An improved pathway for autonomous bioluminescence imaging in eukaryotes.


Journal

Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604

Informations de publication

Date de publication:
Mar 2024
Historique:
received: 17 03 2023
accepted: 13 12 2023
medline: 13 3 2024
pubmed: 23 1 2024
entrez: 22 1 2024
Statut: ppublish

Résumé

The discovery of the bioluminescence pathway in the fungus Neonothopanus nambi enabled engineering of eukaryotes with self-sustained luminescence. However, the brightness of luminescence in heterologous hosts was limited by performance of the native fungal enzymes. Here we report optimized versions of the pathway that enhance bioluminescence by one to two orders of magnitude in plant, fungal and mammalian hosts, and enable longitudinal video-rate imaging.

Identifiants

pubmed: 38253843
doi: 10.1038/s41592-023-02152-y
pii: 10.1038/s41592-023-02152-y
pmc: PMC10927554
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

406-410

Subventions

Organisme : RCUK | Medical Research Council (MRC)
ID : UKRI MC-A658-5QEA0
Organisme : Russian Science Foundation (RSF)
ID : 22-44-02024
Organisme : Russian Science Foundation (RSF)
ID : 22-14-00400

Informations de copyright

© 2024. The Author(s).

Références

Meighen, E. A. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55, 123–142 (1991).
doi: 10.1128/mr.55.1.123-142.1991 pubmed: 2030669 pmcid: 372803
Kotlobay, A. A. et al. Genetically encodable bioluminescent system from fungi. Proc. Natl Acad. Sci. USA 115, 12728–12732 (2018).
doi: 10.1073/pnas.1803615115 pubmed: 30478037 pmcid: 6294908
Gupta, R. K., Patterson, S. S., Ripp, S., Simpson, M. L. & Sayler, G. S. Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res. 4, 305–313 (2003).
doi: 10.1016/S1567-1356(03)00174-0 pubmed: 14654435
Gregor, C. et al. Autonomous bioluminescence imaging of single mammalian cells with the bacterial bioluminescence system. Proc. Natl Acad. Sci. USA 116, 26491–26496 (2019).
doi: 10.1073/pnas.1913616116 pubmed: 31792180 pmcid: 6936394
Hollis, R. P. et al. Toxicity of the bacterial luciferase substrate, n-decyl aldehyde, to Saccharomyces cerevisiae and Caenorhabditis elegans. FEBS Lett. 506, 140–142 (2001).
doi: 10.1016/S0014-5793(01)02905-2 pubmed: 11591388
Khakhar, A. et al. Correction: Building customizable auto-luminescent luciferase-based reporters in plants. eLife 9, e52786 (2020).
doi: 10.7554/eLife.52786 pubmed: 32209230 pmcid: 7164954
Mitiouchkina, T. et al. Plants with genetically encoded autoluminescence. Nat. Biotechnol. 38, 944–946 (2020).
doi: 10.1038/s41587-020-0500-9 pubmed: 32341562 pmcid: 7610436
Zheng, P. et al. Metabolic engineering and mechanical investigation of enhanced plant autoluminescence. Plant Biotechnol. J. 21, 1671–1681 (2023).
doi: 10.1111/pbi.14068 pubmed: 37155328 pmcid: 10363767
Moreno-Giménez, E., Selma, S., Calvache, C. & Orzáez, D. GB_SynP: a modular dCas9-regulated synthetic promoter collection for fine-tuned recombinant gene expression in plants. ACS Synth. Biol. 11, 3037–3048 (2022).
doi: 10.1021/acssynbio.2c00238 pubmed: 36044643 pmcid: 9486966
Calvache, C. A., Vazquez-Vilar, M., Gimenez, E. M. & Orzaez, D. A quantitative autonomous bioluminescence reporter system with a wide dynamic range for Plant Synthetic Biology. Plant Biotechnol. J. 22, 37–47 (2023).
doi: 10.1111/pbi.14146 pubmed: 37882352 pmcid: 10754000
Garcia, A. G. K. & Steinbrenner, A. D. Bringing plant immunity to light: a genetically encoded, bioluminescent reporter of pattern-triggered immunity in Nicotiana benthamiana. Mol. Plant. Microbe. Interact. https://doi.org/10.1094/mpmi-07-22-0160-ta (2023).
Chudakov, D. M., Matz, M. V., Lukyanov, S. & Lukyanov, K. A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010).
doi: 10.1152/physrev.00038.2009 pubmed: 20664080
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).
doi: 10.1021/acschembio.5b00753 pubmed: 26569370
Schwinn, M. K. et al. CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem. Biol. 13, 467–474 (2018).
doi: 10.1021/acschembio.7b00549 pubmed: 28892606
Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765 (2011).
doi: 10.1371/journal.pone.0016765 pubmed: 21364738 pmcid: 3041749
Iverson, S. V., Haddock, T. L., Beal, J. & Densmore, D. M. CIDAR MoClo: improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology. ACS Synth. Biol. 5, 99–103 (2016).
doi: 10.1021/acssynbio.5b00124 pubmed: 26479688
Brady, J. R. et al. Identifying improved sites for heterologous gene integration using ATAC-seq. ACS Synth. Biol. 9, 2515–2524 (2020).
doi: 10.1021/acssynbio.0c00299 pubmed: 32786350 pmcid: 7506950
Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. & Wilson, T. M. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 15, 3257–3273 (1987).
doi: 10.1093/nar/15.8.3257 pubmed: 3575095 pmcid: 340728
EasySelect Pichia expression kit: a manual of methods for expression of recombinant proteins using pPICZ and pPICZα in Pichia pastoris. Catalog no. K1740-01. Invitrogen Corporation (2010).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
doi: 10.1038/nmeth.2019 pubmed: 22743772
Lazo, G. R., Stein, P. A. & Ludwig, R. A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9, 963–967 (1991).
doi: 10.1038/nbt1091-963 pubmed: 1368724
Nagata, T., Nemoto, Y. & Hasezawa, S. In International Review of Cytology (eds Jeon, K. W. & Friedlander, M.) Vol. 132 1–30 (Academic Press, 1992).
Gengenbach, B. B., Opdensteinen, P. & Buyel, J. F. Robot cookies—plant cell packs as an automated high-throughput screening platform based on transient expression. Front. Bioeng. Biotechnol. 8, 393 (2020).
doi: 10.3389/fbioe.2020.00393 pubmed: 32432097 pmcid: 7214789
Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).
doi: 10.1046/j.1365-313x.1998.00343.x pubmed: 10069079
RankFilters Java plugin. National Institutes of Health (accessed 20 February 2022) https://imagej.nih.gov/ij/source/ij/plugin/filter/RankFilters.java
scikit-posthocs 0.8.1. Python Package Index (accessed 20 February 2022) https://pypi.org/project/scikit-posthocs/

