical characteristics and taxonomic community compositions of contrasting environments. Additionally, similar increases in key topological metrics were found in the whole-lake food web that combines the pelagic and benthic webs, effects that are comparable to parasite food-web analyses from other systems. These changes in topological metrics are a result of the unique properties of parasites as infectious agents and the links they participate in. Trematodes were key contributors to these results, as these parasites have distinct characteristics in aquatic systems that introduce new link types and increase the food web's generality and vulnerability disproportionate to other parasites. Our analysis highlights the importance of incorporating parasites, especially trophically transmitted parasites, into food webs as they significantly alter key topological metrics and are thus essential for understanding an ecosystem's structure and functioning.

Identifiants

pubmed: 38326516
doi: 10.1007/s00442-023-05503-w
pii: 10.1007/s00442-023-05503-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Norwegian Research Council
ID : NFR 213610

Informations de copyright

© 2024. The Author(s).

Références

Amundsen P-A, Klemetsen A (1988) Diet, gastric evacuation rates and food consumption in a stunted population of Arctic charr, Salvelinus alpinus L., in Takvatn, northern Norway. J Fish Biol 33:697–709
doi: 10.1111/j.1095-8649.1988.tb05515.x
Amundsen PA, Kristoffersen R, Knudsen R, Klemetsen A (1997) Infection of Salmincola edwardsii (Copepoda: Lernaeopodidae) in an age-structured population of Arctic charr—a long-term study. J Fish Biol 51:1033–1046
Amundsen P-A, Knudsen R, Klemetsen A (2007) Intraspecific competition and density dependence of food consumption and growth in Arctic charr. J Anim Ecol:149–158
Amundsen P-A, Lafferty KD, Knudsen R, Primicerio R, Klemetsen A, Kuris AM (2009) Food web topology and parasites in the pelagic zone of a subarctic lake. J Anim Ecol 78:563–572
pubmed: 19175443 doi: 10.1111/j.1365-2656.2008.01518.x
Amundsen P-A, Lafferty KD, Knudsen R, Primicerio R, Kristoffersen R, Klemetsen A, Kuris AM (2013) New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning. Oecologia 171:993–1002
pubmed: 23053223 doi: 10.1007/s00442-012-2461-2
Amundsen P-A, Primicerio R, Smalås A, Henriksen EH, Knudsen R, Kristoffersen R, Klemetsen A (2019) Long-term ecological studies in northern lakes—challenges, experiences, and accomplishments. Limnol Oceanogr 64:S11–S21
doi: 10.1002/lno.10951
Anderson TK, Sukhdeo MV (2011) Host centrality in food web networks determines parasite diversity. PLoS ONE 6:e26798
pubmed: 22046360 pmcid: 3201966 doi: 10.1371/journal.pone.0026798
Baia RRJ, Florentino AC, Silva LMA, Tavares-Dias M (2018) Patterns of the parasite communities in a fish assemblage of a river in the Brazilian Amazon region. Acta Parasitol 63:304–316
pubmed: 29654690 doi: 10.1515/ap-2018-0035
Banerji A, Duncan AB, Griffin JS, Humphries S, Petchey OL, Kaltz O (2015) Density-and trait-mediated effects of a parasite and a predator in a tri-trophic food web. J Anim Ecol 84:723–733
pubmed: 25382389 doi: 10.1111/1365-2656.12317
Barber I, Scharsack J (2009) The three-spined stickleback-Schistocephalus solidus system: an experimental model for investigating host-parasite interactions in fish. Parasitology 137:411–424
pubmed: 19835650 doi: 10.1017/S0031182009991466
Beaman M, Madge S (2010) The handbook of bird identification: for Europe and the western Palearctic. A&C Black
Born-Torrijos A, Paterson RA, van Beest GS, Schwelm J, Vyhlídalová T, Henriksen EH, Knudsen R, Kristoffersen R, Amundsen P-A, Soldánová M (2020) Temperature does not influence functional response of amphipods consuming different trematode prey. Parasitol Res 119:4271–4276
