Current understanding and future directions of cruciferous vegetables and their phytochemicals to combat neurological diseases.
cruciferous vegetables
diindolylmethane
indole-3-carbinol
lutein and zeaxanthin
neuroprotection
sulforaphane
Journal
Phytotherapy research : PTR
ISSN: 1099-1573
Titre abrégé: Phytother Res
Pays: England
ID NLM: 8904486
Informations de publication
Date de publication:
12 Jan 2024
12 Jan 2024
Historique:
revised:
15
12
2023
received:
07
07
2023
accepted:
27
12
2023
medline:
13
1
2024
pubmed:
13
1
2024
entrez:
13
1
2024
Statut:
aheadofprint
Résumé
Neurological disorders incidences are increasing drastically due to complex pathophysiology, and the nonavailability of disease-modifying agents. Several attempts have been made to identify new potential chemicals to combat these neurological abnormalities. At present, complete abolishment of neurological diseases is not attainable except for symptomatic relief. However, dietary recommendations to help brain development or improvement have increased over the years. In recent times, cruciferous vegetables and their phytochemicals have been identified from preclinical and clinical investigations as potential neuroprotective agents. The present review highlights the beneficial effects and molecular mechanisms of phytochemicals such as indole-3-carbinol, diindolylmethane, sulforaphane, kaempferol, selenium, lutein, zeaxanthin, and vitamins of cruciferous vegetables against neurological diseases including Parkinson's disease, Alzheimer's disease, stroke, Huntington's disease, autism spectra disorders, anxiety, depression, and pain. Most of these cruciferous phytochemicals protect the brain by eliciting antioxidant, anti-inflammatory, and antiapoptotic properties. Regular dietary intake of cruciferous vegetables may benefit the prevention and treatment of neurological diseases. The present review suggests that there is a lacuna in identifying the clinical efficacy of these phytochemicals. Therefore, high-quality future studies should firmly establish the efficacy of the above-mentioned cruciferous phytochemicals in clinical settings.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2024 John Wiley & Sons Ltd.
Références
Abuin-Martínez, C., Vidal, R., Gutiérrez-López, M., Pérez-Hernández, M., Giménez-Gómez, P., Morales-Puerto, N., O'Shea, E., & Colado, M. (2021). Increased kynurenine concentration attenuates serotonergic neurotoxicity induced by 3, 4-methylenedioxymethamphetamine (MDMA) in rats through activation of aryl hydrocarbon receptor. Neuropharmacology, 187, 108490.
Adedara, A. O., Wildner, G., Loreto, J. S., Dos Santos, M. M., Abolaji, A. O., & Barbosa, N. V. (2023). Kaempferol counteracts toxicity induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine in D. Melanogaster: An implication of its mitoprotective activity. Neurotoxicology, 95, 23-34.
Ağagündüz, D., Şahin, T. Ö., Yılmaz, B., Ekenci, K. D., Özer, Ş. D., & Capasso, R. (2022). Cruciferous vegetables and their bioactive metabolites: From prevention to novel therapies of colorectal cancer. Evidence-Based Complementary and Alternative Medicine, 2022, 1534083.
Aggarwal, B. B., & Ichikawa, H. (2005). Molecular targets and anticancer potential of indole-3-carbinol and its derivatives. Cell Cycle, 4(9), 1201-1215.
Ahmad, H., Rauf, K., Zada, W., McCarthy, M., Abbas, G., Anwar, F., & Shah, A. J. (2020). Kaempferol facilitated extinction learning in contextual fear conditioned rats via inhibition of fatty-acid amide hydrolase. Molecules, 25(20), 4683.
Ahmed, H., Khan, M. A., Ali Zaidi, S. A., & Muhammad, S. (2021). In silico and in vivo: Evaluating the therapeutic potential of Kaempferol, quercetin, and Catechin to treat chronic epilepsy in a rat model. Frontiers in Bioengineering and Biotechnology, 9, 754952.
Amani, H., Habibey, R., Shokri, F., Hajmiresmail, S. J., Akhavan, O., Mashaghi, A., & Pazoki-Toroudi, H. (2019). Selenium nanoparticles for targeted stroke therapy through modulation of inflammatory and metabolic signaling. Scientific Reports, 9(1), 6044.
Ampofo, E., Lachnitt, N., Rudzitis-Auth, J., Schmitt, B. M., Menger, M. D., & Laschke, M. W. (2017). Indole-3-carbinol is a potent inhibitor of ischemia-reperfusion-induced inflammation. Journal of Surgical Research, 215, 34-46.
Ansari, M. A., Ahmad, A. S., Ahmad, M., Salim, S., Yousuf, S., Ishrat, T., & Islam, F. (2004). Selenium protects cerebral ischemia in rat brain mitochondria. Biological Trace Element Research, 101, 73-86.
Auxtero, M. D., Chalante, S., Abade, M. R., Jorge, R., & Fernandes, A. I. (2021). Potential herb-drug interactions in the management of age-related cognitive dysfunction. Pharmaceutics, 13(1), 124.
Bahonar, A., Saadatnia, M., Khorvash, F., Maracy, M., & Khosravi, A. (2017). Carotenoids as potential antioxidant agents in stroke prevention: A systematic review. International Journal of Preventive Medicine, 8, 70.
Bell, M. C., Crowley-Nowick, P., Bradlow, H. L., Sepkovic, D. W., Schmidt-Grimminger, D., Howell, P., Mayeaux, E. J., Tucker, A., Turbat-Herrera, E. A., & Mathis, J. M. (2000). Placebo-controlled trial of indole-3-carbinol in the treatment of CIN. Gynecologic Oncology, 78(2), 123-129.
Bent, S., Lawton, B., Warren, T., Widjaja, F., Dang, K., Fahey, J. W., Cornblatt, B., Kinchen, J. M., Delucchi, K., & Hendren, R. L. (2018). Identification of urinary metabolites that correlate with clinical improvements in children with autism treated with sulforaphane from broccoli. Molecular Autism, 9, 1-12.
Bernstein, P. S., Li, B., Vachali, P. P., Gorusupudi, A., Shyam, R., Henriksen, B. S., & Nolan, J. M. (2016). Lutein, zeaxanthin, and meso-zeaxanthin: The basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. Progress in Retinal and Eye Research, 50, 34-66.
Binawade, Y., & Jagtap, A. (2013). Neuroprotective effect of lutein against 3-Nitropropionic acid-induced Huntington's disease-like symptoms: Possible behavioral, biochemical, and cellular alterations. Journal of Medicinal Food, 16(10), 934-943.
Borg, H. M., Kabel, A., & Abdel-Kareem, M. (2020). Effect of metformin and indole-3-carbinol on a rat model of Parkinson's disease induced by 6-hydroxydopamine. Bulletin of Egyptian Society for Physiological Sciences, 40(1), 1-14.
Bortolatto, C. F., Jesse, C. R., Wilhelm, E. A., Chagas, P. M., & Nogueira, C. W. (2013). Organoselenium bis selenide attenuates 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicity Research, 23, 214-224.
Bradlow, H., & Zeligs, M. (2010). Diindolylmethane (DIM) spontaneously forms from indole-3-carbinol (I3C) during cell culture experiments. In Vivo, 24(4), 387-391.
Burk, R. F., Hill, K. E., Motley, A. K., Winfrey, V. P., Kurokawa, S., Mitchell, S. L., & Zhang, W. (2014). Selenoprotein P and apolipoprotein E receptor-2 interact at the blood-brain barrier and also within the brain to maintain an essential selenium pool that protects against neurodegeneration. The FASEB Journal, 28(8), 3579-3588.
