Correlates of metabolic syndrome in people with chronic spinal cord injury.
Cardiovascular risk
Insulin resistance
Obesity
Pain
Paraplegia
Physical activity
Journal
Journal of endocrinological investigation
ISSN: 1720-8386
Titre abrégé: J Endocrinol Invest
Pays: Italy
ID NLM: 7806594
Informations de publication
Date de publication:
29 Jan 2024
29 Jan 2024
Historique:
received:
28
07
2023
accepted:
28
12
2023
medline:
29
1
2024
pubmed:
29
1
2024
entrez:
29
1
2024
Statut:
aheadofprint
Résumé
We aimed at identifying clinical risk factors or early markers of metabolic syndrome (MetS) in people with spinal cord injury (SCI) that would facilitate a timely diagnosis and implementation of preventive/therapeutic strategies. One hundred sixty-eight individuals with chronic (> 1 year) SCI underwent clinical and biochemical evaluations. MetS was diagnosed according to modified criteria of the International Diabetes Federation validated in people with SCI. Wilcoxon rank-sum test and χ MetS was diagnosed in 56 of 132 men (42.4%) and 17 of 36 women (47.2%). At univariate regression analyses, putative predictors of MetS were an older age, a higher number of comorbidities, a lower insulin-sensitivity, the presence and intensity of pain, a shorter injury duration, a poorer leisure time physical activity (LTPA) and an incomplete motor injury. At the multiple logistic regression analysis, a significant independent association with MetS only persisted for a poorer LTPA in hours/week (OR: 0.880, 95% CI 0.770, 0.990) and more severe pain symptoms as assessed by the numeral rating scale (OR: 1.353, 95% CI 1.085, 1.793). In people with chronic SCI, intense pain symptoms and poor LTPA may indicate a high likelihood of MetS, regardless of age, SCI duration, motor disability degree, insulin-sensitivity and comorbidities.
Identifiants
pubmed: 38285309
doi: 10.1007/s40618-023-02298-8
pii: 10.1007/s40618-023-02298-8
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024. The Author(s).
Références
Savic G, DeVivo MJ, Frankel HL, Jamous MA, Soni BM, Charlifue S (2017) Causes of death after traumatic spinal cord injury-a 70-year British study. Spinal Cord 55(10):891–897. https://doi.org/10.1038/sc.2017.64
doi: 10.1038/sc.2017.64
pubmed: 28631749
Barbonetti A, Castellini C, Francavilla S, Francavilla F, D’Andrea S (2022) Metabolic syndrome in spinal cord injury: impact on health. Acad Press. https://doi.org/10.1016/B978-0-12-822427-4.00031-9
doi: 10.1016/B978-0-12-822427-4.00031-9
Gorgey AS, Dolbow DR, Dolbow JD, Khalil RK, Castillo C, Gater DR (2014) Effects of spinal cord injury on body composition and metabolic profile - part I. J Spinal Cord Med 37(6):693–702. https://doi.org/10.1179/2045772314Y.0000000245
doi: 10.1179/2045772314Y.0000000245
pubmed: 25001559
pmcid: 4231957
Alazzam AM, Goldsmith JA, Khalil RE, Khan MR, Gorgey AS (2023) Denervation impacts muscle quality and knee bone mineral density after spinal cord injury. Spinal Cord 61(4):276–284. https://doi.org/10.1038/s41393-023-00885-3
doi: 10.1038/s41393-023-00885-3
pubmed: 36899099
