Human coronavirus OC43-elicited CD4
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
26 Jan 2024
26 Jan 2024
Historique:
received:
18
08
2023
accepted:
10
01
2024
medline:
27
1
2024
pubmed:
27
1
2024
entrez:
26
1
2024
Statut:
epublish
Résumé
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1
Identifiants
pubmed: 38278784
doi: 10.1038/s41467-024-45043-2
pii: 10.1038/s41467-024-45043-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
787Subventions
Organisme : NIAID NIH HHS
ID : U01 AI149644
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI142790
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Noh, J. Y., Jeong, H. W. & Shin, E. C. SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern. Signal Transduct. Target. Ther. 6, 203 (2021).
pubmed: 34023862
pmcid: 8140323
doi: 10.1038/s41392-021-00623-2
Andrews, N. et al. Covid-19 vaccine effectiveness against the omicron (B.1.1.529) variant. New Engl. J. Med. 386, 1532–1546 (2022).
pubmed: 35249272
doi: 10.1056/NEJMoa2119451
Geers, D. et al. SARS-CoV-2 variants of concern partially escape humoral but not T-cell responses in COVID-19 convalescent donors and vaccinees. Sci. Immunol. 6, eabj1750 (2021).
pubmed: 34035118
pmcid: 9268159
doi: 10.1126/sciimmunol.abj1750
Nasreen, S. et al. Effectiveness of COVID-19 vaccines against symptomatic SARS-CoV-2 infection and severe outcomes with variants of concern in Ontario. Nat. Microbiol. 7, 379–385 (2022).
pubmed: 35132198
doi: 10.1038/s41564-021-01053-0
Wratil, P. R. et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat. Med. 28, 496–503 (2022).
pubmed: 35090165
doi: 10.1038/s41591-022-01715-4
Sakurai, A. et al. Natural history of asymptomatic SARS-CoV-2 infection. New Engl. J. Med. 383, 885–886 (2020).
pubmed: 32530584
doi: 10.1056/NEJMc2013020
Spudich, S. & Nath, A. Nervous system consequences of COVID-19. Science 375, 267–269 (2022).
pubmed: 35050660
doi: 10.1126/science.abm2052
Xie, Y., Bowe, B. & Al-Aly, Z. Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status. Nat. Commun. 12, 6571 (2021).
pubmed: 34772922
pmcid: 8589966
doi: 10.1038/s41467-021-26513-3
Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).
pubmed: 35132265
pmcid: 8938267
doi: 10.1038/s41591-022-01689-3
Guan, W. J. et al. Clinical characteristics of coronavirus disease 2019 in China. New Engl. J. Med. 382, 1708–1720 (2020).
pubmed: 32109013
doi: 10.1056/NEJMoa2002032
Al-Aly, Z., Xie, Y. & Bowe, B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594, 259–264 (2021).
pubmed: 33887749
doi: 10.1038/s41586-021-03553-9
Muscogiuri, G. et al. Low-grade inflammation, CoVID-19, and obesity: clinical aspect and molecular insights in childhood and adulthood. Int. J. Obes. 46, 1254–1261 (2022).
doi: 10.1038/s41366-022-01111-5
Ng, W. H. et al. Comorbidities in SARS-CoV-2 patients: a systematic review and meta-analysis. mBio 12, e03647–20 (2021).
pubmed: 33563817
pmcid: 7885108
doi: 10.1128/mBio.03647-20
Price-Haywood, E. G., Burton, J., Fort, D. & Seoane, L. Hospitalization and mortality among black patients and white patients with Covid-19. New Engl. J. Med. 382, 2534–2543 (2020).
pubmed: 32459916
doi: 10.1056/NEJMsa2011686
O’Driscoll, M. et al. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590, 140–145 (2021).
pubmed: 33137809
doi: 10.1038/s41586-020-2918-0
Klang, E. et al. Severe obesity as an independent risk factor for covid-19 mortality in hospitalized patients younger than 50. Obesity (Silver Spring) 28, 1595–1599 (2020).
pubmed: 32445512
doi: 10.1002/oby.22913
Jin, J. M. et al. Gender differences in patients with COVID-19: focus on severity and mortality. Front. Public Health 8, 152 (2020).
pubmed: 32411652
pmcid: 7201103
doi: 10.3389/fpubh.2020.00152
Mateus, J. et al. Selective and cross-reactive SARS-CoV-2 T cell epitopes in unexposed humans. Science 370, 89–94 (2020).