Cardoso, B. R., Roberts, B. R., Bush, A. I., & Hare, D. J. (2015). Selenium, selenoproteins and neurodegenerative diseases. Metallomics, 7(8), 1213-1228.
Cerna, J., Anaraki, N. S. A., Robbs, C. M., Adamson, B. C., Flemming, I. R., Erdman, J. W., Jr., Labriola, L. T., Motl, R. W., & Khan, N. A. (2021). Macular Xanthophylls and markers of the anterior visual pathway among persons with multiple sclerosis. The Journal of Nutrition, 151(9), 2680-2688.
Chang, S., Li, X., Zheng, Y., Shi, H., Zhang, D., Jing, B., Chen, Z., Qian, G., & Zhao, G. (2022). Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytotherapy Research, 36(4), 1678-1691.
Chen, J., & Berry, M. J. (2003). Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemistry, 86(1), 1-12.
Cohen, T., Frydman-Marom, A., Rechter, M., & Gazit, E. (2006). Inhibition of amyloid fibril formation and cytotoxicity by hydroxyindole derivatives. Biochemistry, 45(15), 4727-4735.
Connolly, E. L., Sim, M., Travica, N., Marx, W., Beasy, G., Lynch, G. S., Bondonno, C. P., Lewis, J. R., Hodgson, J. M., & Blekkenhorst, L. C. (2021). Glucosinolates from cruciferous vegetables and their potential role in chronic disease: Investigating the preclinical and clinical evidence. Frontiers in Pharmacology, 12, 767975.
Craft, N., Haitema, T., Garnett, K., Fitch, K., & Dorey, C. (2004). Carotenoid, tocopherol, and retinol concentrations in elderly human brain. Experimental Animals, 21, 22.
Darshani, P., TanjimAlam, M., Tripathi, P. P., & Pragadheesh, V. (2022). Natural product compounds from plants in neurodegenerative diseases (pp. 307-327). Medicinal Plants for Cosmetics, Health and Diseases, CRC Press.
De Miranda, B. R., Miller, J. A., Hansen, R. J., Lunghofer, P. J., Safe, S., Gustafson, D. L., Colagiovanni, D., & Tjalkens, R. B. (2013). Neuroprotective efficacy and pharmacokinetic behavior of novel anti-inflammatory Para-phenyl substituted diindolylmethanes in a mouse model of Parkinson's disease. Journal of Pharmacology and Experimental Therapeutics, 345(1), 125-138.
Dhir, N., Jain, A., Sharma, A. R., Prakash, A., Bhatia, A., & Medhi, B. (2022). Neuroprotective effect of 3, 3′-diindolylmethane and ɑ-naphthoflavone, aryl hydrocarbon receptor modulators in an experimental model of ischemic stroke. CNS & Neurological Disorders Drug Targets.
Di, W., Shi, X., Lv, H., Liu, J., Zhang, H., Li, Z., & Fang, Y. (2016). Activation of the nuclear factor E2-related factor 2/anitioxidant response element alleviates the nitroglycerin-induced hyperalgesia in rats. The Journal of Headache and Pain, 17(1), 1-9.
Dickerson, F., Origoni, A., Katsafanas, E., Squire, A., Newman, T., Fahey, J., Xiao, J.-C., Stallings, C., Goga, J., & Khushalani, S. (2021). Randomized controlled trial of an adjunctive sulforaphane nutraceutical in schizophrenia. Schizophrenia Research, 231, 142-144.
Dong, X., Zhou, S., & Nao, J. (2023). Kaempferol as a therapeutic agent in Alzheimer's disease: Evidence from preclinical studies. Ageing Research Reviews, 87, 101910.
Duan, W., Li, X., Shi, J., Guo, Y., Li, Z., & Li, C. (2010). Mutant TAR DNA-binding protein-43 induces oxidative injury in motor neuron-like cell. Neuroscience, 169(4), 1621-1629.
El-Naga, R. N., Ahmed, H. I., & Al Haleem, E. N. A. (2014). Effects of indole-3-carbinol on clonidine-induced neurotoxicity in rats: Impact on oxidative stress, inflammation, apoptosis and monoamine levels. Neurotoxicology, 44, 48-57.
Favela-González, K. M., Hernández-Almanza, A. Y., & De la Fuente-Salcido, N. M. (2020). The value of bioactive compounds of cruciferous vegetables (brassica) as antimicrobials and antioxidants: A review. Journal of Food Biochemistry, 44(10), e13414.
Feigin, V. L., Vos, T., Nichols, E., Owolabi, M. O., Carroll, W. M., Dichgans, M., Deuschl, G., Parmar, P., Brainin, M., & Murray, C. (2020). The global burden of neurological disorders: Translating evidence into policy. The Lancet Neurology, 19(3), 255-265.
Fusari, C. M., Nazareno, M. A., Locatelli, D. A., Fontana, A., Beretta, V., & Camargo, A. B. (2020). Phytochemical profile and functionality of Brassicaceae species. Food Bioscience, 36, 100606.
Gancheva, S. M., & Zhelyazkova-Savova, M. D. (2016). Vitamin K2 improves anxiety and depression but not cognition in rats with metabolic syndrome: A role of blood glucose? Folia Medica (Plovdiv), 58(4), 264-272.
Gao, W., Wang, W., Peng, Y., & Deng, Z. (2019). Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metabolic Brain Disease, 34(2), 485-494.
Gehrcke, M., Sari, M. H. M., Ferreira, L. M., Barbieri, A. V., Giuliani, L. M., Prado, V. C., Nadal, J. M., Farago, P. V., Nogueira, C. W., & Cruz, L. (2018). Nanocapsules improve indole-3-carbinol photostability and prolong its antinociceptive action in acute pain animal models. European Journal of Pharmaceutical Sciences, 111, 133-141.
Ghazizadeh-Hashemi, F., Bagheri, S., Ashraf-Ganjouei, A., Moradi, K., Shahmansouri, N., Mehrpooya, M., Noorbala, A. A., & Akhondzadeh, S. (2021). Efficacy and safety of sulforaphane for treatment of mild to moderate depression in patients with history of cardiac interventions: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry and Clinical Neurosciences, 75(8), 250-255.
González-Trujano, M. E., Dominguez, F., Perez-Ortega, G., Aguillon, M., Martinez-Vargas, D., Almazan-Alvarado, S., & Martínez, A. (2017). Justicia spicigera Schltdl. And kaempferitrin as potential anticonvulsant natural products. Biomedicine & Pharmacotherapy, 92, 240-248.
Graham, J. R., & Wolff, H. G. (1938). Mechanism of migraine headache and action of ergotamine tartrate. Archives of Neurology and Psychiatry, 39(4), 737-763.
Guo, Y. E., Suo, N., Cui, X., Yuan, Q., & Xie, X. (2018). Vitamin C promotes oligodendrocytes generation and remyelination. Glia, 66(7), 1302-1316.
Gupta, V., Sharma, R., Bansal, P., & Kaur, G. (2018). Bioactivity-guided isolation of potent anxiolytic compounds from leaves of Citrus paradisi. Ayu, 39(1), 21-28.
Haratake, M., Yoshida, S., Mandai, M., Fuchigami, T., & Nakayama, M. (2013). Elevated amyloid-β plaque deposition in dietary selenium-deficient Tg2576 transgenic mice. Metallomics, 5(5), 479-483.