Farkas GJ, Sneij A, McMillan DW, Tiozzo E, Nash MS, Gater DR Jr (2022) Energy expenditure and nutrient intake after spinal cord injury: a comprehensive review and practical recommendations. Br J Nutr 128(5):863–887. https://doi.org/10.1017/S0007114521003822
doi: 10.1017/S0007114521003822
pubmed: 34551839
Farkas GJ, Pitot MA, Berg AS, Gater DR (2019) Nutritional status in chronic spinal cord injury: a systematic review and meta-analysis. Spinal Cord 57(1):3–17. https://doi.org/10.1038/s41393-018-0218-4
doi: 10.1038/s41393-018-0218-4
pubmed: 30420688
Cirnigliaro CM, LaFountaine MF, Dengel DR, Bosch TA, Emmons RR, Kirshblum SC, Sauer S, Asselin P, Spungen AM, Bauman WA (2015) Visceral adiposity in persons with chronic spinal cord injury determined by dual energy X-ray absorptiometry. Obesity (Silver Spring) 23(9):1811–1817. https://doi.org/10.1002/oby.21194
doi: 10.1002/oby.21194
pubmed: 26239944
Zafar U, Khaliq S, Ahmad HU, Manzoor S, Lone KP (2018) Metabolic syndrome: an update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens) 17(3):299–313. https://doi.org/10.1007/s42000-018-0051-3 . (Epub 2018 Aug 31 PMID: 30171523)
doi: 10.1007/s42000-018-0051-3
pubmed: 30171523
Shin JC, Park CI, Kim SH, Yang EJ, Kim EJ, Rha DW (2006) Abdominal ultrasonography findings in patients with spinal cord injury in Korea. J Korean Med Sci 21(5):927–931. https://doi.org/10.3346/jkms.2006.21.5.927
doi: 10.3346/jkms.2006.21.5.927
pubmed: 17043431
pmcid: 2722007
Barbonetti A, Caterina Vassallo MR, Cotugno M, Felzani G, Francavilla S, Francavilla F (2016) Low testosterone and non-alcoholic fatty liver disease: evidence for their independent association in men with chronic spinal cord injury. J Spinal Cord Med 39(4):443–449. https://doi.org/10.1179/2045772314Y.0000000288
doi: 10.1179/2045772314Y.0000000288
pubmed: 25614040
pmcid: 5102293
Di Giulio F, Castellini C, Tienforti D, Felzani G, Baroni MG, Barbonetti A (2023) Independent association of hypovitaminosis d with non-alcoholic fatty liver disease in people with chronic spinal cord injury: a cross-sectional study. J Endocrinol Invest. https://doi.org/10.1007/s40618-023-02124-1
doi: 10.1007/s40618-023-02124-1
pubmed: 37273143
Elder CP, Apple DF, Bickel CS, Meyer RA, Dudley GA (2004) Intramuscular fat and glucose tolerance after spinal cord injury—a cross-sectional study. Spinal Cord 42(12):711–716. https://doi.org/10.1038/sj.sc.3101652
doi: 10.1038/sj.sc.3101652
pubmed: 15303112
Gallagher EJ, Leroith D, Karnieli E (2011) The metabolic syndrome—from insulin resistance to obesity and diabetes. Med Clin North Am 95(5):855–873. https://doi.org/10.1016/j.mcna.2011.06.001
doi: 10.1016/j.mcna.2011.06.001
pubmed: 21855696
Jones LM, Legge M, Goulding A (2003) Healthy body mass index values often underestimate body fat in men with spinal cord injury. Arch Phys Med Rehabil 84(7):1068–1071. https://doi.org/10.1016/s0003-9993(03)00045-5
doi: 10.1016/s0003-9993(03)00045-5
pubmed: 12881836
Nash MS, Groah SL, Gater DR, Dyson-Hudson TA, Lieberman JA, Myers J, Sabharwal S, Taylor AJ (2019) Identification and management of cardiometabolic risk after spinal cord injury. J Spinal Cord Med 42(5):643–677. https://doi.org/10.1080/10790268.2018.1511401
doi: 10.1080/10790268.2018.1511401
pubmed: 31180274
pmcid: 6758611
