Utility of in vivo metabolomics to support read-across for UVCB substances under REACH.

Chemical grouping Metabolomics New approach methodologies (NAMs) REACH Read-across UVCB

Journal

Archives of toxicology
ISSN: 1432-0738
Titre abrégé: Arch Toxicol
Pays: Germany
ID NLM: 0417615

Informations de publication

Date de publication:
24 Jan 2024
Historique:
received: 30 10 2023
accepted: 13 11 2023
medline: 24 1 2024
pubmed: 24 1 2024
entrez: 24 1 2024
Statut: aheadofprint

Résumé

Structure-based grouping of chemicals for targeted testing and read-across is an efficient way to reduce resources and animal usage. For substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs), structure-based grouping is virtually impossible. Biology-based approaches such as metabolomics could provide a solution. Here, 15 steam-cracked distillates, registered in the EU through the Lower Olefins Aromatics Reach Consortium (LOA), as well as six of the major substance constituents, were tested in a 14-day rat oral gavage study, in line with the fundamental elements of the OECD 407 guideline, in combination with plasma metabolomics. Beyond signs of clinical toxicity, reduced body weight (gain), and food consumption, pathological investigations demonstrated the liver, thyroid, kidneys (males only), and hematological system to be the target organs. These targets were confirmed by metabolome pattern recognition, with no additional targets being identified. While classical toxicological parameters did not allow for a clear distinction between the substances, univariate and multivariate statistical analysis of the respective metabolomes allowed for the identification of several subclusters of biologically most similar substances. These groups were partly associated with the dominant (> 50%) constituents of these UVCBs, i.e., indene and dicyclopentadiene. Despite minor differences in clustering results based on the two statistical analyses, a proposal can be made for the grouping of these UVCBs. Both analyses correctly clustered the chemically most similar compounds, increasing the confidence that this biological approach may provide a solution for the grouping of UVCBs.

Identifiants

pubmed: 38265474
doi: 10.1007/s00204-023-03638-6
pii: 10.1007/s00204-023-03638-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024. The Author(s).

