Cytoskeleton remodeling induced by SMYD2 methyltransferase drives breast cancer metastasis.
Journal
Cell discovery
ISSN: 2056-5968
Titre abrégé: Cell Discov
Pays: England
ID NLM: 101661034
Informations de publication
Date de publication:
31 Jan 2024
31 Jan 2024
Historique:
received:
09
05
2023
accepted:
13
12
2023
medline:
1
2
2024
pubmed:
1
2
2024
entrez:
31
1
2024
Statut:
epublish
Résumé
Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.
Identifiants
pubmed: 38296970
doi: 10.1038/s41421-023-00644-x
pii: 10.1038/s41421-023-00644-x
doi:
Types de publication
Journal Article
Langues
eng
Pagination
12Subventions
Organisme : NCI NIH HHS
ID : K99 CA255936
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Bertucci, F., Finetti, P. & Birnbaum, D. Basal breast cancer: a complex and deadly molecular subtype. Curr. Mol. Med. 12, 96–110 (2012).
pubmed: 22082486
pmcid: 3343384
doi: 10.2174/156652412798376134
Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Prim. 5, 1–31 (2019).
Cao, J. et al. Chemoresistance and metastasis in breast cancer molecular mechanisms and novel clinical strategies. Front. Oncol. 11, 658552 (2021).
pubmed: 34277408
pmcid: 8281885
doi: 10.3389/fonc.2021.658552
Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).
pubmed: 28187288
pmcid: 5308465
doi: 10.1016/j.cell.2016.11.037
Clark, A. G. & Vignjevic, D. M. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36, 13–22 (2015).
pubmed: 26183445
doi: 10.1016/j.ceb.2015.06.004
Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer 17, 131–140 (2017).
pubmed: 27909339
doi: 10.1038/nrc.2016.123
Kudithipudi, S. & Jeltsch, A. Role of somatic cancer mutations in human protein lysine methyltransferases. Biochim. Biophys. Acta 1846, 366–379 (2014).
pubmed: 25123655
Mazur, P. K. et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510, 283–287 (2014).
pubmed: 24847881
pmcid: 4122675
doi: 10.1038/nature13320
Hamamoto, R., Saloura, V. & Nakamura, Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat. Rev. Cancer 15, 110–124 (2015).
pubmed: 25614009
doi: 10.1038/nrc3884
Lukinović, V., Casanova, A. G., Roth, G. S., Chuffart, F. & Reynoird, N. Lysine methyltransferases signaling: histones are just the tip of the iceberg. Curr. Protein Pept. Sci. 21, 655–674 (2020).
pubmed: 31894745
doi: 10.2174/1871527319666200102101608
Lukinovic, V. et al. SMYD3 impedes small cell lung cancer sensitivity to alkylation damage through RNF113A methylation-phosphorylation crosstalk. Cancer Discov. 12, 2158–2179 (2022).
pubmed: 35819319
pmcid: 9437563
doi: 10.1158/2159-8290.CD-21-0205
Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).
pubmed: 34493872
pmcid: 9044823
doi: 10.1038/s41588-021-00911-1
Li, L. X. et al. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis. 9, 326 (2018).
pubmed: 29487338
pmcid: 5832424
doi: 10.1038/s41419-018-0347-x
Yi, X., Jiang, X.-J. & Fang, Z.-M. Histone methyltransferase SMYD2: ubiquitous regulator of disease. Clin. Epigenet. 11, 112 (2019).
doi: 10.1186/s13148-019-0711-4
Zeng, Y. et al. Regulation of EZH2 by SMYD2-Mediated Lysine Methylation Is Implicated in Tumorigenesis. Cell Rep. 29, 1482–1498.e4 (2019).
pubmed: 31693890
doi: 10.1016/j.celrep.2019.10.004
Breitsprecher, D. & Goode, B. L. Formins a glance. J. Cell Sci. 126, 1–7 (2013).
pubmed: 23516326
pmcid: 3603506
doi: 10.1242/jcs.107250
Makkinje, A., Vanden Borre, P., Near, R. I., Patel, P. S. & Lerner, A. Breast cancer anti-estrogen resistance 3 (BCAR3) protein augments binding of the c-Src SH3 domain to Crk-associated Substr. (p130cas). J. Biol. Chem. 287, 27703–27714 (2012).
pubmed: 22711540
pmcid: 3431688
doi: 10.1074/jbc.M112.389981
Vanden Borre, P., Near, R. I., Makkinje, A., Mostoslavsky, G. & Lerner, A. BCAR3/AND-34 can signal independent of complex formation with CAS family members or the presence of p130Cas. Cell. Signal. 23, 1030–1040 (2011).