Laughton GE, Buchholz AC, Martin Ginis KA, Goy RE, SHAPE SCI Research Group (2009) Lowering body mass index cutoffs better identifies obese persons with spinal cord injury. Spinal Cord 47(10):757–762
doi: 10.1038/sc.2009.33
pubmed: 19350042
Alberti KG, Zimmet PZ (1998) Definition, diagnosis and classification of diabetes mellitus and its complications Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 15(7):539–553
doi: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
pubmed: 9686693
Ford ES (2005) Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 28(11):2745–2749. https://doi.org/10.2337/diacare.28.11.2745
doi: 10.2337/diacare.28.11.2745
pubmed: 16249550
Gater DR Jr, Farkas GJ, Berg AS, Castillo C (2019) Prevalence of metabolic syndrome in veterans with spinal cord injury. J Spinal Cord Med 42(1):86–93. https://doi.org/10.1080/10790268.2017.1423266
doi: 10.1080/10790268.2017.1423266
pubmed: 29323633
Gater DR Jr, Farkas GJ, Dolbow DR, Berg A, Gorgey AS (2021) Body composition and metabolic assessment after motor complete spinal cord injury: development of a clinically relevant equation to estimate body fat. Top Spinal Cord Inj Rehabil 27(1):11–22. https://doi.org/10.46292/sci20-00079
doi: 10.46292/sci20-00079
pubmed: 33814880
pmcid: 7983632
Silveira SL, Ledoux TA, Robinson-Whelen S, Stough R, Nosek MA (2017) Methods for classifying obesity in spinal cord injury: a review. Spinal Cord 55(9):812–817. https://doi.org/10.1038/sc.2017.79
doi: 10.1038/sc.2017.79
pubmed: 28695902
Nash MS, Gater DR Jr (2020) Cardiometabolic disease and dysfunction following spinal cord injury: origins and guideline-based countermeasures. Phys Med Rehabil Clin N Am 31(3):415–436. https://doi.org/10.1016/j.pmr.2020.04.005
doi: 10.1016/j.pmr.2020.04.005
pubmed: 32624103
Charlson M, Szatrowski TP, Peterson J, Gold J (1994) Validation of a combined comorbidity index. J Clin Epidemiol 47(11):1245–1251. https://doi.org/10.1016/0895-4356(94)90129-5
doi: 10.1016/0895-4356(94)90129-5
pubmed: 7722560
Maynard FM Jr, Bracken MB, Creasey G, Ditunno JF Jr, Donovan WH, Ducker TB, Garber SL, Marino RJ, Stover SL, Tator CH, Waters RL, Wilberger JE, Young W (1997) International standards for neurological and functional classification of spinal cord injury. Am Spinal Injury Assoc Spinal Cord 35(5):266–274. https://doi.org/10.1038/sj.sc.3100432
doi: 10.1038/sj.sc.3100432
Bryce TN, Budh CN, Cardenas DD, Dijkers M, Felix ER, Finnerup NB, Kennedy P, Lundeberg T, Richards JS, Rintala DH, Siddall P, Widerstrom-Noga E (2007) Pain after spinal cord injury: an evidence-based review for clinical practice and research. Report of the National Institute on disability and rehabilitation research spinal cord injury measures meeting. J Spinal Cord Med 30(5):421–440. https://doi.org/10.1080/10790268.2007.11753405
doi: 10.1080/10790268.2007.11753405
pubmed: 18092558
pmcid: 2141724
Anderson K, Aito S, Atkins M, Biering-Sørensen F, Charlifue S, Curt A, Ditunno J, Glass C, Marino R, Marshall R, Mulcahey MJ, Post M, Savic G, Scivoletto G, Catz A, Functional Recovery Outcome Measures Work Group (2008) Functional recovery measures for spinal cord injury: an evidence-based review for clinical practice and research. J Spinal Cord Med 31(2):133–144. https://doi.org/10.1080/10790268.2008.11760704