Auteurs

Ekaterina S Shakhova (ES)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Tatiana A Karataeva (TA)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Nadezhda M Markina (NM)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Tatiana Mitiouchkina (T)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Kseniia A Palkina (KA)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Maxim M Perfilov (MM)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Monika G Wood (MG)

Promega Corporation, Madison, WI, USA.

Trish T Hoang (TT)

Promega Corporation, Madison, WI, USA.

Mary P Hall (MP)

Promega Corporation, Madison, WI, USA.

Liliia I Fakhranurova (LI)

Planta LLC, Moscow, Russia.

Anna E Alekberova (AE)

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Alena K Malyshevskaia (AK)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Dmitry A Gorbachev (DA)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Evgenia N Bugaeva (EN)

Planta LLC, Moscow, Russia.

Ludmila K Pletneva (LK)

Planta LLC, Moscow, Russia.

Vladislav V Babenko (VV)

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.

Daria I Boldyreva (DI)

Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia.

Andrey Y Gorokhovatsky (AY)

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Anastasia V Balakireva (AV)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.

Feng Gao (F)

Synthetic Biology Group, MRC Laboratory of Medical Sciences, London, UK.
Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.

Vladimir V Choob (VV)

Planta LLC, Moscow, Russia.
Botanical Garden of Lomonosov Moscow State University, Moscow, Russia.

Lance P Encell (LP)

Promega Corporation, Madison, WI, USA.

Keith V Wood (KV)

Light Bio Inc, Ketchum, ID, USA.

Ilia V Yampolsky (IV)

Planta LLC, Moscow, Russia.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
Light Bio Inc, Ketchum, ID, USA.
Pirogov Russian National Research Medical University, Moscow, Russia.

Karen S Sarkisyan (KS)

Planta LLC, Moscow, Russia. karen@light.bio.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. karen@light.bio.
Synthetic Biology Group, MRC Laboratory of Medical Sciences, London, UK. karen@light.bio.
Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK. karen@light.bio.
Light Bio Inc, Ketchum, ID, USA. karen@light.bio.

Alexander S Mishin (AS)

Planta LLC, Moscow, Russia. alexander@planta.bio.
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia. alexander@planta.bio.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH