An improved pathway for autonomous bioluminescence imaging in eukaryotes.
Journal
Nature methods
ISSN: 1548-7105
Titre abrégé: Nat Methods
Pays: United States
ID NLM: 101215604
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
received:
17
03
2023
accepted:
13
12
2023
medline:
13
3
2024
pubmed:
23
1
2024
entrez:
22
1
2024
Statut:
ppublish
Résumé
The discovery of the bioluminescence pathway in the fungus Neonothopanus nambi enabled engineering of eukaryotes with self-sustained luminescence. However, the brightness of luminescence in heterologous hosts was limited by performance of the native fungal enzymes. Here we report optimized versions of the pathway that enhance bioluminescence by one to two orders of magnitude in plant, fungal and mammalian hosts, and enable longitudinal video-rate imaging.
Identifiants
pubmed: 38253843
doi: 10.1038/s41592-023-02152-y
pii: 10.1038/s41592-023-02152-y
pmc: PMC10927554
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
406-410Subventions
Organisme : RCUK | Medical Research Council (MRC)
ID : UKRI MC-A658-5QEA0
Organisme : Russian Science Foundation (RSF)
ID : 22-44-02024
Organisme : Russian Science Foundation (RSF)
ID : 22-14-00400
Informations de copyright
© 2024. The Author(s).
Références
Meighen, E. A. Molecular biology of bacterial bioluminescence. Microbiol. Rev. 55, 123–142 (1991).
doi: 10.1128/mr.55.1.123-142.1991
pubmed: 2030669
pmcid: 372803
Kotlobay, A. A. et al. Genetically encodable bioluminescent system from fungi. Proc. Natl Acad. Sci. USA 115, 12728–12732 (2018).
doi: 10.1073/pnas.1803615115
pubmed: 30478037
pmcid: 6294908
Gupta, R. K., Patterson, S. S., Ripp, S., Simpson, M. L. & Sayler, G. S. Expression of the Photorhabdus luminescens lux genes (luxA, B, C, D, and E) in Saccharomyces cerevisiae. FEMS Yeast Res. 4, 305–313 (2003).
doi: 10.1016/S1567-1356(03)00174-0
pubmed: 14654435
Gregor, C. et al. Autonomous bioluminescence imaging of single mammalian cells with the bacterial bioluminescence system. Proc. Natl Acad. Sci. USA 116, 26491–26496 (2019).
doi: 10.1073/pnas.1913616116
pubmed: 31792180
pmcid: 6936394
Hollis, R. P. et al. Toxicity of the bacterial luciferase substrate, n-decyl aldehyde, to Saccharomyces cerevisiae and Caenorhabditis elegans. FEBS Lett. 506, 140–142 (2001).
doi: 10.1016/S0014-5793(01)02905-2
pubmed: 11591388
Khakhar, A. et al. Correction: Building customizable auto-luminescent luciferase-based reporters in plants. eLife 9, e52786 (2020).
doi: 10.7554/eLife.52786
pubmed: 32209230
pmcid: 7164954
Mitiouchkina, T. et al. Plants with genetically encoded autoluminescence. Nat. Biotechnol. 38, 944–946 (2020).
doi: 10.1038/s41587-020-0500-9
pubmed: 32341562
pmcid: 7610436
Zheng, P. et al. Metabolic engineering and mechanical investigation of enhanced plant autoluminescence. Plant Biotechnol. J. 21, 1671–1681 (2023).
doi: 10.1111/pbi.14068
pubmed: 37155328
pmcid: 10363767
Moreno-Giménez, E., Selma, S., Calvache, C. & Orzáez, D. GB_SynP: a modular dCas9-regulated synthetic promoter collection for fine-tuned recombinant gene expression in plants. ACS Synth. Biol. 11, 3037–3048 (2022).
doi: 10.1021/acssynbio.2c00238
pubmed: 36044643
pmcid: 9486966
Calvache, C. A., Vazquez-Vilar, M., Gimenez, E. M. & Orzaez, D. A quantitative autonomous bioluminescence reporter system with a wide dynamic range for Plant Synthetic Biology. Plant Biotechnol. J. 22, 37–47 (2023).
doi: 10.1111/pbi.14146
pubmed: 37882352
pmcid: 10754000
Garcia, A. G. K. & Steinbrenner, A. D. Bringing plant immunity to light: a genetically encoded, bioluminescent reporter of pattern-triggered immunity in Nicotiana benthamiana. Mol. Plant. Microbe. Interact. https://doi.org/10.1094/mpmi-07-22-0160-ta (2023).
Chudakov, D. M., Matz, M. V., Lukyanov, S. & Lukyanov, K. A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 90, 1103–1163 (2010).
doi: 10.1152/physrev.00038.2009
pubmed: 20664080
Dixon, A. S. et al. NanoLuc complementation reporter optimized for accurate measurement of protein interactions in cells. ACS Chem. Biol. 11, 400–408 (2016).
doi: 10.1021/acschembio.5b00753
pubmed: 26569370
Schwinn, M. K. et al. CRISPR-mediated tagging of endogenous proteins with a luminescent peptide. ACS Chem. Biol. 13, 467–474 (2018).
doi: 10.1021/acschembio.7b00549
pubmed: 28892606
Weber, E., Engler, C., Gruetzner, R., Werner, S. & Marillonnet, S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE 6, e16765 (2011).
doi: 10.1371/journal.pone.0016765
pubmed: 21364738
pmcid: 3041749
Iverson, S. V., Haddock, T. L., Beal, J. & Densmore, D. M. CIDAR MoClo: improved MoClo assembly standard and new E. coli part library enable rapid combinatorial design for synthetic and traditional biology. ACS Synth. Biol. 5, 99–103 (2016).
doi: 10.1021/acssynbio.5b00124
pubmed: 26479688
Brady, J. R. et al. Identifying improved sites for heterologous gene integration using ATAC-seq. ACS Synth. Biol. 9, 2515–2524 (2020).
doi: 10.1021/acssynbio.0c00299
pubmed: 32786350
pmcid: 7506950
Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C. & Wilson, T. M. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 15, 3257–3273 (1987).
doi: 10.1093/nar/15.8.3257
pubmed: 3575095
pmcid: 340728
EasySelect Pichia expression kit: a manual of methods for expression of recombinant proteins using pPICZ and pPICZα in Pichia pastoris. Catalog no. K1740-01. Invitrogen Corporation (2010).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
doi: 10.1038/nmeth.2019
pubmed: 22743772
Lazo, G. R., Stein, P. A. & Ludwig, R. A. A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9, 963–967 (1991).
doi: 10.1038/nbt1091-963
pubmed: 1368724
Nagata, T., Nemoto, Y. & Hasezawa, S. In International Review of Cytology (eds Jeon, K. W. & Friedlander, M.) Vol. 132 1–30 (Academic Press, 1992).
Gengenbach, B. B., Opdensteinen, P. & Buyel, J. F. Robot cookies—plant cell packs as an automated high-throughput screening platform based on transient expression. Front. Bioeng. Biotechnol. 8, 393 (2020).
doi: 10.3389/fbioe.2020.00393
pubmed: 32432097
pmcid: 7214789
Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).
doi: 10.1046/j.1365-313x.1998.00343.x
pubmed: 10069079
RankFilters Java plugin. National Institutes of Health (accessed 20 February 2022) https://imagej.nih.gov/ij/source/ij/plugin/filter/RankFilters.java
scikit-posthocs 0.8.1. Python Package Index (accessed 20 February 2022) https://pypi.org/project/scikit-posthocs/