Références

Ball N (2016) Toward Good Read-Across Practice (GRAP) guidance SUPPL. ALTEX. https://doi.org/10.14573/altex.1601251s
doi: 10.14573/altex.1601251s pubmed: 26863606 pmcid: 5581000
Boudonck KJ et al (2009) Discovery of metabolomics biomarkers for early detection of nephrotoxicity. Toxicol Pathol. 37(3):280–292
doi: 10.1177/0192623309332992 pubmed: 19380839
Bugrim A et al (2004) Early prediction of drug metabolism and toxicity: systems biology approach and modeling. Drug Discov Today 9(3):127–135
doi: 10.1016/S1359-6446(03)02971-4 pubmed: 14960390
ECHA (2014) The use of alternatives to testing on animals for the REACH Regulation : second report under Article 117(3) of the REACH Regulation. ECHA. http://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2011_en.pdf
ECHA. (2017a). Guidance for identification and naming of substances under REACH and CLP Version 2.1-Guidance for identification and naming of substances under REACH and CLP. https://doi.org/10.2823/538683
ECHA. (2017b). Read-Across Assessment Framework (RAAF). https://doi.org/10.2823/619212
ECHA. (2017c). Read-Across Assessment Framework (RAAF) Considerations on multi-constituent substances and UVCBs. https://doi.org/10.2823/794394
Hall AP, Elcombe CR, Foster JR, Harada T, Kaufmann W, Knippel A, Küttler K, Malarkey DE, Maronpot RR, Nishikawa A, Nolte T, Schulte A, Strauss V, York MJ (2012) Liver hypertrophy: a review of adaptive (adverse and non-adverse) changes-conclusions from the 3rd international ESTP expert workshop. Toxicol Pathol. 40(7):971–994. https://doi.org/10.1177/0192623312448935
doi: 10.1177/0192623312448935 pubmed: 22723046
Harrill JA, Viant MR, Yauk CL, Sachana M, Gant TW, Auerbach SS, Beger RD, Bouhifd M, O’Brien J, Burgoon L, Caiment F, Carpi D, Chen T, Chorley BN, Colbourne J, Corvi R, Debrauwer L, O’Donovan C, Ebbels TMD, Whelan M (2021) Progress towards an OECD reporting framework for transcriptomics and metabolomics in regulatory toxicology. Regulatory Toxicol Pharmacol. 125:105020. https://doi.org/10.1016/J.YRTPH.2021.105020
doi: 10.1016/J.YRTPH.2021.105020
Kamp H, Fabian E, Groeters S, Herold M, Krennrich G, Looser R, Mattes W, Mellert W, Prokoudine A, Ruiz-Noppinger P, Strauss V, Walk T, Wiemer J, Van Ravenzwaay B (2012) Application of in vivo metabolomics to preclinical/toxicological studies: case study on phenytoin-induced systemic toxicity. Bioanalysis. 4(18):2291–2301. https://doi.org/10.4155/bio.12.214
doi: 10.4155/bio.12.214 pubmed: 23046269
McClain RM (1989) The significance of hepatic microsomal enzyme induction and altered thyroid function in rats: implications for thyroid gland neoplasia. Toxicol Pathol 17(2):294–306
doi: 10.1177/019262338901700206 pubmed: 2675280
Montoya GA, Strauss V, Fabian E, Kamp H, Mellert W, Walk T, Looser R, Herold M, Krennrich G, Peter E, van Ravenzwaay B (2014) Mechanistic analysis of metabolomics patterns in rat plasma during administration of direct thyroid hormone synthesis inhibitors or compounds increasing thyroid hormone clearance. Toxicol Lett 225(2):240–251. https://doi.org/10.1016/j.toxlet.2013.12.010
doi: 10.1016/j.toxlet.2013.12.010 pubmed: 24370789
Nicholson JK et al (1999) “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 29(11):1181–1189
doi: 10.1080/004982599238047 pubmed: 10598751
Olesti E, González-Ruiz V, Wilks MF, Boccard J, Rudaz S (2021) Approaches in metabolomics for regulatory toxicology applications. Analyst 146(6):1820–1834. https://doi.org/10.1039/d0an02212h
doi: 10.1039/d0an02212h pubmed: 33605958
Pestana CB et al (2021) Incorporating lines of evidence from New Approach Methodologies (NAMs) to reduce uncertainties in a category based read-across: a case study for repeated dose toxicity. Regular Toxicol Pharmacol 120:104855
doi: 10.1016/j.yrtph.2020.104855
Robertson DG (2005) Metabonomics in toxicology: a review. Toxicol Sci 85(2):809–822
doi: 10.1093/toxsci/kfi102 pubmed: 15689416
Sperber S, Wahl M, Berger F, Kamp H, Lemke O, Starck V, Walk T, Spitzer M, Ravenzwaay BV (2019) Metabolomics as read-across tool: an example with 3-aminopropanol and 2-aminoethanol. Regulatory toxicology and pharmacology, vol 108. Academic Press Inc, New York. https://doi.org/10.1016/j.yrtph.2019.104442
doi: 10.1016/j.yrtph.2019.104442
Strauss V, Wiemer J, Leibold E, Kamp H, Walk T, Mellert W, Looser R, Prokoudine A, Fabian E, Krennrich G, Herold M, van Ravenzwaay B (2009) Influence of strain and sex on the metabolic profile of rats in repeated dose toxicological studies. Toxicol Lett 191(1):88–95. https://doi.org/10.1016/j.toxlet.2009.08.004
doi: 10.1016/j.toxlet.2009.08.004 pubmed: 19683565
Swenberg JA (1993) alpha 2u globulin nephropathy review of the cellular and molecular mechanisms involved and their implications for human risk assessment. Environ Health Perspect. 101(6):39–44
doi: 10.1289/ehp.93101s639 pubmed: 7517351 pmcid: 1520017
van Ravenzwaay B, Herold M, Kamp H, Kapp MD, Fabian E, Looser R, Krennrich G, Mellert W, Prokoudine A, Strauss V, Walk T, Wiemer J (2012) Metabolomics: A tool for early detection of toxicological effects and an opportunity for biology based grouping of chemicals-From QSAR to QBAR. Mutation Res Genetic Toxicol Environ Mutagenesis 746(2):144–150. https://doi.org/10.1016/j.mrgentox.2012.01.006
doi: 10.1016/j.mrgentox.2012.01.006
van Ravenzwaay B, Sperber S, Lemke O, Fabian E, Faulhammer F, Kamp H, Mellert W, Strauss V, Strigun A, Peter E, Spitzer M, Walk T (2016) Metabolomics as read-across tool: a case study with phenoxy herbicides. Regul Toxicol Pharmacol 81:288–304. https://doi.org/10.1016/j.yrtph.2016.09.013
doi: 10.1016/j.yrtph.2016.09.013 pubmed: 27637788
Vansell NR (2022) Mechanisms by which inducers of drug metabolizing enzymes alter thyroid hormones in rats. Drug metabolism and disposition. Am Soc Pharmacol Exp Therapy. 50(4):508–517. https://doi.org/10.1124/dmd.121.000498
doi: 10.1124/dmd.121.000498
Viant MR, Ebbels TMD, Beger RD, Ekman DR, Epps DJT, Kamp H, Leonards PEG, Loizou GD, MacRae JI, van Ravenzwaay B, Rocca-Serra P, Salek RM, Walk T, Weber RJM (2019) Use cases, best practice and reporting standards for metabolomics in regulatory toxicology. Nat Commun. https://doi.org/10.1038/s41467-019-10900-y
doi: 10.1038/s41467-019-10900-y pubmed: 31292445 pmcid: 6620295
Yamada H et al (2002) Dansyl chloride derivatization of methamphetamine: a method with advantages for screening and analysis of methamphetamine in urine. J Anal Toxicol 26:17–22
doi: 10.1093/jat/26.1.17 pubmed: 11888012

Auteurs

H Kamp (H)

BASF Metabolome Solutions GmbH, Berlin, Germany.

N Aygun Kocabas (NA)

TotalEnergies Refining & Chemicals, Seneffe, Belgium.

F Faulhammer (F)

BASF SE, Ludwigshafen, Germany.

N Synhaeve (N)

ExxonMobil, Machelen, Belgium.

E Rushton (E)

LyondellBasell, Rotterdam, The Netherlands.

B Flick (B)

BASF SE, Ludwigshafen, Germany.
NUVISAN ICB GmbH, Toxicology, 13353, Berlin, Germany.

V Giri (V)

BASF SE, Ludwigshafen, Germany.

S Sperber (S)

BASF SE, Ludwigshafen, Germany.

L G Higgins (LG)

LOA C/O Penman Consulting Ltd, Brussels, Belgium.

M G Penman (MG)

LOA C/O Penman Consulting Ltd, Brussels, Belgium.

B van Ravenzwaay (B)

Environmental Sciences Consulting, Altrip, Germany. demou@outlook.de.

M Rooseboom (M)

Shell Global Solution International B.V, The Hague, The Netherlands.

Classifications MeSH