pubmed: 32753554
pmcid: 7574914
doi: 10.1126/science.abd3871
Dykema, A. G. et al. Functional characterization of CD4+ T cell receptors crossreactive for SARS-CoV-2 and endemic coronaviruses. J. Clin. Invest. 131, e146922 (2021).
pubmed: 33830946
pmcid: 8121515
doi: 10.1172/JCI146922
Woldemeskel, B. A. et al. CD4+ T cells from COVID-19 mRNA vaccine recipients recognize a conserved epitope present in diverse coronaviruses. J. Clin. Invest. 132, e156083 (2022).
pubmed: 35061630
pmcid: 8884904
doi: 10.1172/JCI156083
Le Bert, N. et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature 584, 457–462 (2020).
pubmed: 32668444
doi: 10.1038/s41586-020-2550-z
Tan, H. X. et al. Adaptive immunity to human coronaviruses is widespread but low in magnitude. Clin. Transl. Immunol. 10, e1264 (2021).
doi: 10.1002/cti2.1264
Grifoni, A. et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.e1415 (2020).
pubmed: 32473127
pmcid: 7237901
doi: 10.1016/j.cell.2020.05.015
Ni, L. et al. Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals. Immunity 52, 971–977.e973 (2020).
pubmed: 32413330
pmcid: 7196424
doi: 10.1016/j.immuni.2020.04.023
Peng, Y. et al. Broad and strong memory CD4(+) and CD8(+) T cells induced by SARS-CoV-2 in UK convalescent individuals following COVID-19. Nat. Immunol. 21, 1336–1345 (2020).
pubmed: 32887977
pmcid: 7611020
doi: 10.1038/s41590-020-0782-6
Weiskopf, D. et al. Phenotype and kinetics of SARS-CoV-2-specific T cells in COVID-19 patients with acute respiratory distress syndrome. Sci. Immunol. 5, eabd2071 (2020).
pubmed: 32591408
pmcid: 7319493
doi: 10.1126/sciimmunol.abd2071
Kundu, R. et al. Cross-reactive memory T cells associate with protection against SARS-CoV-2 infection in COVID-19 contacts. Nat. Commun. 13, 80 (2022).
pubmed: 35013199
pmcid: 8748880
doi: 10.1038/s41467-021-27674-x
Lineburg, K. E. et al. CD8(+) T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope cross-react with selective seasonal coronaviruses. Immunity 54, 1055–1065.e1055 (2021).
pubmed: 33945786
pmcid: 8043652
doi: 10.1016/j.immuni.2021.04.006
Braun, J. et al. SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19. Nature 587, 270–274 (2020).
pubmed: 32726801
doi: 10.1038/s41586-020-2598-9
Garcia-Jimenez, A. F. et al. Cross-reactive cellular, but not humoral, immunity is detected between OC43 and SARS-CoV-2 NPs in people not infected with SARS-CoV-2: Possible role of cT(FH) cells. J. Leukoc. Biol. 112, 339–346 (2022).
pubmed: 35384035
doi: 10.1002/JLB.4COVCRA0721-356RRR
Westphal, T. et al. Evidence for broad cross-reactivity of the SARS-CoV-2 NSP12-directed CD4(+) T-cell response with pre-primed responses directed against common cold coronaviruses. Front. Immunol. 14, 1182504 (2023).
pubmed: 37215095
pmcid: 10196118
doi: 10.3389/fimmu.2023.1182504
Diniz, M. O. et al. Airway-resident T cells from unexposed individuals cross-recognize SARS-CoV-2. Nat. Immunol. 23, 1324–1329 (2022).
pubmed: 36038709
pmcid: 9477726
doi: 10.1038/s41590-022-01292-1
Mesel-Lemoine, M. et al. A human coronavirus responsible for the common cold massively kills dendritic cells but not monocytes. J. Virol. 86, 7577–7587 (2012).
pubmed: 22553325
pmcid: 3416289
doi: 10.1128/JVI.00269-12
Gorse, G. J., Patel, G. B., Vitale, J. N. & O’Connor, T. Z. Prevalence of antibodies to four human coronaviruses is lower in nasal secretions than in serum. Clin. Vaccine Immunol. 17, 1875–1880 (2010).
pubmed: 20943876
pmcid: 3008199
doi: 10.1128/CVI.00278-10
Ellis, P., Somogyvari, F., Virok, D. P., Noseda, M. & McLean, G. R. Decoding Covid-19 with the SARS-CoV-2 Genome. Curr. Genet. Med. Rep. 9, 1–12 (2021).
