Cytoskeleton remodeling induced by SMYD2 methyltransferase drives breast cancer metastasis.


Journal

Cell discovery
ISSN: 2056-5968
Titre abrégé: Cell Discov
Pays: England
ID NLM: 101661034

Informations de publication

Date de publication:
31 Jan 2024
Historique:
received: 09 05 2023
accepted: 13 12 2023
medline: 1 2 2024
pubmed: 1 2 2024
entrez: 31 1 2024
Statut: epublish

Résumé

Malignant forms of breast cancer refractory to existing therapies remain a major unmet health issue, primarily due to metastatic spread. A better understanding of the mechanisms at play will provide better insights for alternative treatments to prevent breast cancer cell dispersion. Here, we identify the lysine methyltransferase SMYD2 as a clinically actionable master regulator of breast cancer metastasis. While SMYD2 is overexpressed in aggressive breast cancers, we notice that it is not required for primary tumor growth. However, mammary-epithelium specific SMYD2 ablation increases mouse overall survival by blocking the primary tumor cell ability to metastasize. Mechanistically, we identify BCAR3 as a genuine physiological substrate of SMYD2 in breast cancer cells. BCAR3 monomethylated at lysine K334 (K334me1) is recognized by a novel methyl-binding domain present in FMNLs proteins. These actin cytoskeleton regulators are recruited at the cell edges by the SMYD2 methylation signaling and modulate lamellipodia properties. Breast cancer cells with impaired BCAR3 methylation lose migration and invasiveness capacity in vitro and are ineffective in promoting metastases in vivo. Remarkably, SMYD2 pharmacologic inhibition efficiently impairs the metastatic spread of breast cancer cells, PDX and aggressive mammary tumors from genetically engineered mice. This study provides a rationale for innovative therapeutic prevention of malignant breast cancer metastatic progression by targeting the SMYD2-BCAR3-FMNL axis.

Identifiants

pubmed: 38296970
doi: 10.1038/s41421-023-00644-x
pii: 10.1038/s41421-023-00644-x
doi:

Types de publication

Journal Article

Langues

eng

Pagination

12

Subventions

Organisme : NCI NIH HHS
ID : K99 CA255936
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Bertucci, F., Finetti, P. & Birnbaum, D. Basal breast cancer: a complex and deadly molecular subtype. Curr. Mol. Med. 12, 96–110 (2012).
pubmed: 22082486 pmcid: 3343384 doi: 10.2174/156652412798376134
Harbeck, N. et al. Breast cancer. Nat. Rev. Dis. Prim. 5, 1–31 (2019).
Cao, J. et al. Chemoresistance and metastasis in breast cancer molecular mechanisms and novel clinical strategies. Front. Oncol. 11, 658552 (2021).
pubmed: 34277408 pmcid: 8281885 doi: 10.3389/fonc.2021.658552
Lambert, A. W., Pattabiraman, D. R. & Weinberg, R. A. Emerging biological principles of metastasis. Cell 168, 670–691 (2017).
pubmed: 28187288 pmcid: 5308465 doi: 10.1016/j.cell.2016.11.037
Clark, A. G. & Vignjevic, D. M. Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36, 13–22 (2015).
pubmed: 26183445 doi: 10.1016/j.ceb.2015.06.004
Paul, C. D., Mistriotis, P. & Konstantopoulos, K. Cancer cell motility: lessons from migration in confined spaces. Nat. Rev. Cancer 17, 131–140 (2017).
pubmed: 27909339 doi: 10.1038/nrc.2016.123
Kudithipudi, S. & Jeltsch, A. Role of somatic cancer mutations in human protein lysine methyltransferases. Biochim. Biophys. Acta 1846, 366–379 (2014).
pubmed: 25123655
Mazur, P. K. et al. SMYD3 links lysine methylation of MAP3K2 to Ras-driven cancer. Nature 510, 283–287 (2014).
pubmed: 24847881 pmcid: 4122675 doi: 10.1038/nature13320
Hamamoto, R., Saloura, V. & Nakamura, Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat. Rev. Cancer 15, 110–124 (2015).
pubmed: 25614009 doi: 10.1038/nrc3884
Lukinović, V., Casanova, A. G., Roth, G. S., Chuffart, F. & Reynoird, N. Lysine methyltransferases signaling: histones are just the tip of the iceberg. Curr. Protein Pept. Sci. 21, 655–674 (2020).
pubmed: 31894745 doi: 10.2174/1871527319666200102101608
Lukinovic, V. et al. SMYD3 impedes small cell lung cancer sensitivity to alkylation damage through RNF113A methylation-phosphorylation crosstalk. Cancer Discov. 12, 2158–2179 (2022).
pubmed: 35819319 pmcid: 9437563 doi: 10.1158/2159-8290.CD-21-0205
Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).
pubmed: 34493872 pmcid: 9044823 doi: 10.1038/s41588-021-00911-1
Li, L. X. et al. Lysine methyltransferase SMYD2 promotes triple negative breast cancer progression. Cell Death Dis. 9, 326 (2018).
pubmed: 29487338 pmcid: 5832424 doi: 10.1038/s41419-018-0347-x
Yi, X., Jiang, X.-J. & Fang, Z.-M. Histone methyltransferase SMYD2: ubiquitous regulator of disease. Clin. Epigenet. 11, 112 (2019).
doi: 10.1186/s13148-019-0711-4
Zeng, Y. et al. Regulation of EZH2 by SMYD2-Mediated Lysine Methylation Is Implicated in Tumorigenesis. Cell Rep. 29, 1482–1498.e4 (2019).
pubmed: 31693890 doi: 10.1016/j.celrep.2019.10.004
Breitsprecher, D. & Goode, B. L. Formins a glance. J. Cell Sci. 126, 1–7 (2013).
pubmed: 23516326 pmcid: 3603506 doi: 10.1242/jcs.107250
Makkinje, A., Vanden Borre, P., Near, R. I., Patel, P. S. & Lerner, A. Breast cancer anti-estrogen resistance 3 (BCAR3) protein augments binding of the c-Src SH3 domain to Crk-associated Substr. (p130cas). J. Biol. Chem. 287, 27703–27714 (2012).
pubmed: 22711540 pmcid: 3431688 doi: 10.1074/jbc.M112.389981
Vanden Borre, P., Near, R. I., Makkinje, A., Mostoslavsky, G. & Lerner, A. BCAR3/AND-34 can signal independent of complex formation with CAS family members or the presence of p130Cas. Cell. Signal. 23, 1030–1040 (2011).
pubmed: 21262352 doi: 10.1016/j.cellsig.2011.01.018
Cross, A. M. et al. Breast cancer antiestrogen resistance 3-p130Cas interactions promote adhesion disassembly and invasion in breast cancer cells. Oncogene 35, 5850–5859 (2016).
pubmed: 27109104 pmcid: 5079856 doi: 10.1038/onc.2016.123
Kage, F. et al. FMNL formins boost lamellipodial force generation. Nat. Commun. 8, 14832 (2017).
pubmed: 28327544 pmcid: 5364437 doi: 10.1038/ncomms14832
Krause, M. & Gautreau, A. Steering cell migration: lamellipodium dynamics and the regulation of directional persistence. Nat. Rev. Mol. Cell Biol. 15, 577–590 (2014).
pubmed: 25145849 doi: 10.1038/nrm3861
Block, J. et al. FMNL2 drives actin-based protrusion and migration downstream of Cdc42. Curr. Biol. 22, 1005–1012 (2012).
pubmed: 22608513 pmcid: 3765947 doi: 10.1016/j.cub.2012.03.064
Winkler, J. et al. Dissecting the contributions of tumor heterogeneity on metastasis at single-cell resolution. bioRxiv https://doi.org/10.1101/2022.08.04.502697 (2022).
Kleer, C. G. et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. 100, 11606–11611 (2003).
pubmed: 14500907 pmcid: 208805 doi: 10.1073/pnas.1933744100
Alford, S. H., Toy, K., Merajver, S. D. & Kleer, C. G. Increased risk for distant metastasis in patients with familial early-stage breast cancer and high EZH2 expression. Breast Cancer Res. Treat. 132, 429–437 (2012).
pubmed: 21614565 doi: 10.1007/s10549-011-1591-2
Ren, G. et al. Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res. 72, 3091–3104 (2012).
pubmed: 22505648 doi: 10.1158/0008-5472.CAN-11-3546
Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003).
pubmed: 14578209 pmcid: 1892434 doi: 10.1016/S0002-9440(10)63568-7
Attalla, S., Taifour, T., Bui, T. & Muller, W. Insights from transgenic mouse models of PyMT-induced breast cancer: recapitulating human breast cancer progression in vivo. Oncogene 40, 475–491 (2021).
pubmed: 33235291 doi: 10.1038/s41388-020-01560-0
Carlson, S. M., Moore, K. E., Green, E. M., Martín, G. M. & Gozani, O. Proteome-wide enrichment of proteins modified by lysine methylation. Nat. Protoc. 9, 37–50 (2014).
pubmed: 24309976 doi: 10.1038/nprot.2013.164
Moore, K. E. et al. A general molecular affinity strategy for global detection and proteomic analysis of lysine methylation. Mol. Cell 50, 444–456 (2013).
pubmed: 23583077 pmcid: 3660009 doi: 10.1016/j.molcel.2013.03.005
Reynoird, N. et al. Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev. 30, 772–785 (2016).