Hayes, J. D., Kelleher, M. O., & Eggleston, I. M. (2008). The cancer chemopreventive actions of phytochemicals derived from glucosinolates. European Journal of Nutrition, 47, 73-88.
Heath, E. I., Heilbrun, L. K., Li, J., Vaishampayan, U., Harper, F., Pemberton, P., & Sarkar, F. H. (2010). A phase I dose-escalation study of oral BR-DIM (BioResponse 3,3′- Diindolylmethane) in castrate-resistant, non-metastatic prostate cancer. American Journal of Translational Research, 2(4), 402-411.
Hei, G., Smith, R. C., Li, R., Ou, J., Song, X., Zheng, Y., He, Y., Arriaza, J., Fahey, J. W., Cornblatt, B., Kang, D., Yang, Y., Huang, J., Wang, X., Cadenhead, K., Zhang, M., Davis, J. M., Zhao, J., Jin, H., & Wu, R. (2022). Sulforaphane effects on cognition and symptoms in first and early episode schizophrenia: A randomized double-blind trial. Schizophrenia Bulletin Open, 3(1), sgac024.
Hernández-Rabaza, V., Cabrera-Pastor, A., Taoro-González, L., Malaguarnera, M., Agustí, A., Llansola, M., & Felipo, V. (2016). Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: Reversal by sulforaphane. Journal of Neuroinflammation, 13, 1-11.
Hong, Y., Yan, W., Chen, S., Sun, C.-R., & Zhang, J.-M. (2010). The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacologica Sinica, 31(11), 1421-1430.
Hou, T.-T., Yang, H.-Y., Wang, W., Wu, Q.-Q., Tian, Y.-R., & Jia, J.-P. (2018). Sulforaphane inhibits the generation of amyloid-β oligomer and promotes spatial learning and memory in Alzheimer's disease (PS1V97L) transgenic mice. Journal of Alzheimer's Disease, 62(4), 1803-1813.
Hunter, R., Kennedy, E., Song, F., Gadon, L., Irving, C. B., & C. S. Group. (1996). Risperidone versus typical antipsychotic medication for schizophrenia. Cochrane Database of Systematic Reviews, 2010(9), CD000440.
Isenschmid, D. S. (2020). Cocaine. In Principles of Forensic Toxicology (pp. 371-387). Springer International Publishing.
Izzo, A. A., Hoon-Kim, S., Radhakrishnan, R., & Williamson, E. M. (2016). A critical approach to evaluating clinical efficacy, adverse events and drug interactions of herbal remedies. Phytotherapy Research, 30(5), 691-700.
Jazwa, A., Rojo, A. I., Innamorato, N. G., Hesse, M., Fernández-Ruiz, J., & Cuadrado, A. (2011). Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease modifying therapy for experimental parkinsonism. Antioxidants & Redox Signaling, 14(12), 2347-2360.
Jeong, J. H., Kim, J.-J., Bak, D. H., Yu, K. S., Lee, J. H., Lee, N. S., Jeong, Y. G., Kim, D. K., Kim, D.-K., & Han, S.-Y. (2015). Protective effects of indole-3-carbinol-loaded poly (lactic-co-glycolic acid) nanoparticles against glutamate-induced neurotoxicity. Journal of Nanoscience and Nanotechnology, 15(10), 7922-7928.
Johnson, C., Gorell, J., Rybicki, B., Sanders, K., & Peterson, E. (1999). Adult nutrient intake as a risk factor for Parkinson's disease. International Journal of Epidemiology, 28(6), 1102-1109.
Johnson, E. J. (2012). A possible role for lutein and zeaxanthin in cognitive function in the elderly. The American Journal of Clinical Nutrition, 96(5), 1161S-1165S.
Juraschek, S. P., Guallar, E., Appel, L. J., & Miller, E. R. (2012). Effects of vitamin C supplementation on blood pressure: A meta-analysis of randomized controlled trials123. The American Journal of Clinical Nutrition, 95(5), 1079-1088.
Kieliszek, M. (2019). Selenium−Fascinating microelement, properties and sources in food. Molecules, 24(7), 1298.
Kieliszek, M., & Bano, I. (2022). Selenium as an important factor in various disease states-a review. EXCLI Journal, 21, 948-966.
Kim, H.-C., Jhoo, W.-K., Shin, E.-J., & Bing, G. (2000). Selenium deficiency potentiates methamphetamine-induced nigral neuronal loss; comparison with MPTP model. Brain Research, 862(1-2), 247-252.
Kim, J. H., Hwang, J., Shim, E., Chung, E.-J., Jang, S. H., & Koh, S.-B. (2017). Association of serum carotenoid, retinol, and tocopherol concentrations with the progression of Parkinson's disease. Nutrition Research and Practice, 11(2), 114-120.
Klomparens, E. A., & Ding, Y. (2019). The neuroprotective mechanisms and effects of sulforaphane. Brain Circulation, 5(2), 74-83.
Kundap, U. P., Bhuvanendran, S., Kumari, Y., Othman, I., & Shaikh, M. F. (2017). Plant derived phytocompound, embelin in CNS disorders: A systematic review. Frontiers in Pharmacology, 8, 76.
Lee, A., Tariq, A., Lau, G., Tok, N. W. K., Tam, W. W. S., & Ho, C. S. H. (2022). Vitamin E, alpha-tocopherol, and its effects on depression and anxiety: A systematic review and meta-analysis. Nutrients, 14(3), 656.
Lee, B. D., Yoo, J.-M., Baek, S. Y., Li, F. Y., Sok, D.-E., & Kim, M. R. (2019). 3, 3′-Diindolylmethane promotes BDNF and antioxidant enzyme formation via TrkB/Akt pathway activation for neuroprotection against oxidative stress-induced apoptosis in hippocampal neuronal cells. Antioxidants, 9(1), 3.
Lee, S., Kim, J., Seo, S. G., Choi, B.-R., Han, J.-S., Lee, K. W., & Kim, J. (2014). Sulforaphane alleviates scopolamine-induced memory impairment in mice. Pharmacological Research, 85, 23-32.
Leppälä, J. M., Virtamo, J., Fogelholm, R., Huttunen, J. K., Albanes, D., Taylor, P. R., & Heinonen, O. P. (2000). Controlled trial of α-tocopherol and β-carotene supplements on stroke incidence and mortality in male smokers. Arteriosclerosis, Thrombosis, and Vascular Biology, 20(1), 230-235.
Lewerenz, J., & Maher, P. (2015). Chronic glutamate toxicity in neurodegenerative diseases-What is the evidence? Frontiers in Neuroscience, 9, 469.
Li, S., & Pu, X. P. (2011). Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. Biological & Pharmaceutical Bulletin, 34(8), 1291-1296.
Li, W.-H., Cheng, X., Yang, Y.-L., Liu, M., Zhang, S.-S., Wang, Y.-H., & Du, G.-H. (2019). Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Research, 1722, 146361.
Li, Z., Zhang, T., Xu, L., Wei, Y., Tang, Y., Hu, Q., Liu, X., Li, X., Davis, J., & Smith, R. (2021). Decreasing risk of psychosis by sulforaphane study protocol for a randomized, double-blind, placebo-controlled, clinical multi-Centre trial. Early Intervention in Psychiatry, 15(3), 585-594.
Liang, J., Hänsch, G. M., Hübner, K., & Samstag, Y. (2019). Sulforaphane as anticancer agent: A double-edged sword? Tricky balance between effects on tumor cells and immune cells. Advances in Biological Regulation, 71, 79-87.