pubmed: 33457109
pmcid: 7794078
doi: 10.1007/s40142-020-00197-5
Loyal, L. et al. Cross-reactive CD4(+) T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science 374, eabh1823 (2021).
pubmed: 34465633
pmcid: 10026850
doi: 10.1126/science.abh1823
Mateus, J. et al. Low-dose mRNA-1273 COVID-19 vaccine generates durable memory enhanced by cross-reactive T cells. Science374, eabj9853 (2021).
pubmed: 34519540
pmcid: 8542617
doi: 10.1126/science.abj9853
Bacher, P. et al. Low-avidity CD4(+) T cell responses to SARS-CoV-2 in unexposed individuals and humans with severe COVID-19. Immunity 53, 1258–1271.e1255 (2020).
pubmed: 33296686
pmcid: 7689350
doi: 10.1016/j.immuni.2020.11.016
Augusto, D. G. et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature 620, 128–136 (2023).
pubmed: 37468623
pmcid: 10396966
doi: 10.1038/s41586-023-06331-x
Gouma, S. et al. Health care worker seromonitoring reveals complex relationships between common coronavirus antibodies and COVID-19 symptom duration. JCI Insight 6, e150449 (2021).
pubmed: 34237028
pmcid: 8410018
doi: 10.1172/jci.insight.150449
Mallajosyula, V. et al. CD8(+) T cells specific for conserved coronavirus epitopes correlate with milder disease in COVID-19 patients. Sci. Immunol. 6, eabg5669 (2021).
pubmed: 34210785
pmcid: 8975171
doi: 10.1126/sciimmunol.abg5669
Bonifacius, A. et al. COVID-19 immune signatures reveal stable antiviral T cell function despite declining humoral responses. Immunity 54, 340–354.e346 (2021).
pubmed: 33567252
pmcid: 7871825
doi: 10.1016/j.immuni.2021.01.008
Zellweger, R. M., Prestwood, T. R. & Shresta, S. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 7, 128–139 (2010).
pubmed: 20153282
pmcid: 2824513
doi: 10.1016/j.chom.2010.01.004
Zellweger, R. M. et al. CD8+ T cells can mediate short-term protection against heterotypic dengue virus reinfection in mice. J. Virol. 89, 6494–6505 (2015).
pubmed: 25855749
pmcid: 4474296
doi: 10.1128/JVI.00036-15
Balsitis, S. J. et al. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLoS Pathog. 6, e1000790 (2010).
pubmed: 20168989
pmcid: 2820409
doi: 10.1371/journal.ppat.1000790
Wen, J. et al. Dengue virus-reactive CD8(+) T cells mediate cross-protection against subsequent Zika virus challenge. Nat. Commun. 8, 1459 (2017).
pubmed: 29129917
pmcid: 5682281
doi: 10.1038/s41467-017-01669-z
Wen, J. et al. CD4(+) T cells cross-reactive with dengue and zika viruses protect against zika virus infection. Cell Rep. 31, 107566 (2020).
pubmed: 32348763
pmcid: 7261136
doi: 10.1016/j.celrep.2020.107566
Regla-Nava, J. A. et al. Cross-reactive Dengue virus-specific CD8(+) T cells protect against Zika virus during pregnancy. Nat. Commun. 9, 3042 (2018).
pubmed: 30072692
pmcid: 6072705
doi: 10.1038/s41467-018-05458-0
Katzelnick, L. C. et al. Zika virus infection enhances future risk of severe dengue disease. Science 369, 1123–1128 (2020).
pubmed: 32855339
pmcid: 8274975
doi: 10.1126/science.abb6143
Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science358, 929–932 (2017).
pubmed: 29097492
pmcid: 5858873
doi: 10.1126/science.aan6836
Salje, H. et al. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature 557, 719–723 (2018).
pubmed: 29795354
pmcid: 6064976
doi: 10.1038/s41586-018-0157-4
Fowler, A. M. et al. Maternally acquired zika antibodies enhance dengue disease severity in mice. Cell Host Microbe 24, 743–750.e745 (2018).
pubmed: 30439343
pmcid: 6250068
doi: 10.1016/j.chom.2018.09.015
Gordon, A. et al. Prior dengue virus infection and risk of Zika: a pediatric cohort in Nicaragua. PLoS Med. 16, e1002726 (2019).
pubmed: 30668565
pmcid: 6342296
doi: 10.1371/journal.pmed.1002726
Rodriguez-Barraquer, I. et al. Impact of preexisting dengue immunity on Zika virus emergence in a dengue endemic region. Science 363, 607–610 (2019).
