Preoperative risk factors associated with left ventricular dysfunction after bariatric surgery.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 Jan 2024
Historique:
received: 24 08 2023
accepted: 22 01 2024
medline: 26 1 2024
pubmed: 26 1 2024
entrez: 25 1 2024
Statut: epublish

Résumé

A large proportion of patients with severe obesity remain with left ventricular (LV) dysfunction after bariatric surgery. We assessed whether preoperative evaluation by echocardiography and inflammatory proteins can identify this high-risk group. In the Bariatric Surgery on the West Coast of Norway study, 75 patients (44 ± 10 years, body mass index [BMI] 41.5 ± 4.7 kg/m

Identifiants

pubmed: 38273044
doi: 10.1038/s41598-024-52623-1
pii: 10.1038/s41598-024-52623-1
doi:

Banques de données

ClinicalTrials.gov
['NCT01533142']

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2173

Subventions

Organisme : Regional Health Authorities in Western Norway
ID : F-12531
Organisme : Regional Health Authorities in Western Norway
ID : F-12557
Organisme : Regional Health Authorities in Western Norway
ID : F-12615

Informations de copyright

© 2024. The Author(s).

Références

Chong, B. et al. The global syndemic of metabolic diseases in the young adult population: A consortium of trends and projections from the Global Burden of Disease 2000–2019. Metabolism 141, 155402. https://doi.org/10.1016/j.metabol.2023.155402 (2023).
doi: 10.1016/j.metabol.2023.155402 pubmed: 36717058
World Obesity Federation, World Obesity Atlas. https://data.worldobesity.org/publications/?cat=19 (2023).
Yusuf, S. et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case–control study. Lancet 364, 937–952. https://doi.org/10.1016/S0140-6736(04)17018-9 (2004).
doi: 10.1016/S0140-6736(04)17018-9 pubmed: 15364185
Fliotsos, M. et al. Body mass index from early-, mid-, and older-adulthood and risk of heart failure and atherosclerotic cardiovascular disease: MESA. J. Am. Heart Assoc. 7, e009599. https://doi.org/10.1161/JAHA.118.009599 (2018).
doi: 10.1161/JAHA.118.009599 pubmed: 30571492 pmcid: 6404455
Grymyr, L. M. D. et al. Left ventricular myocardial oxygen demand and subclinical dysfunction in patients with severe obesity referred for bariatric surgery. Nutr. Metab. Cardiovasc. Dis. 31, 666–674. https://doi.org/10.1016/j.numecd.2020.10.009 (2021).
doi: 10.1016/j.numecd.2020.10.009 pubmed: 33257189
Dai, H. et al. The global burden of disease attributable to high body mass index in 195 countries and territories, 1990–2017: An analysis of the Global Burden of Disease Study. PLoS Med. 17, e1003198. https://doi.org/10.1371/journal.pmed.1003198 (2020).
doi: 10.1371/journal.pmed.1003198 pubmed: 32722671 pmcid: 7386577
Forebygging, utredning og behandling av overvekt og fedme hos voksne. https://www.helsebiblioteket.no/innhold/nasjonal-faglig-retningslinje/overvekt-og-fedme-hos-voksne (2011).
Di Lorenzo, N. et al. Clinical practice guidelines of the European Association for Endoscopic Surgery (EAES) on bariatric surgery: Update 2020 endorsed by IFSO-EC, EASO and ESPCOP. Surg. Endosc. 34, 2332–2358. https://doi.org/10.1007/s00464-020-07555-y (2020).
doi: 10.1007/s00464-020-07555-y pubmed: 32328827 pmcid: 7214495
Garvey, W. T. et al. American Association of Clinical Endocrinologists and American College of Endocrinology comprehensive clinical practice guidelines for medical care of patients with obesity executive summary. Endocr. Pract. 22, 842–884. https://doi.org/10.4158/EP161356.ESGL (2016).
doi: 10.4158/EP161356.ESGL pubmed: 27472012
Benraouane, F. & Litwin, S. E. Reductions in cardiovascular risk after bariatric surgery. Curr. Opin. Cardiol. 26, 555–561. https://doi.org/10.1097/HCO.0b013e32834b7fc4 (2011).
doi: 10.1097/HCO.0b013e32834b7fc4 pubmed: 21934498
Sundstrom, J. et al. Weight loss and heart failure: A nationwide study of gastric bypass surgery versus intensive lifestyle treatment. Circulation 135, 1577–1585. https://doi.org/10.1161/CIRCULATIONAHA.116.025629 (2017).
doi: 10.1161/CIRCULATIONAHA.116.025629 pubmed: 28258170 pmcid: 5404408
Grymyr, L. M. D. et al. One-year impact of bariatric surgery on left ventricular mechanics: Results from the prospective FatWest study. Eur. Heart J. Open 1, oeab024. https://doi.org/10.1093/ehjopen/oeab024 (2021).
doi: 10.1093/ehjopen/oeab024 pubmed: 35919265 pmcid: 9241572