pubmed: 21262352
doi: 10.1016/j.cellsig.2011.01.018
Cross, A. M. et al. Breast cancer antiestrogen resistance 3-p130Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene 35, 5850–5859 (2016).
pubmed: 27109104
pmcid: 5079856
doi: 10.1038/onc.2016.123
Kage, F. et al. FMNL formins boost lamellipodial force generation. Nat. Commun. 8, 14832 (2017).
pubmed: 28327544
pmcid: 5364437
doi: 10.1038/ncomms14832
Krause, M. & Gautreau, A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15, 577–590 (2014).
pubmed: 25145849
doi: 10.1038/nrm3861
Block, J. et al. FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr. Biol. 22, 1005–1012 (2012).
pubmed: 22608513
pmcid: 3765947
doi: 10.1016/j.cub.2012.03.064
Winkler, J. et al. Dissecting the contributions of tumor heterogeneity on metastasis at single-cell resolution. bioRxiv https://doi.org/10.1101/2022.08.04.502697 (2022).
Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. 100, 11606–11611 (2003).
pubmed: 14500907
pmcid: 208805
doi: 10.1073/pnas.1933744100
Alford, S. H., Toy, K., Merajver, S. D. & Kleer, C. G. Increased risk for distant metastasis in patients with familial early-stage breast cancer and high EZH2 expression. Breast Cancer Res. Treat. 132, 429–437 (2012).
pubmed: 21614565
doi: 10.1007/s10549-011-1591-2
Ren, G. et al. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res. 72, 3091–3104 (2012).
pubmed: 22505648
doi: 10.1158/0008-5472.CAN-11-3546
Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003).
pubmed: 14578209
pmcid: 1892434
doi: 10.1016/S0002-9440(10)63568-7
Attalla, S., Taifour, T., Bui, T. & Muller, W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 40, 475–491 (2021).
pubmed: 33235291
doi: 10.1038/s41388-020-01560-0
Carlson, S. M., Moore, K. E., Green, E. M., Martín, G. M. & Gozani, O. Proteome-wide enrichment of proteins modified by lysine methylation. Nat. Protoc. 9, 37–50 (2014).
pubmed: 24309976
doi: 10.1038/nprot.2013.164
Moore, K. E. et al. A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol. Cell 50, 444–456 (2013).
pubmed: 23583077
pmcid: 3660009
doi: 10.1016/j.molcel.2013.03.005
Reynoird, N. et al. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev. 30, 772–785 (2016).
pubmed: 26988419
pmcid: 4826394
doi: 10.1101/gad.275529.115
Olsen, J. B. et al. Quantitative profiling of the activity of protein lysine methyltransferase SMYD2 using SILAC-based proteomics. Mol. Cell. Proteom. 15, 892–905 (2016).
doi: 10.1074/mcp.M115.053280
van Agthoven, T. et al. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17, 2799–2808 (1998).
pubmed: 9582273
pmcid: 1170620
doi: 10.1093/emboj/17.10.2799
Schrecengost, R. S., Riggins, R. B., Thomas, K. S., Guerrero, M. S. & Bouton, A. H. Breast cancer antiestrogen resistance-3 expression regulates breast cancer cell migration through promotion of p130Cas membrane localization and membrane ruffling. Cancer Res. 67, 6174–6182 (2007).
pubmed: 17616674
pmcid: 4109708
doi: 10.1158/0008-5472.CAN-06-3455
Eggert, E. et al. Discovery and characterization of a highly potent and selective aminopyrazoline-based in vivo probe (BAY-598) for the protein lysine methyltransferase SMYD2. J. Med. Chem. 59, 4578–4600 (2016).
pubmed: 27075367
pmcid: 4917279
doi: 10.1021/acs.jmedchem.5b01890
Makkinje, A. et al. AND-34/BCAR3 regulates adhesion-dependent p130Cas serine phosphorylation and breast cancer cell growth pattern. Cell. Signal. 21, 1423–1435 (2009).
pubmed: 19454314
pmcid: 2740797
doi: 10.1016/j.cellsig.2009.05.006
Musselman, C. A., Lalonde, M.-E., Côté, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).
pubmed: 23211769
pmcid: 3645987
doi: 10.1038/nsmb.2436
Zeng, Y.-F. et al. Increased expression of formin-like 3 contributes to metastasis and poor prognosis in colorectal carcinoma. Exp. Mol. Pathol. 98, 260–267 (2015).