pubmed: 30733412
pmcid: 8221194
doi: 10.1126/science.aav6618
Pedroso, C. et al. Cross-protection of dengue virus infection against congenital zika syndrome, Northeastern Brazil. Emerg. Infect. Dis. 25, 1485–1493 (2019).
pubmed: 31075077
pmcid: 6649334
doi: 10.3201/eid2508.190113
Sridhar, S. et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. New Engl. J. Med. 379, 327–340 (2018).
pubmed: 29897841
doi: 10.1056/NEJMoa1800820
Sharp, T. M. et al. Knowledge gaps in the epidemiology of severe dengue impede vaccine evaluation. Lancet Infect. Dis. 22, e42–e51 (2022).
pubmed: 34265259
doi: 10.1016/S1473-3099(20)30871-9
Katzelnick, L. C., Bos, S. & Harris, E. Protective and enhancing interactions among dengue viruses 1-4 and Zika virus. Curr. Opin. Virol. 43, 59–70 (2020).
pubmed: 32979816
pmcid: 7655628
doi: 10.1016/j.coviro.2020.08.006
Valentine, K. M., Croft, M. & Shresta, S. Protection against dengue virus requires a sustained balance of antibody and T cell responses. Curr. Opin. Virol. 43, 22–27 (2020).
pubmed: 32798886
pmcid: 7655611
doi: 10.1016/j.coviro.2020.07.018
Ngono, A. E. & Shresta, S. Immune response to dengue and zika. Annu. Rev. Immunol. 36, 279–308 (2018).
pubmed: 29345964
pmcid: 5910217
doi: 10.1146/annurev-immunol-042617-053142
Hassert, M., Brien, J. D. & Pinto, A. K. Mouse models of heterologous flavivirus immunity: a role for cross-reactive T cells. Front. Immunol. 10, 1045 (2019).
pubmed: 31143185
pmcid: 6520664
doi: 10.3389/fimmu.2019.01045
Gonzalez-Galarza, F. F. et al. Allele frequency net database (AFND) 2020 update: gold-standard data classification, open access genotype data and new query tools. Nucleic Acids Res. 48, D783–D788 (2020).
pubmed: 31722398
Solberg, O. D. et al. Balancing selection and heterogeneity across the classical human leukocyte antigen loci: a meta-analytic review of 497 population studies. Hum. Immunol. 69, 443–464 (2008).
pubmed: 18638659
pmcid: 2632948
doi: 10.1016/j.humimm.2008.05.001
Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 6, eabl4340 (2021).
pubmed: 34413139
pmcid: 8521484
doi: 10.1126/sciimmunol.abl4340
Bastard, P. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).
pubmed: 32972996
pmcid: 7857397
doi: 10.1126/science.abd4585
Koning, R., Bastard, P., Casanova, J. L., Brouwer, M. C. & van de Beek, D. with the Amsterdam UMCC-BI. Autoantibodies against type I interferons are associated with multi-organ failure in COVID-19 patients. Intensive Care Med. 47, 704–706 (2021).
pubmed: 33835207
pmcid: 8034036
doi: 10.1007/s00134-021-06392-4
Troya, J. et al. Neutralizing autoantibodies to type I IFNs in >10% of patients with severe COVID-19 pneumonia hospitalized in Madrid, Spain. J. Clin. Immunol. 41, 914–922 (2021).
pubmed: 33851338
pmcid: 8043439
doi: 10.1007/s10875-021-01036-0
Vazquez, S. E. et al. Neutralizing autoantibodies to type I interferons in COVID-19 convalescent donor plasma. J. Clin. Immunol. 41, 1169–1171 (2021).
pubmed: 34009544
pmcid: 8132742
doi: 10.1007/s10875-021-01060-0
Wang, E. Y. et al. Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021).
pubmed: 34010947
doi: 10.1038/s41586-021-03631-y
Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).
pubmed: 32972995
pmcid: 7857407
doi: 10.1126/science.abd4570
Elong Ngono, A. et al. Protective role of cross-reactive CD8 T cells against dengue virus infection. EBioMedicine 13, 284–293 (2016).
pubmed: 27746192
pmcid: 5264312
doi: 10.1016/j.ebiom.2016.10.006
Weiskopf, D. et al. Immunodominance changes as a function of the infecting dengue virus serotype and primary versus secondary infection. J. Virol. 88, 11383–11394 (2014).
pubmed: 25056881
pmcid: 4178794
doi: 10.1128/JVI.01108-14
Weiskopf, D. et al. Insights into HLA-restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design. J. Immunol. 187, 4268–4279 (2011).
