Gut mycobiome dysbiosis after sepsis and trauma.
Critical care
Critical illness
Dysbiosis
Fungi
Metabolome
Microbiota
Mycobiome
Pathobiome
Sepsis
Trauma
Journal
Critical care (London, England)
ISSN: 1466-609X
Titre abrégé: Crit Care
Pays: England
ID NLM: 9801902
Informations de publication
Date de publication:
11 Jan 2024
11 Jan 2024
Historique:
received:
15
11
2023
accepted:
14
12
2023
medline:
12
1
2024
pubmed:
12
1
2024
entrez:
11
1
2024
Statut:
epublish
Résumé
Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied. We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization. We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites. The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients.
Sections du résumé
BACKGROUND
BACKGROUND
Sepsis and trauma are known to disrupt gut bacterial microbiome communities, but the impacts and perturbations in the fungal (mycobiome) community after severe infection or injury, particularly in patients experiencing chronic critical illness (CCI), remain unstudied.
METHODS
METHODS
We assess persistence of the gut mycobiome perturbation (dysbiosis) in patients experiencing CCI following sepsis or trauma for up to two-to-three weeks after intensive care unit hospitalization.
RESULTS
RESULTS
We show that the dysbiotic mycobiome arrays shift toward a pathobiome state, which is more susceptible to infection, in CCI patients compared to age-matched healthy subjects. The fungal community in CCI patients is largely dominated by Candida spp; while, the commensal fungal species are depleted. Additionally, these myco-pathobiome arrays correlate with alterations in micro-ecological niche involving specific gut bacteria and gut-blood metabolites.
CONCLUSIONS
CONCLUSIONS
The findings reveal the persistence of mycobiome dysbiosis in both sepsis and trauma settings, even up to two weeks post-sepsis and trauma, highlighting the need to assess and address the increased risk of fungal infections in CCI patients.
Identifiants
pubmed: 38212826
doi: 10.1186/s13054-023-04780-4
pii: 10.1186/s13054-023-04780-4
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
18Subventions
Organisme : NIH HHS
ID : T32 GM-008721
Pays : United States
Organisme : NIH HHS
ID : RM1 GM139690
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. Lancet Microbe. 2022;3:e969–83.
pubmed: 36182668
doi: 10.1016/S2666-5247(22)00203-8
Hoarau G, Mukherjee P, Gower-Rousseau C, Hager C, Chandra J, Retuerto M, et al. Bacteriome and mycobiome interactions underscore microbial dysbiosis in familial Crohn’s disease. MBio. 2016;7:10–1128.
doi: 10.1128/mBio.01250-16
Limon JJ, Tang J, Li D, Wolf AJ, Michelsen KS, Funari V, et al. Malassezia is associated with Crohn’s disease and exacerbates colitis in mouse models. Cell Host Microbe. 2019;25:377-388.e6.
pubmed: 30850233
pmcid: 6417942
doi: 10.1016/j.chom.2019.01.007
Sciavilla P, Strati F, Di Paola M, Modesto M, Vitali F, Cavalieri D, et al. Gut microbiota profiles and characterization of cultivable fungal isolates in IBS patients. Appl Microbiol Biotechnol. 2021;105:3277–88.
pubmed: 33839797
pmcid: 8053167
doi: 10.1007/s00253-021-11264-4
Das A, O’Herlihy E, Shanahan F, O’Toole P, Jeffery I. The fecal mycobiome in patients with Irritable bowel syndrome. Sci Rep. 2021;11:124.
pubmed: 33420127
pmcid: 7794320
doi: 10.1038/s41598-020-79478-6
Coker OO, Nakatsu G, Dai RZ, Wu WKK, Wong SH, Ng SC, et al. Enteric fungal microbiota dysbiosis and ecological alterations in colorectal cancer. Gut. 2019;68:654–62.
pubmed: 30472682
doi: 10.1136/gutjnl-2018-317178
Wheeler ML, Limon JJ, Bar AS, Leal CA, Gargus M, Tang J, et al. Immunological consequences of Intestinal Fungal Dysbiosis. Cell Host Microbe. 2016;19:865–73.
pubmed: 27237365
pmcid: 4900921
doi: 10.1016/j.chom.2016.05.003
Zhai B, Ola M, Rolling T, Tosini NL, Joshowitz S, Littmann ER, et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. 2020;26:59–64.
