Extreme fire weather in Chile driven by climate change and El Niño-Southern Oscillation (ENSO).
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
23 Jan 2024
23 Jan 2024
Historique:
received:
19
07
2023
accepted:
19
01
2024
medline:
24
1
2024
pubmed:
24
1
2024
entrez:
23
1
2024
Statut:
epublish
Résumé
A string of fierce fires broke out in Chile in the austral summer 2023, just six years after the record-breaking 2017 fire season. Favored by extreme weather conditions, fire activity has dramatically risen in recent years in this Andean country. A total of 1.7 million ha. burned during the last decade, tripling figures of the prior decade. Six of the seven most destructive fire seasons on record occurred since 2014. Here, we analyze the progression during the last two decades of the weather conditions associated with increased fire risk in Central Chile (30°-39° S). Fire weather conditions (including high temperatures, low humidity, dryness, and strong winds) increase the potential for wildfires, once ignited, to rapidly spread. We show that the concurrence of El Niño and climate-fueled droughts and heatwaves boost the local fire risk and have decisively contributed to the intense fire activity recently seen in Central Chile. Our results also suggest that the tropical eastern Pacific Ocean variability modulates the seasonal fire weather in the country, driving in turn the interannual fire activity. The signature of the warm anomalies in the Niño 1 + 2 region (0°-10° S, 90° W-80° W) is apparent on the burned area records seen in Central Chile in 2017 and 2023.
Identifiants
pubmed: 38263390
doi: 10.1038/s41598-024-52481-x
pii: 10.1038/s41598-024-52481-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1974Subventions
Organisme : Agencia Nacional de Investigación y Desarrollo
ID : ACT210046
Informations de copyright
© 2024. The Author(s).
Références
Moritz, M. A., Morais, M. E., Summerell, L. A., Carlson, J. M. & Doyle, J. Wildfires, complexity, and highly optimized tolerance. Proc. Natl Acad. Sci. USA 102, 17912–17917 (2005).
doi: 10.1073/pnas.0508985102
pubmed: 16332964
pmcid: 1312407
Abatzoglou, J. T. & Kolden, C. A. Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire 22, 1003–1020 (2013).
doi: 10.1071/WF13019
Littell, J. S., McKenzie, D., Peterson, D. L. & Westerling, A. L. Climate and wildfire area burned in western US ecoprovinces, 1916–2003. Ecol. Appl. 19, 1003–1021 (2009).
doi: 10.1890/07-1183.1
pubmed: 19544740
Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60(3), e2020RG000726 (2022).
doi: 10.1029/2020RG000726
Abatzoglou, J. T., Williams, A. P. & Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46(1), 326–336 (2019).
doi: 10.1029/2018GL080959
Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6(1), 7537 (2015).
doi: 10.1038/ncomms8537
pubmed: 26172867
Jain, P., Castellanos-Acuna, D., Coogan, S. C., Abatzoglou, J. T. & Flannigan, M. D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12(1), 63–70 (2022).
doi: 10.1038/s41558-021-01224-1
Hawkins, L. R., Abatzoglou, J. T., Li, S. & Rupp, D. E. Anthropogenic influence on recent severe autumn fire weather in the west coast of the United States. Geophys. Res. Lett. 49(4), e2021GL095496 (2022).
doi: 10.1029/2021GL095496
Son, R. et al. Recurrent pattern of extreme fire weather in California. Environ. Res. Lett. 16(9), 094031 (2021).
doi: 10.1088/1748-9326/ac1f44
Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Future 7(8), 892–910 (2019).
doi: 10.1029/2019EF001210
Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2(1), 8 (2021).
doi: 10.1038/s43247-020-00065-8
Carnicer, J. et al. Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe. Sci. Rep. 12(1), 1–6 (2022).
doi: 10.1038/s41598-022-14480-8
Urbieta, I. R. et al. Fire activity as a function of fire–weather seasonal severity and antecedent climate across spatial scales in southern Europe and Pacific western USA. Geophys. Res. Lett. 10(11), 114013 (2015).