pubmed: 26988419 pmcid: 4826394 doi: 10.1101/gad.275529.115
Olsen, J. B. et al. Quantitative profiling of the activity of protein lysine methyltransferase SMYD2 using SILAC-based proteomics. Mol. Cell. Proteom. 15, 892–905 (2016).
doi: 10.1074/mcp.M115.053280
van Agthoven, T. et al. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17, 2799–2808 (1998).
pubmed: 9582273 pmcid: 1170620 doi: 10.1093/emboj/17.10.2799
Schrecengost, R. S., Riggins, R. B., Thomas, K. S., Guerrero, M. S. & Bouton, A. H. Breast cancer antiestrogen resistance-3 expression regulates breast cancer cell migration through promotion of p130Cas membrane localization and membrane ruffling. Cancer Res. 67, 6174–6182 (2007).
pubmed: 17616674 pmcid: 4109708 doi: 10.1158/0008-5472.CAN-06-3455
Eggert, E. et al. Discovery and characterization of a highly potent and selective aminopyrazoline-based in vivo probe (BAY-598) for the protein lysine methyltransferase SMYD2. J. Med. Chem. 59, 4578–4600 (2016).
pubmed: 27075367 pmcid: 4917279 doi: 10.1021/acs.jmedchem.5b01890
Makkinje, A. et al. AND-34/BCAR3 regulates adhesion-dependent p130Cas serine phosphorylation and breast cancer cell growth pattern. Cell. Signal. 21, 1423–1435 (2009).
pubmed: 19454314 pmcid: 2740797 doi: 10.1016/j.cellsig.2009.05.006
Musselman, C. A., Lalonde, M.-E., Côté, J. & Kutateladze, T. G. Perceiving the epigenetic landscape through histone readers. Nat. Struct. Mol. Biol. 19, 1218–1227 (2012).
pubmed: 23211769 pmcid: 3645987 doi: 10.1038/nsmb.2436
Zeng, Y.-F. et al. Increased expression of formin-like 3 contributes to metastasis and poor prognosis in colorectal carcinoma. Exp. Mol. Pathol. 98, 260–267 (2015).
pubmed: 25758200 doi: 10.1016/j.yexmp.2015.03.008
Andrade, M. A., Petosa, C., O’Donoghue, S. I., Müller, C. W. & Bork, P. Comparison of ARM and HEAT protein repeats. J. Mol. Biol. 309, 1–18 (2001).
pubmed: 11491282 doi: 10.1006/jmbi.2001.4624
Liu, W. et al. PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature 466, 508–512 (2010).
pubmed: 20622854 pmcid: 3059551 doi: 10.1038/nature09272
Kühn, S. et al. The structure of FMNL2–Cdc42 yields insights into the mechanism of lamellipodia and filopodia formation. Nat. Commun. 6, 7088 (2015).
pubmed: 25963737 doi: 10.1038/ncomms8088
Vann, K. R., Vishweshwaraiah, Y. L., Dokholyan, N. V. & Kutateladze, T. G. Searching for methyllysine-binding aromatic cages. Biochem. J. 478, 3613–3619 (2021).
pubmed: 34624071 doi: 10.1042/BCJ20210106
Iwano, S. et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 359, 935–939 (2018).
pubmed: 29472486 doi: 10.1126/science.aaq1067
Shafie, S. M. & Liotta, L. A. Formation of metastasis by human breast carcinoma cells (MCF-7) in nude mice. Cancer Lett. 11, 81–87 (1980).
pubmed: 6450636 doi: 10.1016/0304-3835(80)90097-X
Esposito, M. et al. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat. Cell Biol. 23, 257–267 (2021).
pubmed: 33723425 pmcid: 7970447 doi: 10.1038/s41556-021-00641-w
Cao, L. & Niu, Y. Triple negative breast cancer: special histological types and emerging therapeutic methods. Cancer Biol. Med. 17, 293–306 (2020).
pubmed: 32587770 pmcid: 7309458 doi: 10.20892/j.issn.2095-3941.2019.0465
Arrowsmith, C. H. & Schapira, M. Targeting non-bromodomain chromatin readers. Nat. Struct. Mol. Biol. 26, 863–869 (2019).
pubmed: 31582844 doi: 10.1038/s41594-019-0290-2
Mace, P. D. et al. NSP-Cas protein structures reveal a promiscuous interaction module in cell signaling. Nat. Struct. Mol. Biol. 18, 1381–1387 (2011).
pubmed: 22081014 pmcid: 3230775 doi: 10.1038/nsmb.2152
Cai, D. et al. AND-34/BCAR3, a GDP exchange factor whose overexpression confers antiestrogen resistance, activates Rac, PAK1, and the cyclin D1 promoter. Cancer Res. 63, 6802–6808 (2003).
pubmed: 14583477
Steenkiste, E. M., Berndt, J. D., Pilling, C., Simpkins, C. & Cooper, J. A. A Cas-BCAR3 co-regulatory circuit controls lamellipodia dynamics. eLife 10, e67078 (2021).
pubmed: 34169835 pmcid: 8266394 doi: 10.7554/eLife.67078
Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-cell gene signature scoring. Comput. Struct. Biotechnol. J. 19, 3796–3798 (2021).
pubmed: 34285779 pmcid: 8271111 doi: 10.1016/j.csbj.2021.06.043
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021).
pubmed: 34062119 pmcid: 8238499 doi: 10.1016/j.cell.2021.04.048
Bartha, Á. & Győrffy, B. TNMplot.com: a web tool for the comparison of gene expression in normal, tumor and metastatic tissues. Int. J. Mol. Sci. 22, 2622 (2021).
pubmed: 33807717 pmcid: 7961455 doi: 10.3390/ijms22052622
Jézéquel, P. et al. bc-GenExMiner 4.5: new mining module computes breast cancer differential gene expression analyses. Database J. Biol. Databases Curation 2021, baab007 (2021).
Carlson, S. M. et al. A proteomic strategy identifies lysine methylation of splicing factor snRNP70 by the SETMAR. Enzym. J. Biol. Chem. 290, 12040–12047 (2015).
doi: 10.1074/jbc.M115.641530
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
pubmed: 19029910 doi: 10.1038/nbt.1511
Bouyssié, D. et al. Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinforma. Oxf. Engl. 36, 3148–3155 (2020).
doi: 10.1093/bioinformatics/btaa118
Casabona, M. G., Vandenbrouck, Y., Attree, I. & Couté, Y. Proteomic characterization of Pseudomonas aeruginosa PAO1 inner membrane. Proteomics 13, 2419–2423 (2013).
pubmed: 23744604 doi: 10.1002/pmic.201200565
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
pubmed: 27809316 doi: 10.1038/nprot.2016.136
Waterhouse, A. et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).
pubmed: 29788355 pmcid: 6030848 doi: 10.1093/nar/gky427
Benkert, P., Biasini, M. & Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27, 343–350 (2011).
pubmed: 21134891 doi: 10.1093/bioinformatics/btq662
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).
pubmed: 10493868 doi: 10.1006/jmbi.1999.3091
Gorelik, R. & Gautreau, A. Quantitative and unbiased analysis of directional persistence in cell migration. Nat. Protoc. 9, 1931–1943 (2014).
pubmed: 25033209 doi: 10.1038/nprot.2014.131

Auteurs

Alexandre G Casanova (AG)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Gael S Roth (GS)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.
Clinique Universitaire d'Hépato-gastroentérologie et Oncologie digestive, CHU Grenoble Alpes, Grenoble, France.

Simone Hausmann (S)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Xiaoyin Lu (X)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Ludivine J M Bischoff (LJM)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Emilie M Froeliger (EM)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Lucid Belmudes (L)

Grenoble Alpes University, CEA, INSERM, UA13 BGE, CNRS CEA, FR2048, Grenoble, France.

Ekaterina Bourova-Flin (E)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Natasha M Flores (NM)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Ana Morales Benitez (AM)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Tourkian Chasan (T)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Marcello Caporicci (M)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.

Jessica Vayr (J)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Sandrine Blanchet (S)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Francesco Ielasi (F)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Sophie Rousseaux (S)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Pierre Hainaut (P)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Or Gozani (O)

Department of Biology, Stanford University, Stanford, CA, USA.

Muriel Le Romancer (M)

Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Lyon, France.

Yohann Couté (Y)

Grenoble Alpes University, CEA, INSERM, UA13 BGE, CNRS CEA, FR2048, Grenoble, France.

Andres Palencia (A)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France.

Pawel K Mazur (PK)

Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. PKMazur@mdanderson.org.

Nicolas Reynoird (N)

Grenoble Alpes University, CNRS UMR 5309, INSERM U 1209, Institute for Advanced Biosciences, Grenoble, France. Nicolas.reynoird@univ-grenoble-alpes.fr.

Classifications MeSH