Tumor microenvironment and immune system preservation in early-stage breast cancer: routes for early recurrence after mastectomy and treatment for lobular and ductal forms of disease.

DCI and ILC Early breast cancer prediction Immune microenvironment Role of immune system in IDC

Journal

BMC immunology
ISSN: 1471-2172
Titre abrégé: BMC Immunol
Pays: England
ID NLM: 100966980

Informations de publication

Date de publication:
25 Jan 2024
Historique:
received: 03 10 2023
accepted: 07 12 2023
medline: 26 1 2024
pubmed: 26 1 2024
entrez: 25 1 2024
Statut: epublish

Résumé

Intra-ductal cancer (IDC) is the most common type of breast cancer, with intra-lobular cancer (ILC) coming in second. Surgery is the primary treatment for early stage breast cancer. There are now irrefutable data demonstrating that the immune context of breast tumors can influence growth and metastasis. Adjuvant chemotherapy may be administered in patients who are at a high risk of recurrence. Our goal was to identify the processes underlying both types of early local recurrences. This was a case-control observational study. Within 2 years of receiving adjuvant taxan and anthracycline-based chemotherapy, as well as modified radical mastectomy (MRM), early stage IDC and ILC recurred. Vimentin, α-smooth muscle actin (SMA), platelet-derived growth factor (PDGF), matrix metalloproteinase (MMP1), and clustered differentiation (CD95) were investigated. Of the samples in the ductal type group, 25 showed local recurrence, and 25 did not. Six individuals in the lobular-type group did not experience recurrence, whereas seven did. Vimentin (p = 0.000 and 0.021), PDGF (p = 0.000 and 0.002), and CD95 (p = 0.000 and 0.045) expressions were significantly different in ductal and lobular carcinoma types, respectively. Measurement of ductal type was the sole significant difference found in MMP1 (p = 0.000) and α-SMA (p = 0.000). α-SMA and CD95 were two variables that helped the recurrence mechanism in the ductal type according to the pathway analysis. In contrast, the CD95 route is a recurrent mechanism for the lobular form. While the immune system plays a larger role in ILC, the tumor microenvironment and immune system both influence the recurrence of IDC. According to this study, improving the immune system may be a viable cancer treatment option.

Sections du résumé

BACKGROUND BACKGROUND
Intra-ductal cancer (IDC) is the most common type of breast cancer, with intra-lobular cancer (ILC) coming in second. Surgery is the primary treatment for early stage breast cancer. There are now irrefutable data demonstrating that the immune context of breast tumors can influence growth and metastasis. Adjuvant chemotherapy may be administered in patients who are at a high risk of recurrence. Our goal was to identify the processes underlying both types of early local recurrences.
METHODS METHODS
This was a case-control observational study. Within 2 years of receiving adjuvant taxan and anthracycline-based chemotherapy, as well as modified radical mastectomy (MRM), early stage IDC and ILC recurred. Vimentin, α-smooth muscle actin (SMA), platelet-derived growth factor (PDGF), matrix metalloproteinase (MMP1), and clustered differentiation (CD95) were investigated.
RESULTS RESULTS
Of the samples in the ductal type group, 25 showed local recurrence, and 25 did not. Six individuals in the lobular-type group did not experience recurrence, whereas seven did. Vimentin (p = 0.000 and 0.021), PDGF (p = 0.000 and 0.002), and CD95 (p = 0.000 and 0.045) expressions were significantly different in ductal and lobular carcinoma types, respectively. Measurement of ductal type was the sole significant difference found in MMP1 (p = 0.000) and α-SMA (p = 0.000). α-SMA and CD95 were two variables that helped the recurrence mechanism in the ductal type according to the pathway analysis. In contrast, the CD95 route is a recurrent mechanism for the lobular form.
CONCLUSIONS CONCLUSIONS
While the immune system plays a larger role in ILC, the tumor microenvironment and immune system both influence the recurrence of IDC. According to this study, improving the immune system may be a viable cancer treatment option.

Identifiants

pubmed: 38273260
doi: 10.1186/s12865-023-00591-y
pii: 10.1186/s12865-023-00591-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9

Informations de copyright

© 2024. The Author(s).