pubmed: 31907459
pmcid: 7005909
doi: 10.1038/s41591-019-0709-7
Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–17.
pubmed: 15306996
doi: 10.1086/421946
Magill SS, O’Leary E, Janelle SJ, Thompson DL, Dumyati G, Nadle J, et al. Changes in prevalence of health care-associated infections in U.S. Hospitals. N Engl J Med. 2018;379:1732–44.
pubmed: 30380384
pmcid: 7978499
doi: 10.1056/NEJMoa1801550
Seelbinder B, Lohinai Z, Vazquez-Uribe R, Brunke S, Chen X, Mirhakkak M, et al. Candida expansion in the gut of lung cancer patients associates with an ecological signature that supports growth under dysbiotic conditions. Nat Commun. 2023;14:2673.
pubmed: 37160893
pmcid: 10169812
doi: 10.1038/s41467-023-38058-8
Sam QH, Chang MW, Chai LYA. The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci. 2017;18:330.
pubmed: 28165395
pmcid: 5343866
doi: 10.3390/ijms18020330
Yeh A, Rogers MB, Firek B, Neal MD, Zuckerbraun BS, Morowitz MJ. Dysbiosis across multiple body sites in critically ill adult surgical patients. Shock: injury. Inflam Sepsis Lab Clin Appr. 2016;46:649–54.
Munley JA, Kirkpatrick SL, Gillies GS, Bible LE, Efron PA, Nagpal R, et al. The intestinal microbiome after traumatic injury. Microorganisms. 2023;11:1990.
pubmed: 37630549
pmcid: 10459834
doi: 10.3390/microorganisms11081990
Wei R, Chen X, Hu L, He Z, Ouyang X, Liang S, et al. Dysbiosis of intestinal microbiota in critically ill patients and risk of in-hospital mortality. Am J Transl Res. 2021;13:1548–57.
pubmed: 33841678
pmcid: 8014420
Ojima M, Shimizu K, Motooka D, Ishihara T, Nakamura S, Shintani A, et al. Gut dysbiosis associated with antibiotics and disease severity and its relation to mortality in critically Ill patients. Dig Dis Sci. 2022;67:2420–32.
pubmed: 33939152
doi: 10.1007/s10620-021-07000-7
McDonald D, Ackermann G, Khailova L, Baird C, Heyland D, Kozar R, et al. Extreme dysbiosis of the microbiome in critical illness. Msphere. 2016;1:e00199-e216.
pubmed: 27602409
pmcid: 5007431
doi: 10.1128/mSphere.00199-16
Efron PA, Mohr AM, Bihorac A, Horiguchi H, Hollen MK, Segal MS, et al. Persistent inflammation, immunosuppression, and catabolism and the development of chronic critical illness after surgery. Surgery. 2018;164:178–84.
pubmed: 29807651
doi: 10.1016/j.surg.2018.04.011
Krezalek MA, DeFazio J, Zaborina O, Zaborin A, Alverdy JC. The shift of an intestinal “microbiome” to a “pathobiome” governs the course and outcome of sepsis following surgical injury. Shock. 2016;45:475.
pubmed: 26863118
pmcid: 4833524
doi: 10.1097/SHK.0000000000000534
Marfil-Sánchez A, Zhang L, Alonso-Pernas P, Mirhakkak M, Mueller M, Seelbinder B, et al. An integrative understanding of the large metabolic shifts induced by antibiotics in critical illness. Gut Microbes. 2021;13:1993598.
pubmed: 34793277
pmcid: 8604395
doi: 10.1080/19490976.2021.1993598
Efron PA, Brakenridge SC, Mohr AM, Barrios EL, Polcz VE, Anton S, et al. The persistent inflammation, immunosuppression, and catabolism syndrome (PICS) ten years later. J Trauma Acute Care Surg. 2023;95:790.
pubmed: 37561664
doi: 10.1097/TA.0000000000004087
Cuschieri S. The STROBE guidelines. Saudi J Anaesth. 2019;13:S31–4.
pubmed: 30930717
pmcid: 6398292
doi: 10.4103/sja.SJA_543_18
Mira JC, Brakenridge SC, Moldawer LL, Moore FA. Persistent inflammation, immunosuppression and catabolism syndrome. Crit Care Clin. 2017;33:245–58.