pubmed: 21918184
doi: 10.4049/jimmunol.1101970
Wen, J. et al. Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8(+) T cells. Nat. Microbiol. 2, 17036 (2017).
pubmed: 28288094
pmcid: 5918137
doi: 10.1038/nmicrobiol.2017.36
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).
pubmed: 30357391
doi: 10.1093/nar/gky1006
Leist, S. R. et al. A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell 183, 1070–1085.e1012 (2020).
pubmed: 33031744
pmcid: 7510428
doi: 10.1016/j.cell.2020.09.050
Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602, 294–299 (2022).
pubmed: 34818667
doi: 10.1038/s41586-021-04245-0
Pan, T. et al. Infection of wild-type mice by SARS-CoV-2 B.1.351 variant indicates a possible novel cross-species transmission route. Signal Transduct. Target Ther. 6, 420 (2021).
pubmed: 34907154
pmcid: 8669038
doi: 10.1038/s41392-021-00848-1
Ferretti, A. P. et al. Unbiased screens show CD8(+) T cells of COVID-19 patients recognize shared epitopes in SARS-CoV-2 that largely reside outside the spike protein. Immunity 53, 1095–1107.e1093 (2020).
pubmed: 33128877
pmcid: 7574860
doi: 10.1016/j.immuni.2020.10.006
Nguyen, T. H. O. et al. CD8(+) T cells specific for an immunodominant SARS-CoV-2 nucleocapsid epitope display high naive precursor frequency and TCR promiscuity. Immunity 54, 1066–1082.e1065 (2021).
pubmed: 33951417
pmcid: 8049468
doi: 10.1016/j.immuni.2021.04.009
Schulien, I. et al. Characterization of pre-existing and induced SARS-CoV-2-specific CD8(+) T cells. Nat. Med. 27, 78–85 (2021).
pubmed: 33184509
doi: 10.1038/s41591-020-01143-2
Sekine, T. et al. Robust T cell immunity in convalescent individuals with asymptomatic or mild COVID-19. Cell 183, 158–168.e114 (2020).
pubmed: 32979941
pmcid: 7427556
doi: 10.1016/j.cell.2020.08.017
Painter, M. M. et al. Rapid induction of antigen-specific CD4(+) T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity 54, 2133–2142.e2133 (2021).
pubmed: 34453880
pmcid: 8361141
doi: 10.1016/j.immuni.2021.08.001
Dan, J. M. et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science 371, eabf4063 (2021).
pubmed: 33408181
doi: 10.1126/science.abf4063
Hicks, J. et al. Serologic cross-reactivity of SARS-CoV-2 with endemic and seasonal betacoronaviruses. J. Clin. Immunol. 41, 906–913 (2021).
pubmed: 33725211
pmcid: 7962425
doi: 10.1007/s10875-021-00997-6
Saletti, G. et al. Older adults lack SARS CoV-2 cross-reactive T lymphocytes directed to human coronaviruses OC43 and NL63. Sci. Rep. 10, 21447 (2020).
pubmed: 33293664
pmcid: 7722724
doi: 10.1038/s41598-020-78506-9
Nickbakhsh, S. et al. Epidemiology of seasonal coronaviruses: establishing the context for the emergence of coronavirus disease 2019. J. Infect. Dis. 222, 17–25 (2020).
pubmed: 32296837
pmcid: 7184404
doi: 10.1093/infdis/jiaa185
Killerby, M. E. et al. Human coronavirus circulation in the United States 2014-2017. J. Clin. Virol. 101, 52–56 (2018).
pubmed: 29427907
pmcid: 7106380
doi: 10.1016/j.jcv.2018.01.019
Snyder, T. M. et al. Magnitude and dynamics of the T-cell response to SARS-CoV-2 infection at both individual and population levels. medRxiv https://doi.org/10.1101/2020.07.31.20165647 (2020).