Dacre, H. F. et al. Chilean wildfires: probabilistic prediction, emergency response, and public communication. Bull. Am. Meteorol. Soc. 99(11), 2259–2274 (2018).
doi: 10.1175/BAMS-D-17-0111.1
Urrutia-Jalabert, R., González, M. E., González-Reyes, Á., Lara, A. & Garreaud, R. Climate variability and forest fires in central and south-central Chile. Ecosphere 9(4), e02171 (2018).
doi: 10.1002/ecs2.2171
Castillo, M., Plaza, Á. & Garfias, R. A recent review of fire behavior and fire effects on native vegetation in Central Chile. Glob. Ecol. Conserv. 24, e01210 (2020).
Úbeda, X. & Sarricolea, P. Wildfires in Chile: A review. Glob. Planet. Change 146, 152–161 (2016).
doi: 10.1016/j.gloplacha.2016.10.004
González, M.E. et al. Incendios forestales en Chile: Causas, impactos y resiliencia. Centro de Ciencia del Clima y la Resiliencia (CR)2, (ANID/FONDAP/15110009), 84 pp (2020)
CONAF (2023, April 3). Chilean Forestry Agency (CONAF). Historical statistics of forest fires in Chile. https://www.conaf.cl/incendios-forestales/incendios-forestales-en-chile/estadisticas-historicas/ Accessed April 3, 2023.
Garreaud, R. D. et al. The central Chile mega drought (2010–2018): a climate dynamics perspective. Int. J. Climatol. 40(1), 421–439 (2020).
doi: 10.1002/joc.6219
Damiani, A. et al. Connection between Antarctic ozone and climate: Interannual precipitation changes in the Southern Hemisphere. Atmosphere 11, 579 (2020).
doi: 10.3390/atmos11060579
Boisier, J. P. et al. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elem. Sci. Anth. 6, 1–20 (2018).
doi: 10.1525/elementa.328
Feron, S. et al. Observations and projections of heat waves in South America. Sci. Rep. 9(1), 1–15 (2019).
doi: 10.1038/s41598-019-44614-4
Feron, S. et al. Compound climate-pollution extremes in Santiago de Chile. Sci. Rep. 13(1), 6726 (2021).
doi: 10.1038/s41598-023-33890-w
Andela, N. & Van Der Werf, G. R. Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition. Nat. Clim. Change 4(9), 791–795 (2014).
doi: 10.1038/nclimate2313
NOAA (2023, February 21) National Centers for Environmental Information. Climate Prediction Center (CPC), Equatorial Pacific Sea Surface Temperatures. https://www.ncdc.noaa.gov/teleconnections/enso/indicators/sst/ . Accessed February 21, 2023.
Cai, W. et al. Climate impacts of the El Niño–southern oscillation on South America. Nat. Rev. Earth Environ. 1(4), 215–231 (2020).
doi: 10.1038/s43017-020-0040-3
Bowman, D. et al. Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio 48(1), 350–362 (2018).
pubmed: 30128860
pmcid: 6411810
De la Barrera, F., Barraza, F., Favier, P., Ruiz, V. & Quense, J. Megafires in Chile 2017: Monitoring multiscale environmental impacts of burned ecosystems. Sci. Total Environ. 637, 1526–1536 (2018).
doi: 10.1016/j.scitotenv.2018.05.119
pubmed: 29801246
Pliscoff, P., Folchi, M., Aliste, E., Cea, D. & Simonetti, J. A. Chile mega-fire 2017: An analysis of social representation of forest plantation territory. Appl. Geogr. 119, 102226 (2020).
doi: 10.1016/j.apgeog.2020.102226
COPERNICUS (2023, February 7) CAMS monitors large smoke plume from devastating fires in Chile over the Pacific Ocean https://atmosphere.copernicus.eu/copernicus-cams-monitors-large-smoke-plume-devastating-fires-chile-over-pacific-ocean Accessed March 21, 2023.
DF (2023, March 31) Diario El Financiero. Gobierno presenta fondo de reconstrucción con 57 proyectos disponibles para recibir donaciones (in Spanish) https://www.df.cl/economia-y-politica/pais/incendios-forestales-gobierno-presenta-un-fondo-para-la-reconstruccion Accessed March 31, 2023.
Van Wagner, C.E., 1987: Development and structure of the Canadian Forest Fire Weather Index System. Petawawa National Forestry Institute, Canadian Forestry Service, Ottawa, Forestry Technical Report 35.
Hersbach, H. The ERA5 atmospheric reanalysis AGUFM, NG33D-01 (2016).