Références

Kader T, Hill P, Rakha EA, Campbell IG, Gorringe KL. Atypical ductal hyperplasia: update on diagnosis, management, and molecular landscape. Breast Cancer Res. 2018;20:39. https://doi.org/10.1186/s13058-018-0967-1 .
doi: 10.1186/s13058-018-0967-1 pubmed: 29720211 pmcid: 5932853
Pinder SE, Ellis IO. The diagnosis and management of pre-invasive breast disease: ductal carcinoma in situ (DCIS) and atypical ductal hyperplasia (ADH)—current definitions and classification. Breast Cancer Res. 2003;5:254–7. https://doi.org/10.1186/bcr623 .
doi: 10.1186/bcr623 pubmed: 12927035 pmcid: 314427
Coopey SB, Hughes KS. Breast Cancer risk prediction in women with atypical breast lesions. Berlin, Germany: Springer International Publishing; 2018. p. 103–13.
Malhotra GK, Zhao X, Band H, Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10:955–60. https://doi.org/10.4161/cbt.10.10.13879 .
doi: 10.4161/cbt.10.10.13879 pubmed: 21057215 pmcid: 3047091
Pinder SE, Duggan C, Ellis IO, Cuzick J, Forbes JF, Bishop H, et al. A new pathological system for grading DCIS with improved prediction of local recurrence: results from the UKCCCR/ANZ DCIS trial. Br J Cancer. 2010;103:94–100. https://doi.org/10.1038/sj.bjc.6605718 .
doi: 10.1038/sj.bjc.6605718 pubmed: 20517310 pmcid: 2905282
Gorringe KL, Fox SB. Ductal carcinoma in situ biology, biomarkers, and diagnosis. Front Oncol. 2017;7:248. https://doi.org/10.3389/fonc.2017.00248 .
doi: 10.3389/fonc.2017.00248 pubmed: 29109942 pmcid: 5660056
Lagios MD, Margolin FR, Westdahl PR, Rose MR. Mammographically detected duct carcinoma in situ. Frequency of local recurrence following tylectomy and prognostic effect of nuclear grade on local recurrence. Cancer. 1989;63:618–24.
doi: 10.1002/1097-0142(19890215)63:4<618::AID-CNCR2820630403>3.0.CO;2-J pubmed: 2536582
Maxwell AJ, Clements K, Hilton B, Dodwell DJ, Evans A, Kearins O, et al. Risk factors for the development of invasive cancer in unresected ductal carcinoma in situ. Eur J Surg Oncol. 2018;44:429–35. https://doi.org/10.1016/j.ejso.2017.12.007 .
doi: 10.1016/j.ejso.2017.12.007 pubmed: 29398324
Sanders ME, Schuyler PA, Simpson JF, Page DL, Dupont WD. Continued observation of the natural history of low-grade ductal carcinoma in situ reaffirms proclivity for local recurrence even after more than 30 years of follow-up. Mod Pathol. 2015;28:662–9. https://doi.org/10.1038/modpathol.2014.141 .
doi: 10.1038/modpathol.2014.141 pubmed: 25502729
Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, et al. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast. 2015;24(Suppl. 2):S26–35. https://doi.org/10.1016/j.breast.2015.07.008 .
doi: 10.1016/j.breast.2015.07.008 pubmed: 26253814
Dai X, Xiang L, Li T, Bai Z. Cancer hallmarks, biomarkers and breast Cancer molecular subtypes. J Cancer. 2016;7:1281–94. https://doi.org/10.7150/jca.13141 .
doi: 10.7150/jca.13141 pubmed: 27390604 pmcid: 4934037
Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60:319–26. https://doi.org/10.1007/s00262-010-0968-0 .
doi: 10.1007/s00262-010-0968-0 pubmed: 21267721 pmcid: 3042096
Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–48. https://doi.org/10.1016/j.immuni.2004.07.017 .
doi: 10.1016/j.immuni.2004.07.017 pubmed: 15308095
Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol. 2014;27:16–25. https://doi.org/10.1016/j.coi.2014.01.004 .
doi: 10.1016/j.coi.2014.01.004 pubmed: 24531241 pmcid: 4388310
Sharpe M, Mount N. Genetically modified T cells in cancer therapy: opportunities and challenges. Dis Model Mech. 2015;8:337–50. https://doi.org/10.1242/dmm.018036 .
doi: 10.1242/dmm.018036 pubmed: 26035842 pmcid: 4381333
Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C. Patterns of immune infiltration in breast Cancer and their clinical implications: a gene-expression-based retrospective study. PLoS Med. 2016;13:e1002194. https://doi.org/10.1371/journal.pmed.1002194 .