doi: 10.1080/10790268.2008.11760704
pubmed: 18581660
pmcid: 2578796
Martin Ginis KA, Phang SH, Latimer AE, Arbour-Nicitopoulos KP (2012) Reliability and validity tests of the leisure time physical activity questionnaire for people with spinal cord injury. Arch Phys Med Rehabil 93(4):677–682. https://doi.org/10.1016/j.apmr.2011.11.005
doi: 10.1016/j.apmr.2011.11.005
pubmed: 22336103
Barbonetti A, Sperandio A, Micillo A, D’Andrea S, Pacca F, Felzani G, Francavilla S, Francavilla F (2016) Independent association of vitamin D with physical function in people with chronic spinal cord injury. Arch Phys Med Rehabil 97(5):726–732. https://doi.org/10.1016/j.apmr.2016.01.002
doi: 10.1016/j.apmr.2016.01.002
pubmed: 26805770
Barbonetti A, D’Andrea S, Castellini C, Totaro M, Muselli M, Cavallo F, Felzani G, Necozione S, Francavilla S (2021) Erectile dysfunction is the main correlate of depression in men with chronic spinal cord injury. J Clin Med 10(10):2090. https://doi.org/10.3390/jcm10102090
doi: 10.3390/jcm10102090
pubmed: 34068060
pmcid: 8152485
Barbonetti A, Cavallo F, D’Andrea S, Muselli M, Felzani G, Francavilla S, Francavilla F (2017) Lower vitamin D levels are associated with de-pression in people with chronic spinal cord injury. Arch Phys Med Rehabil 98(5):940–946. https://doi.org/10.1016/j.apmr.2016.11.006
doi: 10.1016/j.apmr.2016.11.006
pubmed: 27986521
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7):412–419. https://doi.org/10.1007/BF00280883
doi: 10.1007/BF00280883
pubmed: 3899825
Kuk JL, Ardern CI (2010) Age and sex differences in the clustering of metabolic syndrome factors: association with mortality risk. Diabetes Care 33(11):2457–2461. https://doi.org/10.2337/dc10-0942
doi: 10.2337/dc10-0942
pubmed: 20699434
pmcid: 2963512
Stampacchia G, Gerini A, Morganti R, Felzani G, Marani M, Massone A, Onesta MP, Capeci W, Andretta E, Campus G, Marchino C, Cicioni V (2022) Research Partners. Pain characteristics in Italian people with spinal cord injury: a multicentre study. Spinal Cord 60(7):604–611. https://doi.org/10.1038/s41393-021-00656-y
doi: 10.1038/s41393-021-00656-y
pubmed: 34183775
Craig AR, Hancock KM, Dickson HG (1994) A longitudinal investigation into anxiety and depression in the first 2 years following a spinal cord injury. Paraplegia 32(10):675–679. https://doi.org/10.1038/sc.1994.109
doi: 10.1038/sc.1994.109
pubmed: 7831074
Macleod AD (1988) Self-neglect of spinal injured patients. Paraplegia 26(5):340–349. https://doi.org/10.1038/sc.1988.48
doi: 10.1038/sc.1988.48
pubmed: 3205573
DeVivo MJ, Black KJ, Richards JS, Stover SL (1991) Suicide following spinal cord injury. Paraplegia 29(9):620–627. https://doi.org/10.1038/sc.1991.91
doi: 10.1038/sc.1991.91
pubmed: 1787986
Gupta N, White KT, Sandford PR (2006) Body mass index in spinal cord injury—a retrospective study. Spinal Cord 44(2):92–94. https://doi.org/10.1038/sj.sc.3101790
doi: 10.1038/sj.sc.3101790
pubmed: 16030513
Shin JW, Kim T, Lee BS, Kim O (2022) Factors affecting metabolic syndrome in individuals with chronic spinal cord injury. Ann Rehabil Med 46(1):24–32. https://doi.org/10.5535/arm.21144
