Acute effects of caffeine or quercetin ingestion on motor unit firing pattern before and after resistance exercise.

Central and peripheral fatigue Ergogenic aids High-density surface electromyography Motor unit decomposition Nutritional supplementation

Journal

European journal of applied physiology
ISSN: 1439-6327
Titre abrégé: Eur J Appl Physiol
Pays: Germany
ID NLM: 100954790

Informations de publication

Date de publication:
09 Jan 2024
Historique:
received: 20 02 2023
accepted: 14 11 2023
medline: 9 1 2024
pubmed: 9 1 2024
entrez: 9 1 2024
Statut: aheadofprint

Résumé

The aim of the present study was to investigate the acute effect of caffeine or quercetin ingestion on motor unit firing patterns and muscle contractile properties before and after resistance exercise. High-density surface electromyography (HDs-EMG) during submaximal contractions and electrically elicited torque in knee extensor muscles were measured before (PRE) and 60 min after (POST1) ingestion of caffeine, quercetin glycosides, or placebo, and after resistance exercise (POST2) in ten young males. The Convolution Kernel Compensation technique was used to identify individual motor units of the vastus lateralis muscle for the recorded HDs-EMG. Ingestion of caffeine or quercetin induced significantly greater decreases in recruitment thresholds (RTs) from PRE to POST1 compared with placebo (placebo: 94.8 ± 9.7%, caffeine: 84.5 ± 16.2%, quercetin: 91.9 ± 36.7%), and there were significant negative correlations between the change in RTs (POST1-PRE) and RT at PRE for caffeine (rs = - 0.448, p < 0.001) and quercetin (rs =  - 0.415, p = 0.003), but not placebo (rs =  - 0.109, p = 0.440). Significant positive correlations between the change in firing rates (POST2-POST1) and RT at PRE were noted with placebo (rs = 0.380, p = 0.005) and quercetin (rs = 0.382, p = 0.007), but not caffeine (rs = 0.069, p = 0.606). No significant differences were observed in electrically elicited torque among the three conditions. These results suggest that caffeine or quercetin ingestion alters motor unit firing patterns after resistance exercise in different threshold-dependent manners in males.

Identifiants

pubmed: 38193908
doi: 10.1007/s00421-023-05376-0
pii: 10.1007/s00421-023-05376-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Japan soceity for the promotion of Science (JP)
ID : JPJSBP-82626
Organisme : Slovenska Akademija Znanosti in Umetnosti
ID : J2-1731
Organisme : Slovenska Akademija Znanosti in Umetnosti
ID : L7-9421
Organisme : Slovenska Akademija Znanosti in Umetnosti
ID : P2-0041