doi: 10.1371/journal.pmed.1002194 pubmed: 27959923 pmcid: 5154505
Dushyanthen S, Beavis PA, Savas P, Teo ZL, Zhou C, Mansour M, et al. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med. 2015;13:202. https://doi.org/10.1186/s12916-015-0431-3 .
doi: 10.1186/s12916-015-0431-3 pubmed: 26300242 pmcid: 4547422
Pruneri G, Gray KP, Vingiani A, Viale G, Curigliano G, Criscitiello C, et al. Tumor-infiltrating lymphocytes (TILs) are a powerful prognostic marker in patients with triple-negative breast cancer enrolled in the IBCSG phase III randomized clinical trial 22-00. Breast Cancer Res Treat. 2016;158:323–31. https://doi.org/10.1007/s10549-016-3863-3 .
doi: 10.1007/s10549-016-3863-3 pubmed: 27372069 pmcid: 4977583
Denkert C, Loibl S, Noske A, Roller M, Muller BM, Komor M, et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol. 2010;28:105–13. https://doi.org/10.1200/JCO.2009.23.7370 .
doi: 10.1200/JCO.2009.23.7370 pubmed: 19917869
Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, Chauffert B, et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating foxp3+ regulatory T cells. Clin Cancer Res. 2008;14:2413–20. https://doi.org/10.1158/1078-0432.CCR-07-4491 .
doi: 10.1158/1078-0432.CCR-07-4491 pubmed: 18413832
Roka S, Rudas M, Taucher S, Dubsky P, Bachleitner-Hofmann T, Kandioler D, et al. High nuclear grade and negative estrogen receptor are significant risk factors for recurrence in DCIS. Eur J Surg Oncol. 2004;30:243–7. https://doi.org/10.1016/j.ejso.2003.11.004 .
doi: 10.1016/j.ejso.2003.11.004 pubmed: 15028303
Lerwill MF. Current practical applications of diagnostic immunohistochemistry in breast pathology. Am J Surg Pathol. 2004;28:1076–91. https://doi.org/10.1097/01.pas.0000126780.10029.f0 .
doi: 10.1097/01.pas.0000126780.10029.f0 pubmed: 15252316
Hartmann LC, Degnim AC, Santen RJ, Dupont WD, Ghosh K. Atypical hyperplasia of the breast—risk assessment and management options. N Engl J Med. 2015;372:78–89. https://doi.org/10.1056/NEJMsr1407164 .
doi: 10.1056/NEJMsr1407164 pubmed: 25551530 pmcid: 4347900
Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60. https://doi.org/10.1146/annurev.immunol.22.012703.104803.] .
doi: 10.1146/annurev.immunol.22.012703.104803.] pubmed: 15032581
Menard S, Tomasic G, Casalini P, Balsari A, Pilotti S, Cascinelli N, et al. Lymphoid infiltration as a prognostic variable for early-onset breast carcinomas. Clin Cancer Res. 1997;3:817–9.
pubmed: 9815754
Ono M, Tsuda H, Shimizu C, Yamamoto S, Shibata T, Yamamoto H, et al. Tumor-infiltrating lymphocytes are correlated with response to neoadjuvant chemotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2012;132:793–805. https://doi.org/10.1007/s10549-011-1554-7 .
doi: 10.1007/s10549-011-1554-7 pubmed: 21562709
Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26:259–71. https://doi.org/10.1093/annonc/mdu450 .
doi: 10.1093/annonc/mdu450 pubmed: 25214542
Pruneri G, Vingiani A, Denkert C. Tumor infiltrating lymphocytes in early breast cancer. Breast. 2018;37:207–14. https://doi.org/10.1016/j.breast.2017.03.010 .
doi: 10.1016/j.breast.2017.03.010 pubmed: 28363679
Savas P, Virassamy B, Ye C, Salim A, Mintoff CP, Caramia F, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 2018;24:986–93. https://doi.org/10.1038/s41591-018-0078-7 .
doi: 10.1038/s41591-018-0078-7 pubmed: 29942092
Kohrt HE, Nouri N, Nowels K, Johnson D, Holmes S, Lee PP. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med. 2005;2:e284. https://doi.org/10.1371/journal.pmed.0020284 .
doi: 10.1371/journal.pmed.0020284 pubmed: 16124834 pmcid: 1198041
Wieckiewicz J, Goto R, Wood KJ. T regulatory cells and the control of alloimmunity: from characterisation to clinical application. Curr Opin Immunol. 2010;22:662–8. https://doi.org/10.1016/j.coi.2010.08.011 .
doi: 10.1016/j.coi.2010.08.011 pubmed: 20869224 pmcid: 3025322