pubmed: 28284293
pmcid: 5351769
doi: 10.1016/j.ccc.2016.12.001
Munley JA, Kelly LS, Park G, Gillies GS, Pons EE, Kannan KB, et al. Multicompartmental traumatic injury induces sex-specific alterations in the gut microbiome. J Trauma Acute Care Surg. 2023;95:30–8.
pubmed: 36872509
doi: 10.1097/TA.0000000000003939
Nagpal R, Neth BJ, Wang S, Mishra SP, Craft S, Yadav H. Gut mycobiome and its interaction with diet, gut bacteria and alzheimer’s disease markers in subjects with mild cognitive impairment: A pilot study. eBioMedicine [Internet]. 2020 [cited 2023 Aug 8];59. Available from: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(20)30326-1/fulltext
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–4.
pubmed: 22402401
pmcid: 3400413
doi: 10.1038/ismej.2012.8
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
pubmed: 31341288
pmcid: 7015180
doi: 10.1038/s41587-019-0209-9
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.
pubmed: 27214047
pmcid: 4927377
doi: 10.1038/nmeth.3869
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucl Acids Res. 2002;30:3059–66.
pubmed: 12136088
pmcid: 135756
doi: 10.1093/nar/gkf436
Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome. 2014;2:1–13.
doi: 10.1186/2049-2618-2-15
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.
pubmed: 14597658
pmcid: 403769
doi: 10.1101/gr.1239303
Baggs J, Jernigan JA, Halpin AL, Epstein L, Hatfield KM, McDonald LC. Risk of subsequent sepsis within 90 days after a hospital stay by type of antibiotic exposure. Clin Infect Dis. 2018;66:1004–12.
pubmed: 29136126
doi: 10.1093/cid/cix947
Howard BM, Kornblith LZ, Christie SA, Conroy AS, Nelson MF, Campion EM, et al. Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open. 2017;2:e000108.
pubmed: 29766103
pmcid: 5877916
doi: 10.1136/tsaco-2017-000108
Earley ZM, Akhtar S, Green SJ, Naqib A, Khan O, Cannon AR, et al. Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLoS ONE. 2015;10:e0129996.
pubmed: 26154283
pmcid: 4496078
doi: 10.1371/journal.pone.0129996
Munley JA, Kelly LS, Park G, Gillies GS, Pons EE, Kannan KB, et al. Sex-specific intestinal dysbiosis persists after multicompartmental injury. Surgery. 2023;S0039–6060(23)00524-X.
Efron PA, Darden DB, Li EC, Munley J, Kelly L, Fenner B, et al. Sex differences associate with late microbiome alterations after murine surgical sepsis. J Trauma Acute Care Surg. 2022;93:137.
pubmed: 35324554
pmcid: 9323556
doi: 10.1097/TA.0000000000003599
Sakr Y, Elia C, Mascia L, Barberis B, Cardellino S, Livigni S, et al. The influence of gender on the epidemiology of and outcome from severe sepsis. Crit Care. 2013;17:R50.
pubmed: 23506971
pmcid: 3733421
doi: 10.1186/cc12570
Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014;5:4–11.
pubmed: 24335434
doi: 10.4161/viru.27372
Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep. 2019;9:8872.
pubmed: 31222159
pmcid: 6586901
doi: 10.1038/s41598-019-45467-7
Fan D, Coughlin LA, Neubauer MM, Kim J, Kim MS, Zhan X, et al. Activation of HIF-1α and LL-37 by commensal bacteria inhibits Candida albicans colonization. Nat Med. 2015;21:808–14.
pubmed: 26053625
pmcid: 4496259
doi: 10.1038/nm.3871
Trofa D, Gácser A, Nosanchuk JD. Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev. 2008;21:606–25.
pubmed: 18854483
pmcid: 2570155
doi: 10.1128/CMR.00013-08
Sullivan D, Coleman D. Candida dubliniensis: characteristics and identification. J Clin Microbiol. 1998;36:329–34.
pubmed: 9466736
pmcid: 104537
doi: 10.1128/JCM.36.2.329-334.1998
Ann Chai LY, Denning DW, Warn P. Candida tropicalis in human disease. Crit Rev Microbiol. 2010;36:282–98.