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Adam A (2005) Firing rates of motor units in human vastus lateralis muscle during fatiguing isometric contractions. J Appl Physiol 99(1):268–280. https://doi.org/10.1152/japplphysiol.01344.2004
doi: 10.1152/japplphysiol.01344.2004 pubmed: 16036904
Alexander SP (2006) Flavonoids as antagonists at A1 adenosine receptors. Phytother Res 20(11):1009–1012. https://doi.org/10.1002/ptr.1975
doi: 10.1002/ptr.1975 pubmed: 17006974
Bazzucchi I, Felici F, Montini M, Figura F, Sacchetti M (2011) Caffeine improves neuromuscular function during maximal dynamic exercise. Muscle Nerve 43(6):839–844. https://doi.org/10.1002/mus.21995
doi: 10.1002/mus.21995 pubmed: 21488053
Bazzucchi I, Patrizio F, Ceci R, Duranti G, Sgro P, Sabatini S, Di Luigi L, Sacchetti M, Felici F (2019) The effects of quercetin supplementation on eccentric exercise-induced muscle damage. Nutrients. https://doi.org/10.3390/nu11010205
doi: 10.3390/nu11010205 pubmed: 30669587 pmcid: 6356612
Burak C, Brull V, Langguth P, Zimmermann BF, Stoffel-Wagner B, Sausen U, Stehle P, Wolffram S, Egert S (2017) Higher plasma quercetin levels following oral administration of an onion skin extract compared with pure quercetin dihydrate in humans. Eur J Nutr 56(1):343–353. https://doi.org/10.1007/s00394-015-1084-x
doi: 10.1007/s00394-015-1084-x pubmed: 26482244
Burke RE, Levine DN, Tsairis P, Zajac FE 3rd (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234(3):723–748. https://doi.org/10.1113/jphysiol.1973.sp010369
doi: 10.1113/jphysiol.1973.sp010369 pubmed: 4148752 pmcid: 1350696
Cheuvront SN, Ely BR, Kenefick RW, Michniak-Kohn BB, Rood JC, Sawka MN (2009) No effect of nutritional adenosine receptor antagonists on exercise performance in the heat. Am J Physiol Regul Integr Comp Physiol 296(2):R394-401. https://doi.org/10.1152/ajpregu.90812.2008
doi: 10.1152/ajpregu.90812.2008 pubmed: 19020291
Coombes JS, Powers SK, Rowell B, Hamilton KL, Dodd SL, Shanely RA, Sen CK (2001) Effects of vitamin E and alpha-lipoic acid on skeletal muscle contractile properties. J Appl Physiol 90(4):1424–1430. https://doi.org/10.1152/jappl.2001.90.4.1424
doi: 10.1152/jappl.2001.90.4.1424 pubmed: 11247943
Coombes JS, Rowell B, Dodd SL, Demirel HA, Naito H, Shanely RA, Powers SK (2002) Effects of vitamin E deficiency on fatigue and muscle contractile properties. Eur J Appl Physiol 87(3):272–277. https://doi.org/10.1007/s00421-002-0631-3
doi: 10.1007/s00421-002-0631-3 pubmed: 12111289
Davis JM, Murphy EA, Carmichael MD (2009) Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep 8(4):206–213. https://doi.org/10.1249/JSR.0b013e3181ae8959
doi: 10.1249/JSR.0b013e3181ae8959 pubmed: 19584608
Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D (2019a) The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 597(7):1873–1887. https://doi.org/10.1113/JP277250
doi: 10.1113/JP277250 pubmed: 30727028 pmcid: 6441907
Del Vecchio A, Negro F, Holobar A, Casolo A, Folland JP, Felici F, Farina D (2019b) You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans. J Physiol 597(9):2445–2456. https://doi.org/10.1113/JP277396
doi: 10.1113/JP277396 pubmed: 30768687 pmcid: 6487919
Desbrow B, Biddulph C, Devlin B, Grant GD, Anoopkumar-Dukie S, Leveritt MD (2012) The effects of different doses of caffeine on endurance cycling time trial performance. J Sports Sci 30(2):115–120. https://doi.org/10.1080/02640414.2011.632431
doi: 10.1080/02640414.2011.632431 pubmed: 22142020
Farina D, Holobar A, Merletti R, Enoka RM (2010) Decoding the neural drive to muscles from the surface electromyogram. Clin Neurophysiol 121(10):1616–1623. https://doi.org/10.1016/j.clinph.2009.10.040
doi: 10.1016/j.clinph.2009.10.040 pubmed: 20444646