pubmed: 32845358 pmcid: 7447966 doi: 10.1007/s00436-020-06859-1
Born-Torrijos A, Paterson RA, van Beest GS, Vyhlídalová T, Henriksen EH, Knudsen R, Kristoffersen R, Amundsen PA, Soldánová M (2021) Cercarial behaviour alters the consumer functional response of three-spined sticklebacks. J Anim Ecol 90:978–988
pubmed: 33481253 doi: 10.1111/1365-2656.13427
Braicovich PE, Kuhn JA, Amundsen P-A, Marcogliese DJ (2016) Three-spined stickleback Gasterosteus aculeatus, as a possible paratenic host for salmonid nematodes in a subarctic lake. Parasitol Res 115:1335–1338
pubmed: 26650345 doi: 10.1007/s00436-015-4854-8
Brittain JE (1978a) The Ephemeroptera of Øvre Heimdalsvatn. Ecography 1:239–254
doi: 10.1111/j.1600-0587.1978.tb00957.x
Brittain JE (1978b) The Mollusca of the exposed zone of Øvre Heimdalsvatn. Ecography 1:229–231
doi: 10.1111/j.1600-0587.1978.tb00955.x
Britton JR, Andreou D (2016) Parasitism as a driver of trophic niche specialisation. Trends Parasitol 32:437–445
pubmed: 26968643 doi: 10.1016/j.pt.2016.02.007
Byers JE (2009) Including parasites in food webs. Trends Parasitol 25:55–57
pubmed: 19101206 doi: 10.1016/j.pt.2008.11.003
Campbell R, Haedrich R, Munroe T (1980) Parasitism and ecological relationships among deep-sea benthic fishes. Mar Biol 57:301–313
doi: 10.1007/BF00387573
Cohen JE (1978) Food webs and niche space. Princeton University Press, Princeton, New Jersey
Csardi G, Nepusz T (2006) The igraph software package for complex network research. InterJ Complex Sys 1695:1–9
Dobson AP (1988) The population biology of parasite-induced changes in host behavior. Q Rev Biol 63:139–165
pubmed: 3045862 doi: 10.1086/415837
Dunne JA, Lafferty KD, Dobson AP, Hechinger RF, Kuris AM, Martinez ND, McLaughlin JP, Mouritsen KN, Poulin R, Reise K (2013) Parasites affect food web structure primarily through increased diversity and complexity. PLoS Biol 11:e1001579
pubmed: 23776404 pmcid: 3679000 doi: 10.1371/journal.pbio.1001579
Frainer A, Johansen KMS, Siwertsson A, Mousavi SA, Brittain JE, Klemetsen A, Knudsen R, Amundsen P-A (2016) Variation in functional trait composition of benthic invertebrates across depths and seasons in a subarctic lake. Fundam Appl Limnol 188:103–112
doi: 10.1127/fal/2016/0839
Frainer A, McKie BG, Amundsen P-A, Knudsen R, Lafferty KD (2018) Parasitism and the biodiversity-functioning relationship. Trends Ecol Evol 33:260–268
pubmed: 29456188 doi: 10.1016/j.tree.2018.01.011
Guo F, Kainz MJ, Sheldon F, Bunn SE (2016) The importance of high-quality algal food sources in stream food webs–current status and future perspectives. Freshw Biol 61:815–831
doi: 10.1111/fwb.12755
Hatcher MJ, Dick JT, Dunn AM (2006) How parasites affect interactions between competitors and predators. Ecol Lett 9:1253–1271
pubmed: 17040328 doi: 10.1111/j.1461-0248.2006.00964.x
Heins DC, Baker JA (2008) The stickleback-Schistocephalus host-parasite system as a model for understanding the effect of a macroparasite on host reproduction. Behaviour:625–645
Henriksen EH, Knudsen R, Kristoffersen R, Kuris AM, Lafferty KD, Siwertsson A, Amundsen P-A (2016) Ontogenetic dynamics of infection with Diphyllobothrium spp. cestodes in sympatric Arctic charr Salvelinus alpinus (L.) and brown trout Salmo trutta L. Hydrobiologia 783:37–46
doi: 10.1007/s10750-015-2589-2
Henriksen EH, Frainer A, Knudsen R, Kristoffersen R, Kuris AM, Lafferty KD, Amundsen P-A (2019) Fish culling reduces tapeworm burden in Arctic charr by increasing parasite mortality rather than by reducing density-dependent transmission. J Appl Ecol 56:1482–1491
doi: 10.1111/1365-2664.13369
Hernandez AD, Sukhdeo MV (2008) Parasites alter the topology of a stream food web across seasons. Oecologia 156:613–624
pubmed: 18305960 doi: 10.1007/s00442-008-0999-9