Montecinos, A., Muñoz, R., Oviedo, S., Martínez, A. & Villagrán, V. Climatological characterization of puelche winds down the western slope of the extratropical andes mountains using the NCEP climate forecast system reanalysis. J. Appl. Meteor. Climatol. 56, 677–696 (2017).
doi: 10.1175/JAMC-D-16-0289.1
Demortier, A., Bozkurt, D. & Jacques-Coper, M. Identifying key driving mechanisms of heat waves in central Chile. Clim. Dyn. 57(9–10), 2415–2432 (2021).
doi: 10.1007/s00382-021-05810-z
Villagrán, V., Montecinos, A., Franco, C. & Muñoz, R. C. Environmental monitoring network along a mountain valley using embedded controllers. Measurement 106, 221–235 (2017).
doi: 10.1016/j.measurement.2017.02.046
Xue, J., Luo, J. J., Yuan, C. & Yamagata, T. Discovery of Chile Niño/Niña. Geophys. Res. Lett. 47(5), 2020 (2020).
doi: 10.1029/2019GL086468
Jones, J. M. et al. Assessing recent trends in high-latitude Southern Hemisphere surface climate. Nat. Clim. Chang. 6, 917–926 (2016).
doi: 10.1038/nclimate3103
Cordero, R. R. et al. Dry-season snow cover losses in the Andes (18–40 S) driven by changes in large-scale climate modes. Sci. Rep. 9(1), 16945 (2019).
doi: 10.1038/s41598-019-53486-7
pubmed: 31740708
pmcid: 6861277
Banerjee, A., Fyfe, J. C. & Polvani, L. M. A pause in Southern Hemisphere circulation trends due to the Montreal Protocol. Nature 579, 544–548 (2020).
doi: 10.1038/s41586-020-2120-4
pubmed: 32214266
Lim, E. P. et al. The impact of the Southern Annular Mode on future changes in Southern Hemisphere rainfall. Geophys. Res. Lett. 43, 7160–7167 (2016).
doi: 10.1002/2016GL069453
NOAA (2023, May 23) National Ocean Service. National Oceanic and Atmospheric Administration, March 2023 ENSO update: no more La Niña! https://www.climate.gov/news-features/blogs/march-2023-enso-update-no-more-la-niña . Accessed May 23, 2023.
GOB (2022, Oct 7). Gobierno de Chile. Presidente de la República Gabriel Boric Font anuncia el Plan Nacional de Protección Contra Incendios Forestales 2022–2023 (in Spanish) https://www.gob.cl/noticias/presidente-de-la-republica-gabriel-boric-font-anuncia-el-plan-nacional-de-proteccion-contra-incendios-forestales-2022-2023/ Accessed March 31, 2023.
Gómez-González, S., Ojeda, F. & Fernandes, P. M. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environ. Sci. Policy 81, 104–107 (2018).
doi: 10.1016/j.envsci.2017.11.006
ODEPA (2023, April 3) Chilean Office for Agricultural Studies and Policies (ODEPA). Planted forest area in Chile. https://www.odepa.gob.cl/estadisticas-del-sector/estadisticas-productivas Accessed April 3, 2023.
CONAF (2023, April 3). Chilean Forestry Agency (CONAF). Catastro Vegetacional (in Spanish). https://www.conaf.cl/nuestros-bosques/bosques-en-chile/catastro-vegetacional/ Accessed April 3, 2023.
Bourgault, P. et al. xclim: xarray-based climate data analytics. J. Open Source Softw. 8(85), 5415 (2023).
doi: 10.21105/joss.05415
Cordero, R. R. et al. Persistent extreme ultraviolet irradiance in Antarctica despite the ozone recovery onset. Sci. Rep. 12(1), 1266 (2022).
doi: 10.1038/s41598-022-05449-8
pubmed: 35075240
pmcid: 8786956
Feron, S. et al. Warming Events projected to become more frequent and last longer across Antarctica. Sci. Rep. 11, 19564 (2021).
doi: 10.1038/s41598-021-98619-z
pubmed: 34599225
pmcid: 8486840
NASA Earth Observatory (2023, February 8) Fires Blaze Through South-Central Chile. https://earthobservatory.nasa.gov/images/150945/fires-blaze-through-south-central-chile Accessed February 21, 2023.
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).
doi: 10.1109/MCSE.2007.55