Tarke, A. et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. Cell Rep. Med. 2, 100204 (2021).
pubmed: 33521695
pmcid: 7837622
doi: 10.1016/j.xcrm.2021.100204
Saini, S. K. et al. SARS-CoV-2 genome-wide T cell epitope mapping reveals immunodominance and substantial CD8(+) T cell activation in COVID-19 patients. Sci. Immunol. 6, eabf7550 (2021).
pubmed: 33853928
pmcid: 8139428
doi: 10.1126/sciimmunol.abf7550
Quadeer, A. A., Ahmed, S. F. & McKay, M. R. Landscape of epitopes targeted by T cells in 852 individuals recovered from COVID-19: Meta-analysis, immunoprevalence, and web platform. Cell reports. Medicine 2, 100312 (2021).
pubmed: 34056627
pmcid: 8139281
Nelde, A. et al. SARS-CoV-2-derived peptides define heterologous and COVID-19-induced T cell recognition. Nat. Immunol. 22, 74–85 (2021).
pubmed: 32999467
doi: 10.1038/s41590-020-00808-x
Grifoni, A. et al. A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2. Cell Host Microbe 27, 671–680.e672 (2020).
pubmed: 32183941
pmcid: 7142693
doi: 10.1016/j.chom.2020.03.002
Kared, H. et al. SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals. J. Clin. Invest. 131, e145476 (2021).
pubmed: 33427749
pmcid: 7919723
doi: 10.1172/JCI145476
Ng, O. W. et al. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34, 2008–2014 (2016).
pubmed: 26954467
pmcid: 7115611
doi: 10.1016/j.vaccine.2016.02.063
Prakash, S. et al. Genome-wide B cell, CD4(+), and CD8(+) T cell epitopes that are highly conserved between human and animal coronaviruses, identified from SARS-CoV-2 as targets for preemptive pan-coronavirus vaccines. J. Immunol. 206, 2566–2582 (2021).
pubmed: 33911008
doi: 10.4049/jimmunol.2001438
Shen, Y et al. Ancestral origins are associated with SARS-CoV-2 susceptibility and protection in a Florida patient population. bioRxiv https://doi.org/10.1101/2022.03.30.486345 (2022).
Keller, M. D. et al. SARS-CoV-2-specific T cells are rapidly expanded for therapeutic use and target conserved regions of the membrane protein. Blood 136, 2905–2917 (2020).
pubmed: 33331927
pmcid: 7746091
doi: 10.1182/blood.2020008488
Tan, A. T. et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 34, 108728 (2021).
pubmed: 33516277
pmcid: 7826084
doi: 10.1016/j.celrep.2021.108728
Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity 41, 529–542 (2014).
pubmed: 25367570
pmcid: 4223692
doi: 10.1016/j.immuni.2014.10.004
Ueno, H., Banchereau, J. & Vinuesa, C. G. Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol. 16, 142–152 (2015).
pubmed: 25594465
pmcid: 4459756
doi: 10.1038/ni.3054
Heide, J. et al. Broadly directed SARS-CoV-2-specific CD4+ T cell response includes frequently detected peptide specificities within the membrane and nucleoprotein in patients with acute and resolved COVID-19. PLoS Pathog. 17, e1009842 (2021).
pubmed: 34529740
pmcid: 8445433
doi: 10.1371/journal.ppat.1009842
Karsten, H. et al. High-resolution analysis of individual spike peptide-specific CD4(+) T-cell responses in vaccine recipients and COVID-19 patients. Clin. Transl. Immunol. 11, e1410 (2022).
doi: 10.1002/cti2.1410
Corey, L. et al. SARS-CoV-2 variants in patients with immunosuppression. New Engl. J. Med. 385, 562–566 (2021).
pubmed: 34347959
doi: 10.1056/NEJMsb2104756
Redd, A. D. et al. CD8+ T-cell responses in COVID-19 convalescent individuals target conserved epitopes from multiple prominent SARS-CoV-2 circulating variants. Open Forum Infect. Dis. 8, ofab143 (2021).
pubmed: 34322559
pmcid: 8083629
doi: 10.1093/ofid/ofab143
Naranbhai, V. et al. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all individuals. Cell 185, 1041–1051.e1046 (2022).
pubmed: 35202566
pmcid: 8810349
doi: 10.1016/j.cell.2022.01.029
Keeton, R. et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature 603, 488–492 (2022).
pubmed: 35102311
pmcid: 8930768
doi: 10.1038/s41586-022-04460-3
Gao, Y. et al. Ancestral SARS-CoV-2-specific T cells cross-recognize the Omicron variant. Nat. Med. 28, 472–476 (2022).
pubmed: 35042228
pmcid: 8938268
doi: 10.1038/s41591-022-01700-x
GeurtsvanKessel, C. H. et al. Divergent SARS-CoV-2 Omicron-reactive T and B cell responses in COVID-19 vaccine recipients. Sci. Immunol. 7, eabo2202 (2022).
pubmed: 35113647
doi: 10.1126/sciimmunol.abo2202
Sun, J. et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 182, 734–743.e735 (2020).