Huxham M, Raffaelli D, Pike A (1995) Parasites and food web patterns. J Anim Ecol 64:168–176
doi: 10.2307/5752
Johnson PT, Dobson A, Lafferty KD, Marcogliese DJ, Memmott J, Orlofske SA, Poulin R, Thieltges DW (2010) When parasites become prey: ecological and epidemiological significance of eating parasites. Trends Ecol Evol 25:362–371
pubmed: 20185202 doi: 10.1016/j.tree.2010.01.005
Jørgensen L, Klemetsen A (1995) Food resource partitioning of Arctic charr, Salvelinus alpinus (L.) and three-spined stickleback, Gasterosteus aculeatus L., in the littoral zone of lake Takvatn in northern Norway. Ecol Freshw Fish 4:77–84
doi: 10.1111/j.1600-0633.1995.tb00120.x
Kagami M, Van Donk E, de Bruin A, Rijkeboer M, Ibelings BW (2004) Daphnia can protect diatoms from fungal parasitism. Limnol Oceanogr 49:680–685
doi: 10.4319/lo.2004.49.3.0680
Kagami M, de Bruin A, Ibelings BW, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129
doi: 10.1007/s10750-006-0438-z
Klemetsen A, Elliott JM (2010) Spatial distribution and diversity of macroinvertebrates on the stony shore of a subarctic lake. Int Rev Hydrobiol 95:190–206
doi: 10.1002/iroh.200911199
Klemetsen A, Knudsen R (2013) Diversity and abundance of water birds in a subarctic lake during three decades. Fauna Norv 33:21–27
doi: 10.5324/fn.v33i0.1584
Klemetsen A, Muladal H, Amundsen P-A (1992) Diet and food consumption of young, profundal Arctic charr (Salvelinus alpinus) in Lake Takvatn. Nord J Freshw Res 67:35–44
Klemetsen A, Amundsen P-A, Dempson J, Jonsson B, Jonsson N, O’connell M, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12:1–59
doi: 10.1034/j.1600-0633.2003.00010.x
Klemetsen A, Aase BM, Amundsen P-A (2020) Diversity, abundance, and life histories of littoral chydorids (Cladocera: Chydoridae) in a subarctic European lake. J Crust Biol 40:534–543
doi: 10.1093/jcbiol/ruaa048
Klemetsen A, Amundsen P-A, Grotnes PE, Knudsen R, Kristoffersen R, Svenning M-A (2002) Takvatn through 20 years: long-term effects of an experimental mass removal of Arctic charr, Salvelinus alpinus, from a subarctic lake. Ecology, behaviour and conservation of the charrs, genus Salvelinus. Springer, pp. 39–47
Knudsen R, Gabler H, Kuris AM, Amundsen P-A (2001) Selective predation on parasitized prey—a comparison between two helminth species with different life-history strategies. J Parasitol 87:941–945
pubmed: 11695412
Kones JK, Soetaert K, van Oevelen D, Owino JO (2009) Are network indices robust indicators of food web functioning? A Monte Carlo approach. Ecol Modell 220:370–382
doi: 10.1016/j.ecolmodel.2008.10.012
Koprivnikar J, Thieltges D, Johnson P (2023) Consumption of trematode parasite infectious stages: from conceptual synthesis to future research agenda. J Helminthol 97:e33
pubmed: 36971341 doi: 10.1017/S0022149X23000111
Kuhn JA, Kristoffersen R, Knudsen R, Jakobsen J, Marcogliese DJ, Locke SA, Primicerio R, Amundsen P-A (2015) Parasite communities of two three-spined stickleback populations in subarctic Norway—effects of a small spatial-scale host introduction. Parasitol Res 114:1327–1339
pubmed: 25630694 doi: 10.1007/s00436-015-4309-2
Kuhn JA, Frainer A, Knudsen R, Kristoffersen R, Amundsen P-A (2016a) Effects of fish species composition on Diphyllobothrium spp. infections in brown trout–is three-spined stickleback a key species? J Fish Dis 39:1313–1323
pubmed: 27111407 doi: 10.1111/jfd.12467
Kuhn JA, Knudsen R, Kristoffersen R, Primicerio R, Amundsen P-A (2016b) Temporal changes and between-host variation in the intestinal parasite community of Arctic charr in a subarctic lake. Hydrobiologia 783:79–91
doi: 10.1007/s10750-016-2731-9
Kuris AM (1990) Guild structure of larval trematodes in molluscan hosts: prevalence, dominance and significance of competition. In: Parasite Communities: Patterns and Processes. Springer, pp. 69–100