Quezada SA, Peggs KS, Simpson TR, Allison JP. Shifting the equilibrium in cancer immunoediting: from tumor tolerance to eradication. Immunol Rev. 2011;241:104–18. https://doi.org/10.1111/j.1600-065X.2011.01007.x .
doi: 10.1111/j.1600-065X.2011.01007.x pubmed: 21488893 pmcid: 3727276
O’Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med. 2012;209:1869–82. https://doi.org/10.1084/jem.20112738 .
doi: 10.1084/jem.20112738 pubmed: 22927549 pmcid: 3457735
Emens LA. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev Anticancer Ther. 2012;12:1597–611. https://doi.org/10.1586/era.12.147 .
doi: 10.1586/era.12.147 pubmed: 23253225 pmcid: 3587160
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70. https://doi.org/10.1126/science.1203486 .
doi: 10.1126/science.1203486 pubmed: 21436444
Mittrucker HW, Visekruna A, Huber M. Heterogeneity in the differentiation and function of CD8(+) T cells. Arch Immunol Ther Exp. 2014;62:449–58. https://doi.org/10.1007/s00005-014-0293-y .
doi: 10.1007/s00005-014-0293-y
Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9:495–502. https://doi.org/10.1038/ni1581 .
doi: 10.1038/ni1581 pubmed: 18425106 pmcid: 2669298
La OR, Tai L, Lee L, Kruse EA, Grabow S, Fairlie WD, et al. Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature. 2009;461:659–63. https://doi.org/10.1038/nature08402 .
doi: 10.1038/nature08402
Eibel H, Kraus H, Sic H, Kienzler AK, Rizzi M. B cell biology: an overview. Curr Allergy Asthma Rep. 2014;14:434. https://doi.org/10.1007/s11882-014-0434-8 .
doi: 10.1007/s11882-014-0434-8 pubmed: 24633618
Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature. 1996;383:787–93. https://doi.org/10.1038/383787a0 .
doi: 10.1038/383787a0 pubmed: 8893001
Coussens LM, Pollard JW. Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol. 2011;3 https://doi.org/10.1101/cshperspect.a003285 .
Inman JL, Robertson C, Mott JD, Bissell MJ. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development. 2015;142:1028–42. https://doi.org/10.1242/dev.087643 .
doi: 10.1242/dev.087643 pubmed: 25758218
Knutson KL, Disis ML. Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother. 2005;54:721–8. https://doi.org/10.1007/s00262-004-0653-2 .
doi: 10.1007/s00262-004-0653-2 pubmed: 16010587
Shen RA, Nseyo O, Campbell MJ, Esserman LJ. Tumor-associated macrophages in breast cancer as potential biomarkers for new treatments and diagnostics. Expert Rev Mol Diagn. 2011;11:91–100. https://doi.org/10.1586/erm.10.97 .
doi: 10.1586/erm.10.97
Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, et al. Relation of hypoxia-inducible factor-2 alpha (HIF-2 alpha) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Res. 2002;62:1326–9.
pubmed: 11888900
Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, et al. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol. 2000;157:411–21. https://doi.org/10.1016/S0002-9440(10)64554-3 .
doi: 10.1016/S0002-9440(10)64554-3 pubmed: 10934146 pmcid: 1850121
Ziello JE, Jovin IS, Huang Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007;80:51–60.
pubmed: 18160990 pmcid: 2140184
Loboda A, Jozkowicz A, Dulak J. HIF-1 versus HIF-2—is one more important than the other? Vasc Pharmacol. 2012;56:245–51. https://doi.org/10.1016/j.vph.2012.02.006 .
doi: 10.1016/j.vph.2012.02.006
Valkovic T, Dobrila F, Melato M, Sasso F, Rizzardi C, Jonjic N. Correlation between vascular endothelial growth factor, angiogenesis, and tumor-associated macrophages in invasive ductal breast carcinoma. Virchows Arch. 2002;440:583–8. https://doi.org/10.1007/s004280100458 .
doi: 10.1007/s004280100458 pubmed: 12070596
Mills CD, Ley K. M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun. 2014;6:716–26. https://doi.org/10.1159/000364945 .
doi: 10.1159/000364945 pubmed: 25138714 pmcid: 4429858