Lim, H. J., Prajapati, R., Seong, S. H., Jung, H. A., & Choi, J. S. (2023). Antioxidant and Antineuroinflammatory mechanisms of Kaempferol-3-O-β-d-Glucuronate on lipopolysaccharide-stimulated BV2 microglial cells through the Nrf2/HO-1 signaling Cascade and MAPK/NF-κB pathway. ACS Omega, 8(7), 6538-6549.
Lin, H., Wang, X., Zhao, J., & Lin, Z. (2023). Protective effect of kaempferol against cognitive and neurological disturbances induced by d-galactose and aluminum chloride in mice. Journal of Functional Foods, 100, 105385.
Lindbergh, C. A., Mewborn, C. M., Hammond, B. R., Renzi-Hammond, L. M., Curran-Celentano, J. M., & Miller, L. S. (2017). Relationship of lutein and zeaxanthin levels to neurocognitive functioning: An fMRI study of older adults. Journal of the International Neuropsychological Society, 23(1), 11-22.
Løken-Amsrud, K. I., Myhr, K. M., Bakke, S. J., Beiske, A. G., Bjerve, K. S., Bjørnarå, B. T., Hovdal, H., Lilleås, F., Midgard, R., Pedersen, T., Benth, J., Torkildsen, Ø., Wergeland, S., & Holmøy, T. (2013). Alpha-tocopherol and MRI outcomes in multiple sclerosis-Association and prediction. PLoS ONE, 8(1), e54417.
Lopresti, A. L., Smith, S. J., & Drummond, P. D. (2022). The effects of lutein and zeaxanthin supplementation on cognitive function in adults with self-reported mild cognitive complaints: A randomized, double-blind, placebo-controlled study. Frontiers in Nutrition, 9, 843512.
Loy, C., Schneider, L., Dementia, C., & C. I. Group. (1996). Galantamine for Alzheimer's disease and mild cognitive impairment. Cochrane Database of Systematic Reviews, 2009(1), CD001747.
Lu, Z., Marks, E., Chen, J., Moline, J., Barrows, L., Raisbeck, M., Volitakis, I., Cherny, R. A., Chopra, V., & Bush, A. I. (2014). Altered selenium status in Huntington's disease: Neuroprotection by selenite in the N171-82Q mouse model. Neurobiology of Disease, 71, 34-42.
Lull, M. E., & Block, M. L. (2010). Microglial activation and chronic neurodegeneration. Neurotherapeutics, 7(4), 354-365.
Lynch, R., Diggins, E. L., Connors, S. L., Zimmerman, A. W., Singh, K., Liu, H., Talalay, P., & Fahey, J. W. (2017). Sulforaphane from broccoli reduces symptoms of autism: A follow-up case series from a randomized double-blind study. Global Advances in Health and Medicine, 6, 2164957X17735826.
Ma, L.-L., Xing, G.-P., Yu, Y., Liang, H., Yu, T.-X., Zheng, W.-H., & Lai, T.-B. (2015). Sulforaphane exerts neuroprotective effects via suppression of the inflammatory response in a rat model of focal cerebral ischemia. International Journal of Clinical and Experimental Medicine, 8(10), 17811-17817.
Madison, C. A., Kuempel, J., Albrecht, G. L., Hillbrick, L., Jayaraman, A., Safe, S., Chapkin, R. S., & Eitan, S. (2022). 3, 3′-Diindolylmethane and 1, 4-dihydroxy-2-naphthoic acid prevent chronic mild stress induced depressive-like behaviors in female mice. Journal of Affective Disorders, 309, 201-210.
Manchali, S., Murthy, K. N. C., & Patil, B. S. (2012). Crucial facts about health benefits of popular cruciferous vegetables. Journal of Functional Foods, 4(1), 94-106.
Mangialasche, F., Kivipelto, M., Mecocci, P., Rizzuto, D., Palmer, K., Winblad, B., & Fratiglioni, L. (2010). High plasma levels of vitamin E forms and reduced Alzheimer's disease risk in advanced age. Journal of Alzheimer's Disease, 20(4), 1029-1037.
Matsumoto, K., Kinoshita, K., Yoshimizu, A., Kurauchi, Y., Hisatsune, A., Seki, T., & Katsuki, H. (2020). Laquinimod and 3, 3′-diindolylemethane alleviate neuropathological events and neurological deficits in a mouse model of intracerebral hemorrhage. Journal of Neuroimmunology, 342, 577195.
Mattiazzi, J., Sari, M. H. M., Araujo, P. C. O., Englert, A. V., Nadal, J. M., Farago, P. V., Nogueira, C. W., & Cruz, L. (2020). Ethylcellulose microparticles enhance 3, 3′-diindolylmethane anti-hypernociceptive action in an animal model of acute inflammatory pain. Journal of Microencapsulation, 37(7), 528-541.
Mattiazzi, J., Sari, M. H. M., de Bastos Brum, T., Araújo, P. C. O., Nadal, J. M., Farago, P. V., Nogueira, C. W., & Cruz, L. (2019). 3, 3′-Diindolylmethane nanoencapsulation improves its antinociceptive action: Physicochemical and behavioral studies. Colloids and Surfaces B: Biointerfaces, 181, 295-304.
McQuay, H. (1999). Opioids in pain management. The Lancet, 353(9171), 2229-2232.
Mehta, S. L., Kumari, S., Mendelev, N., & Li, P. A. (2012). Selenium preserves mitochondrial function, stimulates mitochondrial biogenesis, and reduces infarct volume after focal cerebral ischemia. BMC Neuroscience, 13(1), 1-12.
Min, J. Y., & Min, K. B. (2014). Serum lycopene, lutein and zeaxanthin, and the risk of Alzheimer's disease mortality in older adults. Dementia and Geriatric Cognitive Disorders, 37(3-4), 246-256.
Mohamad, K. A., El-Naga, R. N., & Wahdan, S. A. (2022). Neuroprotective effects of indole-3-carbinol on the rotenone rat model of Parkinson's disease: Impact of the SIRT1-AMPK signaling pathway. Toxicology and Applied Pharmacology, 435, 115853.
Momtazmanesh, S., Amirimoghaddam-Yazdi, Z., Moghaddam, H. S., Mohammadi, M. R., & Akhondzadeh, S. (2020). Sulforaphane as an adjunctive treatment for irritability in children with autism spectrum disorder: A randomized, double-blind, placebo-controlled clinical trial. Psychiatry and Clinical Neurosciences, 74(7), 398-405.
Monacelli, F., Acquarone, E., Giannotti, C., Borghi, R., & Nencioni, A. (2017). Vitamin C, aging and Alzheimer's disease. Nutrients, 9(7), 670.
Moradi-Afrapoli, F., Oufir, M., Walter, F. R., Deli, M. A., Smiesko, M., Zabela, V., Butterweck, V., & Hamburger, M. (2016). Validation of UHPLC-MS/MS methods for the determination of kaempferol and its metabolite 4-hydroxyphenyl acetic acid, and application to in vitro blood-brain barrier and intestinal drug permeability studies. Journal of Pharmaceutical and Biomedical Analysis, 128, 264-274.
Morroni, F., Sita, G., Djemil, A., D'Amico, M., Pruccoli, L., Cantelli-Forti, G., Hrelia, P., & Tarozzi, A. (2018). Comparison of adaptive neuroprotective mechanisms of sulforaphane and its interconversion product erucin in in vitro and in vivo models of Parkinson's disease. Journal of Agricultural and Food Chemistry, 66(4), 856-865.