Kuris AM, Lafferty KD (1994) Community structure: larval trematodes in snail hosts. Annu Rev Ecol Syst 25:189–217
doi: 10.1146/annurev.es.25.110194.001201
Lafferty KD (2012) Biodiversity loss decreases parasite diversity: theory and patterns. Phil Trans R Soc B 367:2814–2827
pubmed: 22966137 pmcid: 3427564 doi: 10.1098/rstb.2012.0110
Lafferty KD, Kuris AM (2009a) Parasites reduce food web robustness because they are sensitive to secondary extinction as illustrated by an invasive estuarine snail. Phil Trans R Soc B 364:1659–1663
pubmed: 19451117 pmcid: 2685421 doi: 10.1098/rstb.2008.0220
Lafferty KD, Kuris AM (2009b) Parasitic castration: the evolution and ecology of body snatchers. Trends Parasitol 25:564–572
pubmed: 19800291 doi: 10.1016/j.pt.2009.09.003
Lafferty KD, Shaw JC (2013) Comparing mechanisms of host manipulation across host and parasite taxa. J Exp Biol 216:56–66
pubmed: 23225868 doi: 10.1242/jeb.073668
Lafferty KD, Sammond D, Kuris AM (1994) Analysis of larval trematode communities. Ecology 75:2275–2285
doi: 10.2307/1940883
Lafferty KD, Dobson AP, Kuris AM (2006a) Parasites dominate food web links. Proc Natl Acad Sci USA 103:11211–11216
pubmed: 16844774 pmcid: 1544067 doi: 10.1073/pnas.0604755103
Lafferty KD, Hechinger RF, Shaw JC, Whitney K, Kuris AM (2006b) Food webs and parasites in a salt marsh ecosystem. In: Collinge S, Ray C (eds) Disease ecology: community structure and pathogen dynamics. Oxford University Press, Oxford, pp 119–134
doi: 10.1093/acprof:oso/9780198567080.003.0009
Lafferty KD, Allesina S, Arim M, Briggs CJ, De Leo G, Dobson AP, Dunne JA, Johnson PT, Kuris AM, Marcogliese DJ (2008) Parasites in food webs: the ultimate missing links. Ecol Lett 11:533–546
pubmed: 18462196 pmcid: 2408649 doi: 10.1111/j.1461-0248.2008.01174.x
Larsson P (1978) The life cycle dynamics and production of zooplankton in Øvre Heimdalsvatn. Ecography 1:162–218
doi: 10.1111/j.1600-0587.1978.tb00952.x
Lillehammer A (1978a) The plecoptera of Øvre Heimdalsvatn. Ecography 1:232–238
doi: 10.1111/j.1600-0587.1978.tb00956.x
Lillehammer A (1978b) The trichoptera of Øvre Heimdalsvatn. Ecography 1:255–260
doi: 10.1111/j.1600-0587.1978.tb00958.x
Marcogliese DJ (2002) Food webs and the transmission of parasites to marine fish. Parasitology 124:83–99
doi: 10.1017/S003118200200149X
Marcogliese DJ, Cone DK (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325
pubmed: 21238094 doi: 10.1016/S0169-5347(97)01080-X
McKee KM, Koprivnikar J, Johnson PT, Arts MT (2020) Parasite infectious stages provide essential fatty acids and lipid-rich resources to freshwater consumers. Oecologia 192:477–488
pubmed: 31834514 doi: 10.1007/s00442-019-04572-0
McLaughlin JP (2018) The food web for the sand flats at Palmyra Atoll. University of California, Santa Barbara
Memmott J, Martinez N, Cohen J (2000) Predators, parasitoids and pathogens: species richness, trophic generality and body sizes in a natural food web. J Anim Ecol 69:1–15
doi: 10.1046/j.1365-2656.2000.00367.x
Milardi M, Thomas SM, Kahilainen KK (2016) Reliance of brown trout on terrestrial prey varies with season but not fish density. Freshw Biol 61:1143–1156
doi: 10.1111/fwb.12775
Miura O, Kuris AM, Torchin ME, Hechinger RF, Chiba S (2006) Parasites alter host phenotype and may create a new ecological niche for snail hosts. Proc Royal Soc B 273:1323–1328
doi: 10.1098/rspb.2005.3451
Monakov A (1972) Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academy of Science, USSR. J Fish Res Board Can 29:363–383
doi: 10.1139/f72-064
Morton DN, Lafferty KD (2022) Parasites in kelp-forest food webs increase food-chain length, complexity, and specialization, but reduce connectance. Ecol Monogr 92:e1506
pubmed: 35865510 pmcid: 9286845 doi: 10.1002/ecm.1506
Mouritsen KN, Poulin R, McLaughlin JP, Thieltges DW (2011) Food web including metazoan parasites for an intertidal ecosystem in New Zealand: ecological archives E092–173. Ecology 92:2006–2006
doi: 10.1890/11-0371.1
Nilsson A (1997) Aquatic insects of North Europe: A taxonomic handbook. Apollo books
Nowosad P, Kuczyńska-Kippen N, Słodkowicz-Kowalska A, Majewska AC, Graczyk TK (2007) The use of rotifers in detecting protozoan parasite infections in recreational lakes. Aquat Ecol 41:47–54
doi: 10.1007/s10452-006-9043-5
Orlofske SA, Jadin RC, Johnson PT (2015) It’s a predator–eat–parasite world: how characteristics of predator, parasite and environment affect consumption. Oecologia 178:537–547
pubmed: 25648648 doi: 10.1007/s00442-015-3243-4
Poulin R, Thomas F (1999) Phenotypic variability induced by parasites: extent and evolutionary implications. Parasitol Today 15:28–32
pubmed: 10234175 doi: 10.1016/S0169-4758(98)01357-X
Prati S, Henriksen EH, Knudsen R, Amundsen PA (2020a) Seasonal dietary shifts enhance parasite transmission to lake salmonids during ice cover. Ecol Evol 10:4031–4043
pubmed: 32489629 pmcid: 7244800 doi: 10.1002/ece3.6173
Prati S, Henriksen EH, Knudsen R, Amundsen P-A (2020b) Impacts of ontogenetic dietary shifts on the food-transmitted intestinal parasite communities of two lake salmonids. Int J Parasitol Parasites Wildl 12:155–164
pubmed: 32577375 pmcid: 7300134 doi: 10.1016/j.ijppaw.2020.06.002
Prati S, Henriksen EH, Smalås A, Knudsen R, Klemetsen A, Sánchez-Hernández J, Amundsen P-A (2021) The effect of inter-and intraspecific competition on individual and population niche widths: a four-decade study on two interacting salmonids. Oikos 130:1679–1691
doi: 10.1111/oik.08375
Preston DL, Orlofske SA, McLaughlin JP, Johnson PT (2012) Food web including infectious agents for a California freshwater pond: ecological archives E093–153. Ecology 93:1760–1760
doi: 10.1890/11-2194.1
Preston DL, Jacobs AZ, Orlofske SA, Johnson PT (2014) Complex life cycles in a pond food web: effects of life stage structure and parasites on network properties, trophic positions and the fit of a probabilistic niche model. Oecologia 174:953–965
pubmed: 24258100 doi: 10.1007/s00442-013-2806-5
Rasconi S, Jobard M, Sime-Ngando T (2011) Parasitic fungi of phytoplankton: ecological roles and implications for microbial food webs. Aquat Microb Ecol 62:123–137
doi: 10.3354/ame01448
R Core Team (2020) R: a Language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Riede JO, Rall BC, Banasek-Richter C, Navarrete SA, Wieters EA, Emmerson MC, Jacob U, Brose U (2010) Scaling of food-web properties with diversity and complexity across ecosystems. Adv Ecol Res 42:139–170
doi: 10.1016/B978-0-12-381363-3.00003-4
Rovenolt FH, Tate AT (2022) The impact of coinfection dynamics on host competition and coexistence. Am Nat 199:91–107
pubmed: 34978975 doi: 10.1086/717180
Sánchez-Hernández J, Prati S, Henriksen EH, Smalås A, Knudsen R, Klemetsen A, Amundsen P-A (2022) Exploring temporal patterns in fish feeding ecology: are ontogenetic dietary shifts stable over time? Rev Fish Biol Fish 32:1141–1155
doi: 10.1007/s11160-022-09724-9
Shaw JC, Henriksen EH, Knudsen R, Kuhn JA, Kuris AM, Lafferty KD, Siwertsson A, Soldánová M, Amundsen PA (2020) High parasite diversity in the amphipod Gammarus lacustris in a subarctic lake. Ecol Evol 10:12385–12394
pubmed: 33209296 pmcid: 7663964 doi: 10.1002/ece3.6869
Skoglund S, Knudsen R, Amundsen P-A (2013) Selective predation on zooplankton by pelagic Arctic charr, Salvelinus alpinus, in six subarctic lakes. J Icthyol 53:849–855
Soldánová M, Kuris AM, Scholz T, Lafferty KD (2012) The role of spatial and temporal heterogeneity and competition in structuring trematode communities in the great pond snail, Lymnaea stagnalis (L.). J Parasitol 98:460–471