pubmed: 32643603
pmcid: 7284240
doi: 10.1016/j.cell.2020.06.010
McMahan, K. et al. Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 590, 630–634 (2021).
pubmed: 33276369
doi: 10.1038/s41586-020-03041-6
Soresina, A. et al. Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr. Allergy Immunol. 31, 565–569 (2020).
pubmed: 32319118
pmcid: 7264678
doi: 10.1111/pai.13263
Bange, E. M. et al. CD8(+) T cells contribute to survival in patients with COVID-19 and hematologic cancer. Nat. Med. 27, 1280–1289 (2021).
pubmed: 34017137
pmcid: 8291091
doi: 10.1038/s41591-021-01386-7
Zhuang, Z. et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J. Exp. Med. 218, e20202187 (2021).
pubmed: 33464307
pmcid: 7814348
doi: 10.1084/jem.20202187
Israelow, B. et al. Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2. Sci. Immunol. 6, eabl4509 (2021).
pubmed: 34623900
pmcid: 9047536
doi: 10.1126/sciimmunol.abl4509
Rydyznski Moderbacher, C. et al. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell 183, 996–1012.e1019 (2020).
pubmed: 33010815
pmcid: 7494270
doi: 10.1016/j.cell.2020.09.038
Nesterenko, P. A. et al. HLA-A(*)02:01 restricted T cell receptors against the highly conserved SARS-CoV-2 polymerase cross-react with human coronaviruses. Cell Rep. 37, 110167 (2021).
pubmed: 34919800
pmcid: 8660260
doi: 10.1016/j.celrep.2021.110167
Le Bert, N. et al. Highly functional virus-specific cellular immune response in asymptomatic SARS-CoV-2 infection. J. Exp. Med. 218, e20202617 (2021).
pubmed: 33646265
pmcid: 7927662
doi: 10.1084/jem.20202617
Tan, C. C. S. et al. Pre-existing T cell-mediated cross-reactivity to SARS-CoV-2 cannot solely be explained by prior exposure to endemic human coronaviruses. Infect. Genet. Evol. 95, 105075 (2021).
pubmed: 34509646
pmcid: 8428999
doi: 10.1016/j.meegid.2021.105075
Eggenhuizen, P. J. et al. Heterologous immunity between SARS-CoV-2 and pathogenic bacteria. Front. Immunol. 13, 821595 (2022).
pubmed: 35154139
pmcid: 8829141
doi: 10.3389/fimmu.2022.821595
Low, J. S. et al. Clonal analysis of immunodominance and cross-reactivity of the CD4 T cell response to SARS-CoV-2. Science 372, 1336–1341 (2021).
pubmed: 34006597
doi: 10.1126/science.abg8985
Sagar, M. et al. Recent endemic coronavirus infection is associated with less-severe COVID-19. J. Clin. Invest. 131, e143380 (2021).
pubmed: 32997649
pmcid: 7773342
doi: 10.1172/JCI143380
Humbert, M. et al. Functional SARS-CoV-2 cross-reactive CD4(+) T cells established in early childhood decline with age. Proc. Natl Acad. Sci. USA 120, e2220320120 (2023).
pubmed: 36917669
pmcid: 10041119
doi: 10.1073/pnas.2220320120
Zhao, J. et al. Airway memory CD4(+) T cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44, 1379–1391 (2016).
pubmed: 27287409
pmcid: 4917442
doi: 10.1016/j.immuni.2016.05.006
Poston, D. et al. Absence of severe acute respiratory syndrome coronavirus 2 neutralizing activity in prepandemic sera from individuals with recent seasonal coronavirus infection. Clin. Infect. Dis. 73, e1208–e1211 (2021).
pubmed: 33270134
doi: 10.1093/cid/ciaa1803
Ercanoglu, M. S. et al. No substantial preexisting B cell immunity against SARS-CoV-2 in healthy adults. iScience 25, 103951 (2022).
pubmed: 35224466
pmcid: 8857777
doi: 10.1016/j.isci.2022.103951
Pinto, D. et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 373, 1109–1116 (2021).
pubmed: 34344823
pmcid: 9268357
doi: 10.1126/science.abj3321
Sun, X. et al. Neutralization mechanism of a human antibody with pan-coronavirus reactivity including SARS-CoV-2. Nat. Microbiol. 7, 1063–1074 (2022).
pubmed: 35773398
doi: 10.1038/s41564-022-01155-3
Dacon, C. et al. Broadly neutralizing antibodies target the coronavirus fusion peptide. Science 377, 728–735 (2022).