Morroni, F., Tarozzi, A., Sita, G., Bolondi, C., Moraga, J. M. Z., Cantelli-Forti, G., & Hrelia, P. (2013). Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson's disease. Neurotoxicology, 36, 63-71.
Morshedi, D., Rezaei-Ghaleh, N., Ebrahim-Habibi, A., Ahmadian, S., & Nemat-Gorgani, M. (2007). Inhibition of amyloid fibrillation of lysozyme by indole derivatives− possible mechanism of action. The FEBS Journal, 274(24), 6415-6425.
Mrowicka, M., Mrowicki, J., Kucharska, E., & Majsterek, I. (2022). Lutein and Zeaxanthin and their roles in age-related macular degeneration-neurodegenerative disease. Nutrients, 14(4), 827.
Mueller, S., Drost, M., & Fox, C. M. (2007). Dietary and intraperitoneal administration of selenium provide comparable protection in the 6-hydroxydopamine lesion rat model of Parkinson's disease. Impulse, 4, 1-10.
Nakamura, T., Cho, D.-H., & Lipton, S. A. (2012). Redox regulation of protein misfolding, mitochondrial dysfunction, synaptic damage, and cell death in neurodegenerative diseases. Experimental Neurology, 238(1), 12-21.
Nascimento, C. Q. D., Barros-Neto, J. A., Vieira, N. F. L., Menezes-Filho, J. A., Neves, S. J. F., & Lima, S. O. (2021). Selenium concentrations in elderly people with Alzheimer's disease: A cross-sectional study with control group. Revista Brasileira de Enfermagem, 74, e20200984.
Nataraj, J., Manivasagam, T., Thenmozhi, A. J., & Essa, M. M. (2016). Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress. Nutritional Neuroscience, 19(6), 237-246.
Nazari, L., Komaki, S., Salehi, I., Raoufi, S., Golipoor, Z., Kourosh-Arami, M., & Komaki, A. (2022). Investigation of the protective effects of lutein on memory and learning using behavioral methods in a male rat model of Alzheimer's disease. Journal of Functional Foods, 99, 105319.
Nazıroğlu, M. (2009). Role of selenium on calcium signaling and oxidative stress-induced molecular pathways in epilepsy. Neurochemical Research, 34, 2181-2191.
Nazıroğlu, M., Kutluhan, S., & Yılmaz, M. (2008). Selenium and topiramate modulates brain microsomal oxidative stress values, Ca2+-ATPase activity, and EEG records in pentylentetrazol-induced seizures in rats. Journal of Membrane Biology, 225, 39-49.
Nazıroğlu, M., Öz, A., & Yıldızhan, K. (2020). Selenium and neurological diseases: Focus on peripheral pain and TRP channels. Current Neuropharmacology, 18(6), 501-517.
Neelamegam, M., Looi, I., Ng, K. S., & Malavade, S. S. (2017). Vitamin E supplementation for preventing recurrent stroke and other vascular events in patients with stroke or transient ischaemic attack. The Cochrane Database of Systematic Reviews, 2017(2), CD010797.
Negi, G., Kumar, A., & Sharma, S. S. (2011). Nrf2 and NF-κB modulation by sulforaphane counteracts multiple manifestations of diabetic neuropathy in rats and high glucose-induced changes. Current Neurovascular Research, 8(4), 294-304.
Nouchi, R., Hu, Q., Ushida, Y., Suganuma, H., & Kawashima, R. (2022). Effects of sulforaphane intake on processing speed and negative moods in healthy older adults: Evidence from a randomized controlled trial. Frontiers in Aging Neuroscience, 14, 929628.
Organization, W. H. (2006). Neurological disorders: Public health challenges. World Health Organization.
Paliwal, P., Chauhan, G., Gautam, D., Dash, D., Patne, S. C., & Krishnamurthy, S. (2018). Indole-3-carbinol improves neurobehavioral symptoms in a cerebral ischemic stroke model. Naunyn-Schmiedeberg's Archives of Pharmacology, 391, 613-625.
Paltsev, M., Kiselev, V., Drukh, V., Muyzhnek, E., Kuznetsov, I., Andrianova, E., & Baranovskiy, P. (2016). First results of the double-blind randomized placebo-controlled multicenter clinical trial of DIM-based therapy designed as personalized approach to reverse prostatic intraepithelial neoplasia (PIN). The EPMA Journal, 7(1), 5.
Pan, S., Ma, Y., Yang, R., Lu, X., You, Q., Ye, T., & Huang, C. (2022). Indole-3-carbinol selectively prevents chronic stress-induced depression-but not anxiety-like behaviors via suppressing pro-inflammatory cytokine production and oxido-nitrosative stress in the brain. Frontiers in Pharmacology, 13, 331.
Pan, X., Liu, X., Zhao, H., Wu, B., & Liu, G. (2020). Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson's disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods, 74, 104140.
Panee, J., Liu, W., Nakamura, K., & Berry, M. J. (2007). The responses of HT22 cells to the blockade of mitochondrial complexes and potential protective effect of selenium supplementation. International Journal of Biological Sciences, 3(5), 335-341.
Panjwani, A. A., Liu, H., & Fahey, J. W. (2018). Crucifers and related vegetables and supplements for neurologic disorders: What is the evidence? Current Opinion in Clinical Nutrition & Metabolic Care, 21(6), 451-457.
Park, M. K., Rhee, Y. H., Lee, H. J., Lee, E. O., Kim, K. H., Park, M. J., Jeon, B. H., Shim, B. S., Jung, C. H., & Choi, S. H. (2008). Antiplatelet and antithrombotic activity of indole-3-carbinol in vitro and in vivo. Phytotherapy Research, 22(1), 58-64.
Park, S. H., Sim, Y. B., Han, P. L., Lee, J. K., & Suh, H. W. (2010). Antidepressant-like effect of Kaempferol and Quercitirin, isolated from Opuntia ficus-indica var. saboten. Experimental Neurology, 19(1), 30-38.
Pauletti, A., Terrone, G., Shekh-Ahmad, T., Salamone, A., Ravizza, T., Rizzi, M., Pastore, A., Pascente, R., Liang, L.-P., & Villa, B. R. (2017). Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain, 140(7), 1885-1899.
Pauletti, A., Terrone, G., Shekh-Ahmad, T., Salamone, A., Ravizza, T., Rizzi, M., Pastore, A., Pascente, R., Liang, L.-P., & Villa, B. R. (2019). Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Oxford University Press.
Peng, L., Zhu, X., Wang, C., Jiang, Q., Yu, S., Song, G., Liu, Q., & Gong, P. (2023). Indole-3-methanol reduces apoptosis and improves neurological function after cerebral ischemia-reperfusion injury by modulating microglia inflammation. Biochimie, 213, 1-11.
Pereira, M. E., Souza, J. V., Galiciolli, M. E. A., Sare, F., Vieira, G. S., Kruk, I. L., & Oliveira, C. S. (2022). Effects of selenium supplementation in patients with mild cognitive impairment or Alzheimer's disease: A systematic review and meta-analysis. Nutrients, 14(15), 3205.
Perry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. Journal of Food Composition and Analysis, 22(1), 9-15.
Petra, A. I., Panagiotidou, S., Hatziagelaki, E., Stewart, J. M., Conti, P., & Theoharides, T. C. (2015). Gut-microbiota-brain Axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clinical Therapeutics, 37(5), 984-995.
Pillai, R., Uyehara-Lock, J. H., & Bellinger, F. P. (2014). Selenium and selenoprotein function in brain disorders. IUBMB Life, 66(4), 229-239.
