Correcting PCR amplification errors in unique molecular identifiers to generate accurate numbers of sequencing molecules.
Journal
Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
received:
08
04
2023
accepted:
04
01
2024
medline:
13
3
2024
pubmed:
6
2
2024
entrez:
5
2
2024
Statut:
ppublish
Résumé
Unique molecular identifiers are random oligonucleotide sequences that remove PCR amplification biases. However, the impact that PCR associated sequencing errors have on the accuracy of generating absolute counts of RNA molecules is underappreciated. We show that PCR errors are a source of inaccuracy in both bulk and single-cell sequencing data, and synthesizing unique molecular identifiers using homotrimeric nucleotide blocks provides an error-correcting solution that allows absolute counting of sequenced molecules.
Identifiants
pubmed: 38317008
doi: 10.1038/s41592-024-02168-y
pii: 10.1038/s41592-024-02168-y
pmc: PMC10927542
doi:
Substances chimiques
Nucleotides
0
Oligonucleotides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
401-405Subventions
Organisme : RCUK | Medical Research Council (MRC)
ID : MR/V010182/1
Informations de copyright
© 2024. The Author(s).
Références
Hug, H. & Schuler, R. Measurement of the number of molecules of a single mRNA species in a complex mRNA preparation. J. Theor. Biol. 221, 615–624 (2003).
doi: 10.1006/jtbi.2003.3211
pubmed: 12713944
Aird, D. et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol. 12, R18 (2011).
doi: 10.1186/gb-2011-12-2-r18
pubmed: 21338519
pmcid: 3188800
Kivioja, T. et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat. Methods 9, 72–74 (2011).
doi: 10.1038/nmeth.1778
pubmed: 22101854
Islam, S. et al. Quantitative single-cell RNA-seq with unique molecular identifiers. Nat. Methods 11, 163–166 (2014).
doi: 10.1038/nmeth.2772
pubmed: 24363023
Hagemann-Jensen, M. et al. Single-cell RNA counting at allele and isoform resolution using Smart-seq3. Nat. Biotechnol. 38, 708–714 (2020).
doi: 10.1038/s41587-020-0497-0
pubmed: 32518404
Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012).
doi: 10.1073/pnas.1208715109
pubmed: 22853953
pmcid: 3437896
Kukita, Y. et al. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients. DNA Res. 22, 269–277 (2015).
doi: 10.1093/dnares/dsv010
pubmed: 26126624
pmcid: 4535617
Peng, X. & Dorman, K. S. Accurate estimation of molecular counts from amplicon sequence data with unique molecular identifiers. Bioinformatics 39, btad002 (2023).
doi: 10.1093/bioinformatics/btad002
pubmed: 36610988
pmcid: 9891248
Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).
doi: 10.1038/s41592-021-01299-w
pubmed: 34725481
pmcid: 8571015
You, Y. et al. Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE. Genome Biol. 24, 66 (2023).
Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).
doi: 10.1101/gr.209601.116
pubmed: 28100584
pmcid: 5340976
Volden, R. & Vollmers, C. Single-cell isoform analysis in human immune cells. Genome Biol. 23, 47 (2022).
doi: 10.1186/s13059-022-02615-z
pubmed: 35130954
pmcid: 8819920
Philpott, M. et al. Nanopore sequencing of single-cell transcriptomes with scCOLOR-seq. Nat. Biotechnol. 39, 1517–1520 (2021).
Karst, S. M. et al. High-accuracy long-read amplicon sequences using unique molecular identifiers with Nanopore or PacBio sequencing. Nat. Methods 18, 165–169 (2021).
doi: 10.1038/s41592-020-01041-y
pubmed: 33432244
Tsagiopoulou, M. et al. UMIc: a preprocessing method for UMI deduplication and reads correction. Front. Genet. 12, 660366 (2021).
doi: 10.3389/fgene.2021.660366
pubmed: 34122513
pmcid: 8193862
Bose, S. et al. Scalable microfluidics for single-cell RNA printing and sequencing. Genome Biol. 16, 120 (2015).