doi: 10.3109/1040841X.2010.489506
Aliaga S, Clark RH, Laughon M, Walsh TJ, Hope WW, Benjamin DK, et al. Changes in the incidence of candidiasis in neonatal intensive care units. Pediatrics. 2014;133:236–42.
pubmed: 24446441
pmcid: 3904270
doi: 10.1542/peds.2013-0671
Jensen J-US, Hein L, Lundgren B, Bestle MH, Mohr T, Andersen MH, et al. Invasive candida infections and the harm from antibacterial drugs in critically Ill patients: data from a randomized, controlled trial to determine the role of ciprofloxacin, piperacillin-tazobactam, meropenem, and cefuroxime*. Critic Care Med. 2015;43:594.
doi: 10.1097/CCM.0000000000000746
Xu X-L, Lee RTH, Fang H-M, Wang Y-M, Li R, Zou H, et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe. 2008;4:28–39.
pubmed: 18621008
doi: 10.1016/j.chom.2008.05.014
Tan CT, Xu X, Qiao Y, Wang Y. A peptidoglycan storm caused by β-lactam antibiotic’s action on host microbiota drives Candida albicans infection. Nat Commun. 2021;12:2560.
pubmed: 33963193
pmcid: 8105390
doi: 10.1038/s41467-021-22845-2
Kumar A, Asthana M, Gupta A, Nigam D, Mahajan S. Chapter 3 - secondary metabolism and antimicrobial metabolites of penicillium. In: Gupta VK, Rodriguez-Couto S, editors. New and future developments in microbial biotechnology and bioengineering. Amsterdam: Elsevier; 2018. p. 47–68.
doi: 10.1016/B978-0-444-63501-3.00003-X
Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials—a mycologist’s perspective. Mycologia. 2015;107:1057–73.
pubmed: 26354806
doi: 10.3852/15-147
Shuai M, Fu Y, Zhong H, Gou W, Jiang Z, Liang Y, et al. Mapping the human gut mycobiome in middle-aged and elderly adults: multiomics insights and implications for host metabolic health. Gut. 2022;71:1812–20.
pubmed: 35017200
doi: 10.1136/gutjnl-2021-326298
Suhr MJ, Banjara N, Hallen-Adams HE. Sequence-based methods for detecting and evaluating the human gut mycobiome. Lett Appl Microbiol. 2016;62:209–15.
pubmed: 26669281
doi: 10.1111/lam.12539
Wu N, Mo H, Mu Q, Liu P, Liu G, Yu W. The gut mycobiome characterization of gestational diabetes mellitus and its association with dietary intervention. Front Microbiol. 2022. https://doi.org/10.3389/fmicb.2022.892859 .
doi: 10.3389/fmicb.2022.892859
pubmed: 37063449
pmcid: 9881461
Nash AK, Auchtung TA, Wong MC, Smith DP, Gesell JR, Ross MC, et al. The gut mycobiome of the human microbiome project healthy cohort. Microbiome. 2017;5:153.
pubmed: 29178920
pmcid: 5702186
doi: 10.1186/s40168-017-0373-4
Enaud R, Vandenborght L-E, Coron N, Bazin T, Prevel R, Schaeverbeke T, et al. The mycobiome: a neglected component in the microbiota-gut-brain axis. Microorganisms. 2018;6:22.
pubmed: 29522426
pmcid: 5874636
doi: 10.3390/microorganisms6010022
Jiang TT, Shao T-Y, Ang WXG, Kinder JM, Turner LH, Pham G, et al. Commensal fungi recapitulate the protective benefits of intestinal bacteria. Cell Host Microb. 2017;22:809-816.e4.
doi: 10.1016/j.chom.2017.10.013
Duysburgh C, Van den Abbeele P, Morera M, Marzorati M. Lacticaseibacillus rhamnosus GG and saccharomyces cerevisiae boulardii supplementation exert protective effects on human gut microbiome following antibiotic administration in vitro. Benef Microb. 2021;12:365–79.
doi: 10.3920/BM2020.0180
Roy Sarkar S, Mitra Mazumder P, Chatterjee K, Sarkar A, Adhikary M, Mukhopadhyay K, et al. Saccharomyces boulardii ameliorates gut dysbiosis associated cognitive decline. Physiol Behav. 2021;236:113411.