pubmed: 25758200
doi: 10.1016/j.yexmp.2015.03.008
Andrade, M. A., Petosa, C., O’Donoghue, S. I., Müller, C. W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18 (2001).
pubmed: 11491282
doi: 10.1006/jmbi.2001.4624
Liu, W. et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466, 508–512 (2010).
pubmed: 20622854
pmcid: 3059551
doi: 10.1038/nature09272
Kühn, S. et al. The structure of FMNL2–Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat. Commun. 6, 7088 (2015).
pubmed: 25963737
doi: 10.1038/ncomms8088
Vann, K. R., Vishweshwaraiah, Y. L., Dokholyan, N. V. & Kutateladze, T. G. Searching for methyllysine-binding aromatic cages. Biochem. J. 478, 3613–3619 (2021).
pubmed: 34624071
doi: 10.1042/BCJ20210106
Iwano, S. et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935–939 (2018).
pubmed: 29472486
doi: 10.1126/science.aaq1067
Shafie, S. M. & Liotta, L. A. Formation of metastasis by human breast carcinoma cells (MCF-7) in nude mice. Cancer Lett. 11, 81–87 (1980).
pubmed: 6450636
doi: 10.1016/0304-3835(80)90097-X
Esposito, M. et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat. Cell Biol. 23, 257–267 (2021).
pubmed: 33723425
pmcid: 7970447
doi: 10.1038/s41556-021-00641-w
Cao, L. & Niu, Y. Triple negative breast cancer: special histological types and emerging therapeutic methods. Cancer Biol. Med. 17, 293–306 (2020).
pubmed: 32587770
pmcid: 7309458
doi: 10.20892/j.issn.2095-3941.2019.0465
Arrowsmith, C. H. & Schapira, M. Targeting non-bromodomain chromatin readers. Nat. Struct. Mol. Biol. 26, 863–869 (2019).
pubmed: 31582844
doi: 10.1038/s41594-019-0290-2
Mace, P. D. et al. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling. Nat. Struct. Mol. Biol. 18, 1381–1387 (2011).
pubmed: 22081014
pmcid: 3230775
doi: 10.1038/nsmb.2152
Cai, D. et al. AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res. 63, 6802–6808 (2003).
pubmed: 14583477
Steenkiste, E. M., Berndt, J. D., Pilling, C., Simpkins, C. & Cooper, J. A. A Cas-BCAR3 co-regulatory circuit controls lamellipodia dynamics. eLife 10, e67078 (2021).
pubmed: 34169835
pmcid: 8266394
doi: 10.7554/eLife.67078
Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).
pubmed: 34285779
pmcid: 8271111
doi: 10.1016/j.csbj.2021.06.043
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
pubmed: 34062119
pmcid: 8238499
doi: 10.1016/j.cell.2021.04.048
Bartha, Á. & Győrffy, B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int. J. Mol. Sci. 22, 2622 (2021).
pubmed: 33807717
pmcid: 7961455
doi: 10.3390/ijms22052622
Jézéquel, P. et al. bc-GenExMiner 4.5: new mining module computes breast cancer differential gene expression analyses. Database J. Biol. Databases Curation 2021, baab007 (2021).
Carlson, S. M. et al. A proteomic strategy identifies lysine methylation of splicing factor snRNP70 by the SETMAR. Enzym. J. Biol. Chem. 290, 12040–12047 (2015).
doi: 10.1074/jbc.M115.641530
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910
doi: 10.1038/nbt.1511
Bouyssié, D. et al. Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinforma. Oxf. Engl. 36, 3148–3155 (2020).
doi: 10.1093/bioinformatics/btaa118
Casabona, M. G., Vandenbrouck, Y., Attree, I. & Couté, Y. Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics 13, 2419–2423 (2013).
pubmed: 23744604
doi: 10.1002/pmic.201200565
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
pubmed: 27809316
doi: 10.1038/nprot.2016.136
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
pubmed: 29788355
pmcid: 6030848
doi: 10.1093/nar/gky427
Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011).
pubmed: 21134891
doi: 10.1093/bioinformatics/btq662
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765
doi: 10.1107/S0907444904019158
Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).
pubmed: 10493868
doi: 10.1006/jmbi.1999.3091
Gorelik, R. & Gautreau, A. Quantitative and unbiased analysis of directional persistence in cell migration. Nat. Protoc. 9, 1931–1943 (2014).
pubmed: 25033209
doi: 10.1038/nprot.2014.131