Schmieder A, Michel J, Schonhaar K, Goerdt S, Schledzewski K. Differentiation and gene expression profile of tumor-associated macrophages. Semin Cancer Biol. 2012;22:289–97. https://doi.org/10.1016/j.semcancer.2012.02.002 .
doi: 10.1016/j.semcancer.2012.02.002 pubmed: 22349514
Siveen KS, Kuttan G. Role of macrophages in tumour progression. Immunol Lett. 2009;123:97–102. https://doi.org/10.1016/j.imlet.2009.02.011 .
doi: 10.1016/j.imlet.2009.02.011 pubmed: 19428556
Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J, Monkkonen J, et al. Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res. 2015;17:101. https://doi.org/10.1186/s13058-015-0621-0 .
doi: 10.1186/s13058-015-0621-0 pubmed: 26243145 pmcid: 4531540
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74. https://doi.org/10.1038/nri2506 .
doi: 10.1038/nri2506 pubmed: 19197294 pmcid: 2828349
Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol. 2009;182:4499–506. https://doi.org/10.4049/jimmunol.0802740 .
doi: 10.4049/jimmunol.0802740 pubmed: 19342621
Safarzadeh E, Hashemzadeh S, Duijf PHG, Mansoori B, Khaze V, Mohammadi A, et al. Circulating myeloid-derived suppressor cells: an independent prognostic factor in patients with breast cancer. J Cell Physiol. 2019;234:3515–25. https://doi.org/10.1002/jcp.26896 .
doi: 10.1002/jcp.26896 pubmed: 30362521
Mando P, Rizzo M, Roberti MP, Julia EP, Pampena MB, Perez de la Puente C, et al. High neutrophil to lymphocyte ratio and decreased CD69(+)NK cells represent a phenotype of high risk in early-stage breast cancer patients. Oncol Targets Ther. 2018;11:2901–10. https://doi.org/10.2147/OTT.S160911 .
doi: 10.2147/OTT.S160911
Treilleux I, Blay JY, Bendriss-Vermare N, Ray-Coquard I, Bachelot T, Guastalla JP, et al. Dendritic cell infiltration and prognosis of early stage breast cancer. Clin Cancer Res. 2004;10:7466–74. https://doi.org/10.1158/1078-0432.CCR-04-0684 .
doi: 10.1158/1078-0432.CCR-04-0684 pubmed: 15569976
Guag'an E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011;331:44–9. https://doi.org/10.1126/science.1198687 .
doi: 10.1126/science.1198687
Caligiuri MA. Human natural killer cells. Blood. 2008;112:461–9. https://doi.org/10.1182/blood-2007-09-077438 .
doi: 10.1182/blood-2007-09-077438 pubmed: 18650461 pmcid: 2481557
Cheng M, Chen Y, Xiao W, Sun R, Tian Z. NK cell-based immunotherapy for malignant diseases. Cell Mol Immunol. 2013;10:230–52. https://doi.org/10.1038/cmi.2013.10 .
doi: 10.1038/cmi.2013.10 pubmed: 23604045 pmcid: 4076738
Ames E, Murphy WJ. Advantages and clinical applications of natural killer cells in cancer immunotherapy. Cancer Immunol Immunother. 2014;63:21–8. https://doi.org/10.1007/s00262-013-1469-8 .
doi: 10.1007/s00262-013-1469-8 pubmed: 23989217
Donaldson AR, McCarthy C, Goraya S, Pederson HJ, Sturgis CD, Grobmyer SR, et al. Breast cancer risk associated with atypical hyperplasia and lobular carcinoma in situ initially diagnosed on core-needle biopsy. Cancer. 2018;124:459–65. https://doi.org/10.1002/cncr.31061 .
doi: 10.1002/cncr.31061 pubmed: 29023647

Auteurs

Hassan A Saad (HA)

Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt. ebramos_2010@yahoo.com.

Azza Baz (A)

Surgical Department, Alahrar Teaching Hospital, Zagazig University, Zagazig City, 55971, Egypt.

Mohamed Riad (M)

Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt.

Mohamed E Eraky (ME)

Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt.

Ahmed El-Taher (A)

Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt.

Mohamed I Farid (MI)

Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt.

Khaled Sharaf (K)

Surgical Department, Faculty of Medicine, Zagazig University, Zagazig City, 44661, Egypt.

Huda E M Said (HEM)

Clinical Pathology Department, Faculty of Medicine, Zagazig University, Zagazig City, 55971, Egypt.

Lotfy A Ibrahim (LA)

Surgical Department, AlAzhar University, Nasr City, Cairo, 55888, Egypt.

Classifications MeSH