pubmed: 33811908
doi: 10.1016/j.physbeh.2021.113411
Samonis G, Falagas M, Lionakis S, Ntaoukakis M, Kofteridis D, Ntalas I, et al. Saccharomyces boulardii and Candida albicans experimental colonization of the murine gut. Med Mycol. 2011;49:395–9.
pubmed: 21077734
doi: 10.3109/13693786.2010.533203
Berg R, Bernasconi P, Fowler D, Gautreaux M. Inhibition of Candida albicans translocation from the gastrointestinal tract of mice by oral administration of saccharomyces boulardii. J Infect Dis. 1993;168:1314–8.
pubmed: 8228371
doi: 10.1093/infdis/168.5.1314
Jawhara S, Poulain D. Saccharomyces boulardii decreases inflammation and intestinal colonization by Candida albicans in a mouse model of chemically-induced colitis. Med Mycol. 2007;45:691–700.
pubmed: 17885943
doi: 10.1080/13693780701523013
Møller N. Ketone body, 3-hydroxybutyrate: minor metabolite - major medical manifestations. J Clin Endocrinol Metab. 2020;105:2884–92.
doi: 10.1210/clinem/dgaa370
Mickiewicz B, Tam P, Jenne CN, Leger C, Wong J, Winston BW, et al. Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit. Crit Care. 2015;19:11.
pubmed: 25928796
pmcid: 4340832
doi: 10.1186/s13054-014-0729-0
Pandey S, Siddiqui MA, Azim A, Sinha N. Metabolic fingerprint of patients showing responsiveness to treatment of septic shock in intensive care unit. Magn Reson Mater Phy. 2023;36:659–69.
doi: 10.1007/s10334-022-01049-9
Hypoglycemia and Risk of Death in Critically Ill Patients. New England Journal of Medicine. 2012;367:1108–18.
Galley HF. Oxidative stress and mitochondrial dysfunction in sepsis. BJA Br J Anaesth. 2011;107:57–64.
pubmed: 21596843
doi: 10.1093/bja/aer093
Ashfaq M, Moats AR, Northrup H, Singletary CN, Hashmi SS, Koenig MK, et al. Hypoglycemia in mitochondrial disorders. Mitochondrion. 2021;58:179–83.
pubmed: 33737013
doi: 10.1016/j.mito.2021.03.002
Piziak VK, Carpentier W. Candida sepsis manifested by recurrent diabetic ketoacidosis. Diabetes Care. 1987;10:784–5.
pubmed: 3123185
doi: 10.2337/diacare.10.6.784
Gregory R, McElveen J, Tattersall RB, Todd I. The effects of 3-hydroxybutyrate and glucose on human T cell responses to Candida albicans. FEMS Immunol Med Microbiol. 1993;7:315–20.
pubmed: 8136782
doi: 10.1111/j.1574-695X.1993.tb00413.x
Pinto TF, Rocha R, Paula CA, de Jesus RP. Tolerance to enteral nutrition therapy in traumatic brain injury patients. Brain Inj. 2012;26:1113–7.
pubmed: 22571511
doi: 10.3109/02699052.2012.666369
Blaser AR, Starkopf J, Kirsimägi Ü, Deane AM. Definition, prevalence, and outcome of feeding intolerance in intensive care: a systematic review and meta-analysis: How to define feeding intolerance? Acta Anaesthesiol Scand. 2014;58:914–22.
pubmed: 24611520
doi: 10.1111/aas.12302
Ene IV, Cheng S-C, Netea MG, Brown AJP. Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells. Infect Immun. 2013;81:238–48.
pubmed: 23115042
pmcid: 3536122
doi: 10.1128/IAI.01092-12
Oami T, Chihade DB, Coopersmith CM. The microbiome and nutrition in critical illness. Curr Opin Crit Care. 2019;25:145.
pubmed: 30855323
pmcid: 6499930
doi: 10.1097/MCC.0000000000000582
Serbanescu MA, Mathena RP, Xu J, Santiago-Rodriguez T, Hartsell TL, Cano RJ, et al. General anesthesia alters the diversity and composition of the intestinal microbiota in mice. Anesth Analg. 2019;129:e126.
pubmed: 30489316
pmcid: 9717490
doi: 10.1213/ANE.0000000000003938