Francic A, Holobar A (2021) On the reuse of motor unit filters in high density surface electromyograms recorded at different contraction levels. Ieee Access 9:115227–115236. https://doi.org/10.1109/Access.2021.3104762
doi: 10.1109/Access.2021.3104762
Fuglevand AJ, Winter DA, Patla AE (1993) Models of recruitment and rate coding organization in motor-unit pools. J Neurophysiol 70(6):2470–2488. https://doi.org/10.1152/jn.1993.70.6.2470
doi: 10.1152/jn.1993.70.6.2470 pubmed: 8120594
Gallego JA, Dideriksen JL, Holobar A, Ibanez J, Glaser V, Romero JP, Benito-Leon J, Pons JL, Rocon E, Farina D (2015a) The phase difference between neural drives to antagonist muscles in essential tremor is associated with the relative strength of supraspinal and afferent input. J Neurosci 35(23):8925–8937. https://doi.org/10.1523/JNEUROSCI.0106-15.2015
doi: 10.1523/JNEUROSCI.0106-15.2015 pubmed: 26063924 pmcid: 6605200
Gallego JA, Dideriksen JL, Holobar A, Ibanez J, Pons JL, Louis ED, Rocon E, Farina D (2015b) Influence of common synaptic input to motor neurons on the neural drive to muscle in essential tremor. J Neurophysiol 113(1):182–191. https://doi.org/10.1152/jn.00531.2014
doi: 10.1152/jn.00531.2014 pubmed: 25274343
Graham TE (2001) Caffeine and exercise: metabolism, endurance and performance. Sports Med 31(11):785–807. https://doi.org/10.2165/00007256-200131110-00002
doi: 10.2165/00007256-200131110-00002 pubmed: 11583104
Grgic J (2021) Effects of caffeine on resistance exercise: a review of recent research. Sports Med 51(11):2281–2298. https://doi.org/10.1007/s40279-021-01521-x
doi: 10.1007/s40279-021-01521-x pubmed: 34291426
Grgic J, Mikulic P, Schoenfeld BJ, Bishop DJ, Pedisic Z (2019) The influence of caffeine supplementation on resistance exercise: a review. Sports Med 49(1):17–30. https://doi.org/10.1007/s40279-018-0997-y
doi: 10.1007/s40279-018-0997-y pubmed: 30298476
Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z (2020) Wake up and smell the coffee: caffeine supplementation and exercise performance-an umbrella review of 21 published meta-analyses. Br J Sports Med 54(11):681–688. https://doi.org/10.1136/bjsports-2018-100278
doi: 10.1136/bjsports-2018-100278 pubmed: 30926628
Haider G, Folland JP (2014) Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med Sci Sports Exerc 46(12):2234–2243. https://doi.org/10.1249/MSS.0000000000000351
doi: 10.1249/MSS.0000000000000351 pubmed: 24681572
Henneman E, Olson CB (1965) Relations between Structure and Function in the Design of Skeletal Muscles. J Neurophysiol 28:581–598. https://doi.org/10.1152/jn.1965.28.3.581
doi: 10.1152/jn.1965.28.3.581 pubmed: 14328455
Henneman E, Somjen G, Carpenter DO (1965) Functional Significance of Cell Size in Spinal Motoneurons. J Neurophysiol 28:560–580. https://doi.org/10.1152/jn.1965.28.3.560
doi: 10.1152/jn.1965.28.3.560 pubmed: 14328454
Holobar A, Zazula D (2004) Correlation-based decomposition of surface electromyograms at low contraction forces. Med Biol Eng Comput 42(4):487–495. https://doi.org/10.1007/BF02350989
doi: 10.1007/BF02350989 pubmed: 15320457
Holobar A, Zazula D (2008) On the selection of the cost function for gradient-based decomposition of surface electromyograms. Annu Int Conf IEEE Eng Med Biol Soc 2008:4668–4671. https://doi.org/10.1109/IEMBS.2008.4650254
doi: 10.1109/IEMBS.2008.4650254 pubmed: 19163757
Holobar A, Farina D, Gazzoni M, Merletti R, Zazula D (2009) Estimating motor unit discharge patterns from high-density surface electromyogram. Clin Neurophysiol 120(3):551–562. https://doi.org/10.1016/j.clinph.2008.10.160
doi: 10.1016/j.clinph.2008.10.160 pubmed: 19208498