pubmed: 22191581 doi: 10.1645/GE-2964.1
Soldánová M, Georgieva S, Roháčová J, Knudsen R, Kuhn JA, Henriksen EH, Siwertsson A, Shaw JC, Kuris AM, Amundsen P-A, Scholz T, Lafferty KD, Kostadinova A (2017) Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int J Parasitol 47:327–345
pubmed: 28315362 doi: 10.1016/j.ijpara.2016.12.008
Sukhdeo MV (2012) Where are the parasites in food webs? Parasit Vectors 5:1–17
doi: 10.1186/1756-3305-5-239
Thieltges D, Jensen K, Poulin R (2008) The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135:407–426
pubmed: 18208633 doi: 10.1017/S0031182007000248
Thieltges DW, Reise K, Mouritsen KN, McLaughlin JP, Poulin R (2011) Food web including metazoan parasites for a tidal basin in Germany and Denmark: ecological archives E092–172. Ecology 92:2005–2005
doi: 10.1890/11-0351.1
Thieltges DW, Amundsen P-A, Hechinger RF, Johnson PT, Lafferty KD, Mouritsen KN, Preston DL, Reise K, Zander CD, Poulin R (2013) Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission. Oikos 122:1473–1482
doi: 10.1111/j.1600-0706.2013.00243.x
Thompson RM, Brose U, Dunne JA, Hall RO Jr, Hladyz S, Kitching RL, Martinez ND, Rantala H, Romanuk TN, Stouffer DB (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27:689–697
pubmed: 22959162 doi: 10.1016/j.tree.2012.08.005
Thorp JH, Covich AP (2009) Ecology and classification of North American freshwater invertebrates. Academic Press
Vander Zanden MJ, Vadeboncoeur Y (2002) Fishes as integrators of benthic and pelagic food webs in lakes. Ecology 83:2152–2161
doi: 10.1890/0012-9658(2002)083[2152:FAIOBA]2.0.CO;2
Vinagre C, Costa MJ, Wood SA, Williams RJ, Dunne JA (2019) Potential impacts of climate change and humans on the trophic network organization of estuarine food webs. Mar Ecol Prog Ser 616:13–24
doi: 10.3354/meps12932
Welsh JE, van der Meer J, Brussaard CP, Thieltges DW (2014) Inventory of organisms interfering with transmission of a marine trematode. J Mar Biol Assoc 94:697–702
doi: 10.1017/S0025315414000034
Williams RJ, Martinez ND (2000) Simple rules yield complex food webs. Nature 404:180–183
pubmed: 10724169 doi: 10.1038/35004572
Williams RJ, Martinez ND (2008) Success and its limits among structural models of complex food webs. J Anim Ecol 77:512–519
pubmed: 18284474 doi: 10.1111/j.1365-2656.2008.01362.x
Williams RJ, Purves DW (2011) The probabilistic niche model reveals substantial variation in the niche structure of empirical food webs. Ecology 92:1849–1857
pubmed: 21939081 doi: 10.1890/11-0200.1
Wood SA, Russell R, Hanson D, Williams RJ, Dunne JA (2015) Effects of spatial scale of sampling on food web structure. Ecol Evol 5:3769–3782
pubmed: 26380704 pmcid: 4567879 doi: 10.1002/ece3.1640
Zander CD, Josten N, Detloff KC, Poulin R, McLaughlin JP, Thieltges DW (2011) Food web including metazoan parasites for a brackish shallow water ecosystem in Germany and Denmark: ecological Archives E092–174. Ecology 92:2007–2007
doi: 10.1890/11-0374.1

Auteurs

Shannon E Moore (SE)

Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway. shannon.moore@uit.no.

Anna Siwertsson (A)

Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.

Kevin D Lafferty (KD)

U.S. Geological Survey, Western Ecological Research Center, at Marine Science Institute, University of California, Santa Barbara, CA, USA.

Armand M Kuris (AM)

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA.

Miroslava Soldánová (M)

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, 370 05, Ceske Budejovice, Czech Republic.

Dana Morton (D)

Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA.

Raul Primicerio (R)

Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.

Per-Arne Amundsen (PA)

Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway.

Classifications MeSH