Prasuhn, J., Kasten, M., Vos, M., König, I. R., Schmid, S. M., Wilms, B., Klein, C., & Brüggemann, N. (2020). The use of vitamin K2 in patients with Parkinson's disease and mitochondrial dysfunction (PD-K2): A Theranostic pilot study in a placebo-controlled parallel group design. Frontiers in Neurology, 11, 592104.
Pullar, J. M., Carr, A. C., Bozonet, S. M., & Vissers, M. C. M. (2018). High vitamin C status is associated with elevated mood in male tertiary students. Antioxidants (Basel), 7(7), 91.
Raafat, K., & El-Lakany, A. (2015). Acute and subchronic in-vivo effects of Ferula hermonis L. and Sambucus nigra L. and their potential active isolates in a diabetic mouse model of neuropathic pain. BMC Complementary and Alternative Medicine, 15, 257.
Rakhit, R., & Chakrabartty, A. (2006). Structure, folding, and misfolding of Cu, Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochimica et Biophysica Acta (BBA), 1762(11), 1025-1037.
Ramakrishna, K., Jain, S. K., & Krishnamurthy, S. (2022). Pharmacokinetic and Pharmacodynamic properties of Indole-3-carbinol in experimental focal ischemic injury. European Journal of Drug Metabolism and Pharmacokinetics, 47(4), 593-605.
Ramakrishna, K., & Krishnamurthy, S. (2022a). Indole-3-carbinol ameliorated the isoproterenol-induced myocardial infarction via multimodal mechanisms in Wistar rats. Natural Product Research, 36(23), 6044-6049.
Ramakrishna, K., & Krishnamurthy, S. (2022b). Indole-3-carbinol ameliorated the neurodevelopmental deficits in neonatal anoxic injury in rats. International Journal of Developmental Neuroscience, 83(1), 31-43.
Ramakrishna, K., Singh, N., & Krishnamurthy, S. (2022a). Diindolylmethane ameliorates platelet aggregation and thrombosis: In silico, in vitro, and in vivo studies. European Journal of Pharmacology, 919, 174812.
Ramakrishna, K., Singh, S. K., & Krishnamurthy, S. (2022b). Diindolylmethane ameliorates ischemic stroke-induced brain injury by peripheral and central mechanisms. Current Neurovascular Research, 19(5), 462-475.
Reed, G. A., Peterson, K. S., Smith, H. J., Gray, J. C., Sullivan, D. K., Mayo, M. S., Crowell, J. A., & Hurwitz, A. (2005). A phase I study of indole-3-carbinol in women: Tolerability and effects. Cancer Epidemiology, Biomarkers & Prevention, 14(8), 1953-1960.
Ren, J., Lu, Y., Qian, Y., Chen, B., Wu, T., & Ji, G. (2019). Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine, 18(4), 2759-2776.
Ruetsch, Y. A., Boni, T., & Borgeat, A. (2001). From cocaine to ropivacaine: The history of local anesthetic drugs. Current Topics in Medicinal Chemistry, 1(3), 175-182.
Rzemieniec, J., Bratek, E., Wnuk, A., Przepiórska, K., Salińska, E., & Kajta, M. (2020). Neuroprotective effect of 3, 3′-Diindolylmethane against perinatal asphyxia involves inhibition of the AhR and NMDA signaling and hypermethylation of specific genes. Apoptosis, 25, 747-762.
Rzemieniec, J., Litwa, E., Lason, W., & Kajta, M. (2013). Impact of raloxifene and 3, 3′-diindolylmethane on neuronal cells exposed to hypoxia. Acta Neurobiologiae Experimentalis, 1(73), 747-762.
Rzemieniec, J., Litwa, E., Wnuk, A., Lason, W., Krzeptowski, W., & Kajta, M. (2016). Selective aryl hydrocarbon receptor modulator 3, 3′-diindolylmethane impairs AhR and ARNT signaling and protects mouse neuronal cells against hypoxia. Molecular Neurobiology, 53, 5591-5606.
Rzemieniec, J., Wnuk, A., Lasoń, W., Bilecki, W., & Kajta, M. (2019). The neuroprotective action of 3, 3′-diindolylmethane against ischemia involves an inhibition of apoptosis and autophagy that depends on HDAC and AhR/CYP1A1 but not ERα/CYP19A1 signaling. Apoptosis, 24, 435-452.
Saini, N., Akhtar, A., Chauhan, M., Dhingra, N., & Sah, S. P. (2020). Protective effect of Indole-3-carbinol, an NF-κB inhibitor in experimental paradigm of Parkinson's disease: In silico and in vivo studies. Brain, Behavior, and Immunity, 90, 108-137.
Sano, M., Ernesto, C., Thomas, R. G., Klauber, M. R., Schafer, K., Grundman, M., Woodbury, P., Growdon, J., Cotman, C. W., Pfeiffer, E., Schneider, L. S., & Thal, L. J. (1997). A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's disease cooperative study. The New England Journal of Medicine, 336(17), 1216-1222.
Savaskan, N. E., Bräuer, A. U., Kühbacher, M., Eyüpoglu, I. Y., Kyriakopoulos, A., Ninnemann, O., Behne, D., & Nitsch, R. (2003). Selenium deficiency increases susceptibility to glutamate-induced excitotoxicity. The FASEB Journal, 17(1), 112-114.
Scheider, W., Hershey, L., Vena, J., Holmlund, T., Marshall, J., & Freudenheim, J. (1997). Dietary antioxidants and other dietary factors in the etiology of Parkinson's disease. Movement Disorders, 12(2), 190-196.
Schirinzi, T., Martella, G., Imbriani, P., Di Lazzaro, G., Franco, D., Colona, V. L., Alwardat, M., Sinibaldi Salimei, P., Mercuri, N. B., Pierantozzi, M., & Pisani, A. (2019). Dietary vitamin E as a protective factor for Parkinson's disease: Clinical and experimental evidence. Frontiers in Neurology, 10, 148.
Seiler, A., Schneider, M., Förster, H., Roth, S., Wirth, E. K., Culmsee, C., Plesnila, N., Kremmer, E., Rådmark, O., & Wurst, W. (2008). Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent-and AIF-mediated cell death. Cell Metabolism, 8(3), 237-248.
Seitz, G., Gebhardt, S., Beck, J. F., Böhm, W., Lode, H. N., Niethammer, D., & Bruchelt, G. (1998). Ascorbic acid stimulates DOPA synthesis and tyrosine hydroxylase gene expression in the human neuroblastoma cell line SK-N-SH. Neuroscience Letters, 244(1), 33-36.
Sepkovic, D. W., Bradlow, H. L., & Bell, M. (2001). Quantitative determination of 3,3′-diindolylmethane in urine of individuals receiving indole-3-carbinol. Nutrition and Cancer, 41(1-2), 57-63.
Shams, S., Ashrafi, M.-R., Nori, M., Irani, H., Ashtiani, M.-T. H., & Mohseni, A. (2007). Selenium and glutathione peroxidase deficiency in epileptic children. Iranian Journal of Pediatrics, 17(s2), 173-178.
Sharma, N., & Nehru, B. (2015). Characterization of the lipopolysaccharide induced model of Parkinson's disease: Role of oxidative stress and neuroinflammation. Neurochemistry International, 87, 92-105.
Shi, W., Su, L., Wang, J., Wang, F., Liu, X., & Dou, J. (2022). Correlation between dietary selenium intake and stroke in the National Health and nutrition examination survey 2003-2018. Annals of Medicine, 54(1), 1395-1402.