doi: 10.5535/arm.21144
pubmed: 35272437
pmcid: 8913272
Weaver FM, Collins EG, Kurichi J, Miskevics S, Smith B, Rajan S, Gater D (2007) Prevalence of obesity and high blood pressure in veterans with spinal cord injuries and disorders: a retrospective review. Am J Phys Med Rehabil 86(1):22–29. https://doi.org/10.1097/phm.0b013e31802b8937
doi: 10.1097/phm.0b013e31802b8937
pubmed: 17304685
Kazamel M, Stino AM, Smith AG (2021) Metabolic syndrome and peripheral neuropathy. Muscle Nerve 63(3):285–293. https://doi.org/10.1002/mus.27086
doi: 10.1002/mus.27086
pubmed: 33098165
Bonomo R, Kramer S, Aubert VM (2022) Obesity-associated neuropathy: recent preclinical studies and proposed mechanisms. Antioxid Redox Signal 37(7–9):597–612. https://doi.org/10.1089/ars.2021.0278
doi: 10.1089/ars.2021.0278
pubmed: 35152780
pmcid: 9527047
Stavniichuk R, Shevalye H, Lupachyk S, Obrosov A, Groves JT, Obrosova IG, Yorek MA (2014) Peroxynitrite and protein nitration in the pathogenesis of diabetic peripheral neuropathy. Diabetes Metab Res Rev 30(8):669–678. https://doi.org/10.1002/dmrr.2549
doi: 10.1002/dmrr.2549
pubmed: 24687457
pmcid: 4177961
Rumora AE, LoGrasso G, Haidar JA, Dolkowski JJ, Lentz SI, Feldman EL (2019) Chain length of saturated fatty acids regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res 60(1):58–70. https://doi.org/10.1194/jlr.M086843
doi: 10.1194/jlr.M086843
pubmed: 30442656
Chowdhury SK, Smith DR, Fernyhough P (2013) The role of aberrant mitochondrial bioenergetics in diabetic neuropathy. Neurobiol Dis 51:56–65. https://doi.org/10.1016/j.nbd.2012.03.016
doi: 10.1016/j.nbd.2012.03.016
pubmed: 22446165
Fernyhough P (2015) Mitochondrial dysfunction in diabetic neuropathy: a series of unfortunate metabolic events. Curr Diab Rep 15(11):89. https://doi.org/10.1007/s11892-015-0671-9
doi: 10.1007/s11892-015-0671-9
pubmed: 26370700
Shoelson SE, Lee J, Goldfine AB (2006) Inflammation and insulin resistance. J Clin Invest 116(7):1793–1801. https://doi.org/10.1172/JCI29069.Erratum.In:JClinInvest.2006Aug;116(8):2308
doi: 10.1172/JCI29069.Erratum.In:JClinInvest.2006Aug;116(8):2308
pubmed: 16823477
pmcid: 1483173
Kellogg AP, Wiggin TD, Larkin DD, Hayes JM, Stevens MJ, Pop-Busui R (2007) Protective effects of cyclooxygenase-2 gene inactivation against peripheral nerve dysfunction and intraepidermal nerve fiber loss in experimental diabetes. Diabetes 56(12):2997–3005. https://doi.org/10.2337/db07-0740
doi: 10.2337/db07-0740
pubmed: 17720896
Solinsky R, Betancourt L, Schmidt-Read M, Kupfer M, Owens M, Schwab JM, Dusseau NB 2nd, Szlachcic Y, Sutherland L, Taylor JA, Nash MS (2022) Acute spinal cord injury is associated with prevalent cardiometabolic risk factors. Arch Phys Med Rehabil 103(4):696–701. https://doi.org/10.1016/j.apmr.2021.04.022
doi: 10.1016/j.apmr.2021.04.022
pubmed: 34062117
Farkas GJ, Gordon PS, Trewick N, Gorgey AS, Dolbow DR, Tiozzo E, Berg AS, Gater DR Jr (2021) Comparison of various indices in identifying insulin resistance and diabetes in chronic spinal cord injury. J Clin Med 10(23):5591. https://doi.org/10.3390/jcm10235591
doi: 10.3390/jcm10235591
pubmed: 34884295
pmcid: 8658352