Ellulu, M. S., Patimah, I., Khaza’ai, H., Rahmat, A. & Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch Med. Sci. 13, 851–863. https://doi.org/10.5114/aoms.2016.58928 (2017).
doi: 10.5114/aoms.2016.58928 pubmed: 28721154
Johnson, B. D. et al. Serum amyloid A as a predictor of coronary artery disease and cardiovascular outcome in women: The National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109, 726–732. https://doi.org/10.1161/01.CIR.0000115516.54550.B1 (2004).
doi: 10.1161/01.CIR.0000115516.54550.B1 pubmed: 14970107
Kosuge, M. et al. Serum amyloid A is a better predictor of clinical outcomes than C-reactive protein in non-ST-segment elevation acute coronary syndromes. Circ. J. 71, 186–190. https://doi.org/10.1253/circj.71.186 (2007).
doi: 10.1253/circj.71.186 pubmed: 17251664
Ogasawara, K. et al. A serum amyloid A and LDL complex as a new prognostic marker in stable coronary artery disease. Atherosclerosis 174, 349–356. https://doi.org/10.1016/j.atherosclerosis.2004.01.030 (2004).
doi: 10.1016/j.atherosclerosis.2004.01.030 pubmed: 15136066
Avan, A. et al. Serum C-reactive protein in the prediction of cardiovascular diseases: Overview of the latest clinical studies and public health practice. J. Cell Physiol. 233, 8508–8525. https://doi.org/10.1002/jcp.26791 (2018).
doi: 10.1002/jcp.26791 pubmed: 29932219
Carrero, J. J., Andersson Franko, M., Obergfell, A., Gabrielsen, A. & Jernberg, T. hsCRP level and the risk of death or recurrent cardiovascular events in patients with myocardial infarction: A healthcare-based study. J. Am. Heart Assoc. 8, e012638. https://doi.org/10.1161/JAHA.119.012638 (2019).
doi: 10.1161/JAHA.119.012638 pubmed: 31140334 pmcid: 6585357
Catalan, V. et al. Increased levels of calprotectin in obesity are related to macrophage content: Impact on inflammation and effect of weight loss. Mol. Med. 17, 1157–1167. https://doi.org/10.2119/molmed.2011.00144 (2011).
doi: 10.2119/molmed.2011.00144 pubmed: 21738950 pmcid: 3321803
Kovac, N. et al. Markers of subclinical atherosclerosis in severe obesity and one year after bariatric surgery. J. Clin. Med. https://doi.org/10.3390/jcm11082237 (2022).
doi: 10.3390/jcm11082237 pubmed: 36233716 pmcid: 9571182
American Diabetes, A. Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1), S62-69. https://doi.org/10.2337/dc11-S062 (2011).
doi: 10.2337/dc11-S062
Gao, J., Meyer, K., Borucki, K. & Ueland, P. M. Multiplex immuno-MALDI-TOF MS for targeted quantification of protein biomarkers and their proteoforms related to inflammation and renal dysfunction. Anal. Chem. 90, 3366–3373. https://doi.org/10.1021/acs.analchem.7b04975 (2018).
doi: 10.1021/acs.analchem.7b04975 pubmed: 29420882
Lang, R. M. et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 16, 233–270. https://doi.org/10.1093/ehjci/jev014 (2015).
doi: 10.1093/ehjci/jev014 pubmed: 25712077
Cramariuc, D. et al. Prognostic impact of impaired left ventricular midwall function during progression of aortic stenosis. Echocardiography 38, 31–38. https://doi.org/10.1111/echo.14916 (2021).
doi: 10.1111/echo.14916 pubmed: 33146452
Sugimoto, T. et al. Echocardiographic reference ranges for normal left ventricular 2D strain: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 18, 833–840. https://doi.org/10.1093/ehjci/jex140 (2017).
doi: 10.1093/ehjci/jex140 pubmed: 28637227
Gerdts, E. et al. Higher left ventricular mass-wall stress-heart rate product and outcome in aortic valve stenosis. Heart 105, 1629–1633. https://doi.org/10.1136/heartjnl-2018-314462 (2019).
doi: 10.1136/heartjnl-2018-314462 pubmed: 31154431
Brooks, G. C., Blaha, M. J. & Blumenthal, R. S. Relation of C-reactive protein to abdominal adiposity. Am. J. Cardiol. 106, 56–61. https://doi.org/10.1016/j.amjcard.2010.02.017 (2010).
doi: 10.1016/j.amjcard.2010.02.017 pubmed: 20609648
Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808. https://doi.org/10.1172/JCI19246 (2003).
doi: 10.1172/JCI19246 pubmed: 14679176 pmcid: 296995
Barbarroja, N. et al. The obese healthy paradox: Is inflammation the answer?. Biochem. J. 430, 141–149. https://doi.org/10.1042/BJ20100285 (2010).
doi: 10.1042/BJ20100285 pubmed: 20522023
de Simone, G. et al. Midwall left ventricular mechanics. An independent predictor of cardiovascular risk in arterial hypertension. Circulation 93, 259–265. https://doi.org/10.1161/01.cir.93.2.259 (1996).
doi: 10.1161/01.cir.93.2.259 pubmed: 8548897