Shiina, A., Kanahara, N., Sasaki, T., Oda, Y., Hashimoto, T., Hasegawa, T., Yoshida, T., Iyo, M., & Hashimoto, K. (2015). An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clinical Psychopharmacology and Neuroscience, 13(1), 62-67.
Shirai, Y., Fujita, Y., & Hashimoto, K. (2012). Effects of the antioxidant sulforaphane on hyperlocomotion and prepulse inhibition deficits in mice after phencyclidine administration. Clinical Psychopharmacology and Neuroscience, 10(2), 94-98.
Siddique, Y. H. (2021). Neurodegenerative diseases and flavonoids: Special reference to kaempferol. CNS & Neurological Disorders-Drug Targets, 20(4), 327-342.
Silva Dos Santos, J., Gonçalves Cirino, J. P., de Oliveira Carvalho, P., & Ortega, M. M. (2020). The pharmacological action of Kaempferol in central nervous system diseases: A review. Frontiers in Pharmacology, 11, 565700.
Singh, G., Kawatra, A., & Sehgal, S. (2001). Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant Foods for Human Nutrition, 56, 359-364.
Singh, H., Arora, R., Arora, S., & Singh, B. (2017). Ameliorative potential of Alstonia scholaris (Linn.) R. Br. Against chronic constriction injury-induced neuropathic pain in rats. BMC Complementary and Alternative Medicine, 17(1), 63.
Singh, K., Connors, S. L., Macklin, E. A., Smith, K. D., Fahey, J. W., Talalay, P., & Zimmerman, A. W. (2014). Sulforaphane treatment of autism spectrum disorder (ASD). Proceedings of the National Academy of Sciences of the United States of America, 111(43), 15550-15555.
Singh, K., & Zimmerman, A. W. (2016). Sulforaphane treatment of young men with autism spectrum disorder. CNS & Neurological Disorders-Drug Targets, 15(5), 597-601.
Skalny, A. V., Skalnaya, M. G., Klimenko, L. L., Mazilina, A. N., & Tinkov, A. A. (2018). Selenium in ischemic stroke. Selenium, 13, 1211-1230.
Snodderly, D. M. (1995). Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. The American Journal of Clinical Nutrition, 62(6 Suppl), 1448s-1461s.
Socała, K., Nieoczym, D., Kowalczuk-Vasilev, E., Wyska, E., & Wlaź, P. (2017). Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice. Toxicology and Applied Pharmacology, 326, 43-53.
Solovyev, N., Drobyshev, E., Blume, B., & Michalke, B. (2021). Selenium at the neural barriers: A review. Frontiers in Neuroscience, 15, 630016.
Solovyev, N. D. (2015). Importance of selenium and selenoprotein for brain function: From antioxidant protection to neuronal signalling. Journal of Inorganic Biochemistry, 153, 1-12.
Srinivasan, E., & Rajasekaran, R. (2018). Comparative binding of kaempferol and kaempferide on inhibiting the aggregate formation of mutant (G85R) SOD1 protein in familial amyotrophic lateral sclerosis: A quantum chemical and molecular mechanics study. BioFactors, 44(5), 431-442.
Tamtaji, O. R., Heidari-Soureshjani, R., Mirhosseini, N., Kouchaki, E., Bahmani, F., Aghadavod, E., Tajabadi-Ebrahimi, M., & Asemi, Z. (2019). Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer's disease: A randomized, double-blind, controlled trial. Clinical Nutrition, 38(6), 2569-2575.
Tang, X., Liu, H., Xiao, Y., Wu, L., & Shu, P. (2022). Vitamin C intake and ischemic stroke. Frontiers in Nutrition, 9, 935991.
Tfelt-Hansen, P., Saxena, P., Dahlöf, C., Pascual, J., Lainez, M., Henry, P., Diener, H.-C., Schoenen, J., Ferrari, M., & Goadsby, P. (2000). Ergotamine in the acute treatment of migraine: A review and European consensus. Brain, 123(1), 9-18.
Thomson, C. A., Chow, H. H. S., Wertheim, B. C., Roe, D. J., Stopeck, A., Maskarinec, G., Altbach, M., Chalasani, P., Huang, C., Strom, M. B., Galons, J. P., & Thompson, P. A. (2017). A randomized, placebo-controlled trial of diindolylmethane for breast cancer biomarker modulation in patients taking tamoxifen. Breast Cancer Research and Treatment, 165(1), 97-107.
Trio, P. Z., Fujisaki, S., Tanigawa, S., Hisanaga, A., Sakao, K., & Hou, D.-X. (2016). DNA microarray highlights Nrf2-mediated neuron protection targeted by wasabi-derived isothiocyanates in IMR-32 cells. Gene Regulation and Systems Biology, 10, GRSB. S39440-GRSB.S39483.
Turovsky, E., Mal'Tseva, V., Sarimov, R., Simakin, A., Gudkov, S., & Plotnikov, E. (2022). Features of the cytoprotective effect of selenium nanoparticles on primary cortical neurons and astrocytes during oxygen-glucose deprivation and reoxygenation. Scientific Reports, 12(1), 1710.
Upadhyay, A., Upadhyaya, I., Kollanoor-Johny, A., & Venkitanarayanan, K. (2014). Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis. BioMed Research International, 2014, 761741.
Van Kooten, F., Ciabattoni, G., Patrono, C., Schmitz, P., Van Gijn, J., & Koudstaal, P. J. (1994). Evidence for episodic platelet activation in acute ischemic stroke. Stroke, 25(2), 278-281.
Vauzour, D., Buonfiglio, M., Corona, G., Chirafisi, J., Vafeiadou, K., Angeloni, C., Hrelia, S., Hrelia, P., & Spencer, J. P. (2010). Sulforaphane protects cortical neurons against 5-S-cysteinyl-dopamine-induced toxicity through the activation of ERK1/2, Nrf-2 and the upregulation of detoxification enzymes. Molecular Nutrition & Food Research, 54(4), 532-542.
Velagapudi, R., Jamshaid, F., Lepiarz, I., Katola, F. O., Hemming, K., & Olajide, O. A. (2019). The tiliroside derivative, 3-O-[(E)-2-oxo-4-(p-tolyl) but-3-en-1-yl] kaempferol produced inhibition of neuroinflammation and activation of AMPK and Nrf2/HO-1 pathways in BV-2 microglia. International Immunopharmacology, 77, 105951.
Visco, D. B., Manhães-de-Castro, R., da Silva, M. M., Costa-de-Santana, B. J. R., Pereira Dos Santos Junior, J., Saavedra, L. M., de Lemos, M., Valdéz-Alarcón, J. J., Lagranha, C. J., Guzman-Quevedo, O., Torner, L., & Toscano, A. E. (2022). Neonatal kaempferol exposure attenuates impact of cerebral palsy model on neuromotor development, cell proliferation, microglia activation, and antioxidant enzyme expression in the hippocampus of rats. Nutritional Neuroscience, 27, 1-22.
Vishwanathan, R., Kuchan, M. J., Sen, S., & Johnson, E. J. (2014). Lutein and preterm infants with decreased concentrations of brain carotenoids. Journal of Pediatric Gastroenterology and Nutrition, 59(5), 659-665.
Vizuete, M. L., Steffen, V., Machado, A., & Cano, J. (1994). 1-Methyl-4-phenylpyridinium has greater neurotoxic effect after selenium deficiency than after vitamin E deficiency in rat striatum. European Journal of Pharmacology, 270(2-3), 183-187.