pubmed: 35857439
doi: 10.1126/science.abq3773
Low, J. S. et al. ACE2-binding exposes the SARS-CoV-2 fusion peptide to broadly neutralizing coronavirus antibodies. Science 377, 735–742 (2022).
pubmed: 35857703
doi: 10.1126/science.abq2679
Anderson, E. M. et al. Seasonal human coronavirus antibodies are boosted upon SARS-CoV-2 infection but not associated with protection. Cell 184, 1858–1864.e1810 (2021).
pubmed: 33631096
pmcid: 7871851
doi: 10.1016/j.cell.2021.02.010
Ng, K. W. et al. Preexisting and de novo humoral immunity to SARS-CoV-2 in humans. Science 370, 1339–1343 (2020).
pubmed: 33159009
pmcid: 7857411
doi: 10.1126/science.abe1107
Poston, D et al. Absence of SARS-CoV-2 neutralizing activity in pre-pandemic sera from individuals with recent seasonal coronavirus infection. medRxiv https://doi.org/10.1101/2020.10.08.20209650 (2020).
Premkumar, L. et al. The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients. Sci. Immunol. 5, eabc8413 (2020).
pubmed: 32527802
pmcid: 7292505
doi: 10.1126/sciimmunol.abc8413
Grifoni, A. et al. Prior dengue virus exposure shapes T cell immunity to Zika Virus in humans. J. Virol. 91, e01469–17 (2017).
pubmed: 28978707
pmcid: 5709580
doi: 10.1128/JVI.01469-17
Wragg, K. M. et al. Establishment and recall of SARS-CoV-2 spike epitope-specific CD4(+) T cell memory. Nat. Immunol. 23, 768–780 (2022).
pubmed: 35314848
doi: 10.1038/s41590-022-01175-5
Francis, J. M. et al. Allelic variation in class I HLA determines CD8(+) T cell repertoire shape and cross-reactive memory responses to SARS-CoV-2. Sci. Immunol. 7, eabk3070 (2022).
pubmed: 34793243
Heitmann, J. S. et al. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature 601, 617–622 (2022).
pubmed: 34814158
doi: 10.1038/s41586-021-04232-5
Bastard, P. Why do people die from COVID-19? Science 375, 829–830 (2022).
pubmed: 35201875
doi: 10.1126/science.abn9649
Minervina, A. A. et al. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8 T cells. medRxiv https://doi.org/10.1101/2021.07.12.21260227 (2022).
Choi, H. et al. Protective immunity by an engineered DNA vaccine for Mayaro virus. PLoS Negl. Trop. Dis. 13, e0007042 (2019).
pubmed: 30730897
pmcid: 6366747
doi: 10.1371/journal.pntd.0007042
Vijgen, L. et al. Development of one-step, real-time, quantitative reverse transcriptase PCR assays for absolute quantitation of human coronaviruses OC43 and 229E. J. Clin. Microbiol. 43, 5452–5456 (2005).
pubmed: 16272469
pmcid: 1287813
doi: 10.1128/JCM.43.11.5452-5456.2005
Mendoza, E. J., Manguiat, K., Wood, H. & Drebot, M. Two detailed plaque assay protocols for the quantification of infectious SARS-CoV-2. Curr. Protoc. Microbiol. 57, ecpmc105 (2020).
pubmed: 32475066
doi: 10.1002/cpmc.105
Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, 2000045 (2020).
pubmed: 31992387
pmcid: 6988269
doi: 10.2807/1560-7917.ES.2020.25.3.2000045
Alexandersen, S., Chamings, A. & Bhatta, T. R. SARS-CoV-2 genomic and subgenomic RNAs in diagnostic samples are not an indicator of active replication. Nat. Commun. 11, 6059 (2020).
pubmed: 33247099
pmcid: 7695715
doi: 10.1038/s41467-020-19883-7
Elong Ngono, A. et al. Mapping and role of the CD8(+) T cell response during primary Zika virus infection in mice. Cell Host Microbe 21, 35–46 (2017).
pubmed: 28081442
doi: 10.1016/j.chom.2016.12.010
Gruber, A. D. et al. Standardization of reporting criteria for lung pathology in SARS-CoV-2-infected hamsters: what matters? Am. J. Respir. Cell Mol. Biol. 63, 856–859 (2020).
pubmed: 32897757
pmcid: 7790148
doi: 10.1165/rcmb.2020-0280LE
Alves, R. SOURCE_DATA_NCOMMS-23-38557B_part9 [Data set]. Zenodo https://doi.org/10.5281/zenodo.10397796 , (2023).