doi: 10.1186/s13059-015-0684-3
pubmed: 26047807
pmcid: 4487847
Shagin, D. A. et al. A high-throughput assay for quantitative measurement of PCR errors. Sci. Rep. 7, 2718 (2017).
doi: 10.1038/s41598-017-02727-8
pubmed: 28578414
pmcid: 5457411
Potapov, V. & Ong, J. L. Examining sources of error in PCR by single-molecule sequencing. PLoS ONE 12, e0169774 (2017).
doi: 10.1371/journal.pone.0169774
pubmed: 28060945
pmcid: 5218489
Pflug, F. G. & von Haeseler, A. TRUmiCount: correctly counting absolute numbers of molecules using unique molecular identifiers. Bioinformatics 34, 3137–3144 (2018).
doi: 10.1093/bioinformatics/bty283
pubmed: 29672674
pmcid: 6157883
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
doi: 10.1016/j.cell.2015.05.002
pubmed: 26000488
pmcid: 4481139
Zhu, Y. Y., Machleder, E. M., Chenchik, A., Li, R. & Siebert, P. D. Reverse transcriptase template switching: a SMART approach for full-length cDNA library construction. Biotechniques 30, 892–897 (2001).
doi: 10.2144/01304pf02
pubmed: 11314272
Cribbs, A. et al. CGAT-core: a python framework for building scalable, reproducible computational biology workflows [version 1; peer review: 1 approved, 1 approved with reservations]. F1000 Res. 8, 377 (2019).
doi: 10.12688/f1000research.18674.2
FastQC: a quality control tool for high throughput sequence data (Brabham Bioinformatics, 2010).
Ewels, P., Magnusson, M., Lundin, S. & Kaller, M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32, 3047–3048 (2016).
doi: 10.1093/bioinformatics/btw354
pubmed: 27312411
pmcid: 5039924
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
doi: 10.1093/bioinformatics/btp352
pubmed: 19505943
pmcid: 2723002
Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).
doi: 10.1093/bioinformatics/btt656
pubmed: 24227677
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8
pubmed: 25516281
pmcid: 4302049
Cribbs, A. et al. CGAT-core: a python framework for building scalable, reproducible computational biology workflows [version 2; peer review: 1 approved, 1 approved with reservations]. F1000 Res. 8, 377 (2019).
doi: 10.12688/f1000research.18674.2
Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).
doi: 10.1038/s41587-019-0201-4
pubmed: 31375807
pmcid: 7605509
Liao, Y., Smyth, G. K. & Shi, W. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 41, e108 (2013).
doi: 10.1093/nar/gkt214
pubmed: 23558742
pmcid: 3664803
Chvatal, V. A greedy heuristic for the set-covering problem. Math. Oper. Res. 4, 233–235 (1979).
doi: 10.1287/moor.4.3.233
Chen, Y. J. et al. Quantifying molecular bias in DNA data storage. Nat. Commun. 11, 3264 (2020).
doi: 10.1038/s41467-020-16958-3
pubmed: 32601272
pmcid: 7324401
Lalam, N. Statistical inference for quantitative polymerase chain reaction using a hidden Markov model: a Bayesian approach. Stat. Appl. Genet. Mol. Biol. 6, 10 (2007).
Wagner, A. et al. Surveys of gene families using polymerase chain-reaction—PCR selection and PCR drift. Syst. Biol. 43, 250–261 (1994).
doi: 10.1093/sysbio/43.2.250
Rabadan, R. et al. On statistical modeling of sequencing noise in high depth data to assess tumor evolution. J. Stat. Phys. 172, 143–155 (2018).
doi: 10.1007/s10955-017-1945-1
pubmed: 30034030
Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).
doi: 10.1093/bioinformatics/bty191
pubmed: 29750242
pmcid: 6137996
Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 e1821 (2019).
doi: 10.1016/j.cell.2019.05.031
pubmed: 31178118
pmcid: 6687398
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 e3529 (2021).
doi: 10.1016/j.cell.2021.04.048
pubmed: 34062119
pmcid: 8238499
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).