Wahid, M., Ali, A., Saqib, F., Aleem, A., Bibi, S., Afzal, K., Ali, A., Baig, A., Khan, S. A., & Bin Asad, M. H. H. (2020). Pharmacological exploration of traditional plants for the treatment of neurodegenerative disorders. Phytotherapy Research, 34(12), 3089-3112.
Wang, G., Fang, H., Zhen, Y., Xu, G., Tian, J., Zhang, Y., Zhang, D., Zhang, G., Xu, J., & Zhang, Z. (2016). Sulforaphane prevents neuronal apoptosis and memory impairment in diabetic rats. Cellular Physiology and Biochemistry, 39(3), 901-907.
Wang, J., Mao, J., Wang, R., Li, S., Wu, B., & Yuan, Y. (2020). Kaempferol protects against cerebral ischemia reperfusion injury through intervening oxidative and inflammatory stress induced apoptosis. Frontiers in Pharmacology, 11, 424.
Wang, X., de Rivero Vaccari, J. P., Wang, H., Diaz, P., German, R., Marcillo, A. E., & Keane, R. W. (2012). Activation of the nuclear factor E2-related factor 2/antioxidant response element pathway is neuroprotective after spinal cord injury. Journal of Neurotrauma, 29(5), 936-945.
Wanwimolruk, S., & Prachayasittikul, V. (2014). Cytochrome P450 enzyme mediated herbal drug interactions (part 1). EXCLI Journal, 13, 347-391.
Williamson, E. M., Liu, X., & Izzo, A. A. (2020). Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. British Journal of Pharmacology, 177(6), 1227-1240.
Wirth, E. K., Conrad, M., Winterer, J., Wozny, C., Carlson, B. A., Roth, S., Schmitz, D., Bornkamm, G. W., Coppola, V., & Tessarollo, L. (2010). Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration. The FASEB Journal, 24(3), 844-852.
Wu, B., Luo, H., Zhou, X., Cheng, C. Y., Lin, L., Liu, B. L., Liu, K., Li, P., & Yang, H. (2017). Succinate-induced neuronal mitochondrial fission and hexokinase II malfunction in ischemic stroke: Therapeutical effects of kaempferol. Biochimica et Biophysica Acta, 1863(9), 2307-2318.
Wu, C., Chen, X., Lai, J., Xu, Y., & Hu, S. (2020). The efficacy and safety of sulforaphane as an adjuvant in the treatment of bipolar depressive disorder: Study protocol for a randomized, double-blinded, placebo-controlled, parallel-group clinical trial. Medicine, 99(26), e20981.
Yagami, T., Ueda, K., Asakura, K., Sakaeda, T., Nakazato, H., Kuroda, T., Hata, S., Sakaguchi, G., Itoh, N., & Nakano, T. (2002). Gas6 rescues cortical neurons from amyloid β protein-induced apoptosis. Neuropharmacology, 43(8), 1289-1296.
Yang, S., Tan, L., Chen, Y., Liu, A., Hong, M., & Peng, Z. (2020). DIM mitigates the development of experimental autoimmune encephalomyelitis by maintaining the stability and suppressive function of regulatory T cells. Cellular Immunology, 358, 104238.
Yang, Y., Luo, L., Cai, X., Fang, Y., Wang, J., Chen, G., Yang, J., Zhou, Q., Sun, X., & Cheng, X. (2018). Nrf2 inhibits oxaliplatin-induced peripheral neuropathy via protection of mitochondrial function. Free Radical Biology and Medicine, 120, 13-24.
Yu, L., Chen, C., Wang, L. F., Kuang, X., Liu, K., Zhang, H., & Du, J. R. (2013). Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-κB and STAT3 in transient focal stroke. PLoS ONE, 8(2), e55839.
Yuan, X., Fu, Z., Ji, P., Guo, L., Al-Ghamdy, A. O., Alkandiri, A., Habotta, O. A., Abdel Moneim, A. E., & Kassab, R. B. (2020). Selenium nanoparticles pre-treatment reverse behavioral, oxidative damage, neuronal loss and neurochemical alterations in pentylenetetrazole-induced epileptic seizures in mice. International Journal of Nanomedicine, 15, 6339-6353.
Yuan, Y., Xia, F., Gao, R., Chen, Y., Zhang, Y., Cheng, Z., Zhao, H., & Xu, L. (2022). Kaempferol mediated AMPK/mTOR signal pathway has a protective effect on cerebral ischemic-reperfusion injury in rats by inducing autophagy. Neurochemical Research, 47(8), 2187-2197.
Yue, D., Zeng, C., Okyere, S. K., Chen, Z., & Hu, Y. (2021). Glycine nano-selenium prevents brain oxidative stress and neurobehavioral abnormalities caused by MPTP in rats. Journal of Trace Elements in Medicine and Biology, 64, 126680.
Zeni-Graiff, M., Rizzo, L. B., Mansur, R. B., Maurya, P. K., Sethi, S., Cunha, G. R., Asevedo, E., Pan, P., Zugman, A., & Yamagata, A. S. (2016). Peripheral immuno-inflammatory abnormalities in ultra-high risk of developing psychosis. Schizophrenia Research, 176(2-3), 191-195.
Zhang, R., Zhang, J., Fang, L., Li, X., Zhao, Y., Shi, W., & An, L. (2014). Neuroprotective effects of sulforaphane on cholinergic neurons in mice with Alzheimer's disease-like lesions. International Journal of Molecular Sciences, 15(8), 14396-14410.
Zhang, S. S., Liu, M., Liu, D. N., Shang, Y. F., Du, G. H., & Wang, Y. H. (2022). Network pharmacology analysis and experimental validation of Kaempferol in the treatment of ischemic stroke by inhibiting apoptosis and regulating Neuroinflammation involving neutrophils. International Journal of Molecular Sciences, 23(20), 12694.
Zhang, X., Liu, R. P., Cheng, W. H., & Zhu, J. H. (2019). Prioritized brain selenium retention and selenoprotein expression: Nutritional insights into Parkinson's disease. Mechanisms of Ageing and Development, 180, 89-96.
Zhao, X., Song, S., Sun, G., Strong, R., Zhang, J., Grotta, J. C., & Aronowski, J. (2009). Neuroprotective role of haptoglobin after intracerebral hemorrhage. Journal of Neuroscience, 29(50), 15819-15827.
Zhao, X., Zhang, M., Li, C., Jiang, X., Su, Y., & Zhang, Y. (2019). Benefits of vitamins in the treatment of Parkinson's disease. Oxidative Medicine and Cellular Longevity, 2019, 9426867.
Zhou, Q., Chen, B., Wang, X., Wu, L., Yang, Y., Cheng, X., Hu, Z., Cai, X., Yang, J., & Sun, X. (2016). Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2 and autophagy pathways. Scientific Reports, 6(1), 1-12.
Zhou, X., Wang, S., Ding, X., Qin, L., Mao, Y., Chen, L., Li, W., & Ying, C. (2017). Zeaxanthin improves diabetes-induced cognitive deficit in rats through activiting PI3K/AKT signaling pathway. Brain Research Bulletin, 132, 190-198.
Zimmerman, A. W., Singh, K., Connors, S. L., Liu, H., Panjwani, A. A., Lee, L.-C., Diggins, E., Foley, A., Melnyk, S., & Singh, I. N. (2021). Randomized controlled trial of sulforaphane and metabolite discovery in children with autism Spectrum disorder. Molecular Autism, 12(1), 1-22.