Lai, Y. H. et al. Independent effects of body fat and inflammatory markers on ventricular geometry, midwall function, and atrial remodeling. Clin. Cardiol. 37, 172–177. https://doi.org/10.1002/clc.22242 (2014).
doi: 10.1002/clc.22242 pubmed: 24399410 pmcid: 6649508
Moussa, O. et al. Effect of bariatric surgery on long-term cardiovascular outcomes: A nationwide nested cohort study. Eur. Heart J. 41, 2660–2667. https://doi.org/10.1093/eurheartj/ehaa069 (2020).
doi: 10.1093/eurheartj/ehaa069 pubmed: 32188981
Xiao, Y. et al. SAA1 deficiency alleviates cardiac remodeling by inhibiting NF-kappaB/p38/JNK and TGFbeta/Smad pathways. FASEB J. 37, e22911. https://doi.org/10.1096/fj.202201506R (2023).
doi: 10.1096/fj.202201506R pubmed: 37022639
Marques, M. D. et al. Association between inflammatory markers and myocardial fibrosis. Hypertension 72, 902–908. https://doi.org/10.1161/HYPERTENSIONAHA.118.11463 (2018).
doi: 10.1161/HYPERTENSIONAHA.118.11463 pubmed: 30354713
Herfindal, B. et al. Concomitant hypertension is associated with abnormal left ventricular geometry and lower systolic myocardial function in overweight participants: The FAT associated CardiOvasculaR dysfunction study. J. Hypertens. 38, 1158–1164. https://doi.org/10.1097/HJH.0000000000002397 (2020).
doi: 10.1097/HJH.0000000000002397 pubmed: 32371806
Solak, Y. et al. Hypertension as an autoimmune and inflammatory disease. Hypertens. Res. 39, 567–573. https://doi.org/10.1038/hr.2016.35 (2016).
doi: 10.1038/hr.2016.35 pubmed: 27053010
Gerdts, E., Zabalgoitia, M., Bjornstad, H., Svendsen, T. L. & Devereux, R. B. Gender differences in systolic left ventricular function in hypertensive patients with electrocardiographic left ventricular hypertrophy (the LIFE study). Am. J. Cardiol. 87, 980-983.A984. https://doi.org/10.1016/s0002-9149(01)01433-3 (2001).
doi: 10.1016/s0002-9149(01)01433-3 pubmed: 11305990
van den Munckhof, I. C. L. et al. Sex-specific association of visceral and subcutaneous adipose tissue volumes with systemic inflammation and innate immune cells in people living with obesity. Int. J. Obes. (Lond.). https://doi.org/10.1038/s41366-023-01444-9 (2023).
doi: 10.1038/s41366-023-01444-9 pubmed: 38135702
Hua, N. et al. The influence of pericardial fat upon left ventricular function in obese females: Evidence of a site-specific effect. J. Cardiovasc. Magn. Reson. 16, 37. https://doi.org/10.1186/1532-429X-16-37 (2014).
doi: 10.1186/1532-429X-16-37 pubmed: 24884541 pmcid: 4046092
Agra, R. M., Fernandez-Trasancos, A., Sierra, J., Gonzalez-Juanatey, J. R. & Eiras, S. Differential association of S100A9, an inflammatory marker, and p53, a cell cycle marker, expression with epicardial adipocyte size in patients with cardiovascular disease. Inflammation 37, 1504–1512. https://doi.org/10.1007/s10753-014-9876-3 (2014).
doi: 10.1007/s10753-014-9876-3 pubmed: 24700313
Boyd, J. H., Kan, B., Roberts, H., Wang, Y. & Walley, K. R. S100A8 and S100A9 mediate endotoxin-induced cardiomyocyte dysfunction via the receptor for advanced glycation end products. Circ. Res. 102, 1239–1246. https://doi.org/10.1161/CIRCRESAHA.107.167544 (2008).
doi: 10.1161/CIRCRESAHA.107.167544 pubmed: 18403730

Auteurs

Lisa M D Grymyr (LMD)

Department of Heart Disease, Haukeland University Hospital, Jonas Liesvei 65, 5021, Bergen, Norway.
Department of Clinical Science, University of Bergen, Bergen, Norway.

Gunnar Mellgren (G)

Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.

Adrian McCann (A)

Bevital AS, Bergen, Norway.

Eva Gerdts (E)

Center for Research on Cardiac Disease in Women, Department of Clinical Science, University of Bergen, Bergen, Norway.

Klaus Meyer (K)

Bevital AS, Bergen, Norway.

Saied Nadirpour (S)

Department of Medicine, Haugesund Hospital, Haugesund, Norway.

Johan Fernø (J)

Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway.
Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen, Norway.

Bjørn G Nedrebø (BG)

Department of Clinical Science, University of Bergen, Bergen, Norway.
Department of Medicine, Haugesund Hospital, Haugesund, Norway.

Dana Cramariuc (D)

Department of Heart Disease, Haukeland University Hospital, Jonas Liesvei 65, 5021, Bergen, Norway. dana.cramariuc@helse-bergen.no.
Department of Clinical Science, University of Bergen, Bergen, Norway. dana.cramariuc@helse-bergen.no.

Classifications MeSH