Holobar A, Minetto MA, Farina D (2014) Accurate identification of motor unit discharge patterns from high-density surface EMG and validation with a novel signal-based performance metric. J Neural Eng 11(1):016008. https://doi.org/10.1088/1741-2560/11/1/016008
doi: 10.1088/1741-2560/11/1/016008 pubmed: 24654270
Kalmar JM (1985) Cafarelli E (1999) Effects of caffeine on neuromuscular function. J Appl Physiol 87(2):801–808. https://doi.org/10.1152/jappl.1999.87.2.801
doi: 10.1152/jappl.1999.87.2.801
Kamimori GH, Karyekar CS, Otterstetter R, Cox DS, Balkin TJ, Belenky GL, Eddington ND (2002) The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. Int J Pharm 234(1–2):159–167. https://doi.org/10.1016/s0378-5173(01)00958-9
doi: 10.1016/s0378-5173(01)00958-9 pubmed: 11839447
Kunugi S, Holobar A, Kodera T, Toyoda H, Watanabe K (2021) Motor unit firing patterns on increasing force during force and position tasks. J Neurophysiol 126(5):1653–1659. https://doi.org/10.1152/jn.00299.2021
doi: 10.1152/jn.00299.2021 pubmed: 34669517
Lee EH, Meissner G, Kim DH (2002) Effects of quercetin on single Ca(2+) release channel behavior of skeletal muscle. Biophys J 82(3):1266–1277. https://doi.org/10.1016/S0006-3495(02)75483-0
doi: 10.1016/S0006-3495(02)75483-0 pubmed: 11867444 pmcid: 1301930
Lopes JM, Aubier M, Jardim J, Aranda JV, Macklem PT (1983) Effect of caffeine on skeletal muscle function before and after fatigue. J Appl Physiol Respir Environ Exerc Physiol 54(5):1303–1305. https://doi.org/10.1152/jappl.1983.54.5.1303
doi: 10.1152/jappl.1983.54.5.1303 pubmed: 6863091
Lulic-Kuryllo T, Inglis JG (2022) Sex differences in motor unit behaviour: A review. J Electromyogr Kinesiol 66:102689. https://doi.org/10.1016/j.jelekin.2022.102689
doi: 10.1016/j.jelekin.2022.102689 pubmed: 36095969
Lynge J, Hellsten Y (2000) Distribution of adenosine A1, A2A and A2B receptors in human skeletal muscle. Acta Physiol Scand 169(4):283–290. https://doi.org/10.1046/j.1365-201x.2000.00742.x
doi: 10.1046/j.1365-201x.2000.00742.x pubmed: 10951119
Makino T, Shimizu R, Kanemaru M, Suzuki Y, Moriwaki M, Mizukami H (2009) Enzymatically modified isoquercitrin, alpha-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol Pharm Bull 32(12):2034–2040. https://doi.org/10.1248/bpb.32.2034
doi: 10.1248/bpb.32.2034 pubmed: 19952424
McLellan TM, Caldwell JA, Lieberman HR (2016) A review of caffeine’s effects on cognitive, physical and occupational performance. Neurosci Biobehav Rev 71:294–312. https://doi.org/10.1016/j.neubiorev.2016.09.001
doi: 10.1016/j.neubiorev.2016.09.001 pubmed: 27612937
Merletti R, Holobar A, Farina D (2008) Analysis of motor units with high-density surface electromyography. J Electromyogr Kinesiol 18(6):879–890. https://doi.org/10.1016/j.jelekin.2008.09.002
doi: 10.1016/j.jelekin.2008.09.002 pubmed: 19004645
Murota K, Matsuda N, Kashino Y, Fujikura Y, Nakamura T, Kato Y, Shimizu R, Okuyama S, Tanaka H, Koda T, Sekido K, Terao J (2010) alpha-Oligoglucosylation of a sugar moiety enhances the bioavailability of quercetin glucosides in humans. Arch Biochem Biophys 501(1):91–97. https://doi.org/10.1016/j.abb.2010.06.036
doi: 10.1016/j.abb.2010.06.036 pubmed: 20638359
Neyroud D, Cheng AJ, Donnelly C, Bourdillon N, Gassner AL, Geiser L, Rudaz S, Kayser B, Westerblad H, Place N (2019) Toxic doses of caffeine are needed to increase skeletal muscle contractility. Am J Physiol Cell Physiol 316(2):C246–C251. https://doi.org/10.1152/ajpcell.00269.2018
doi: 10.1152/ajpcell.00269.2018 pubmed: 30566390
Patrizio F, Ditroilo M, Felici F, Duranti G, De Vito G, Sabatini S, Sacchetti M, Bazzucchi I (2018) The acute effect of Quercetin on muscle performance following a single resistance training session. Eur J Appl Physiol 118(5):1021–1031. https://doi.org/10.1007/s00421-018-3834-y
doi: 10.1007/s00421-018-3834-y pubmed: 29511920
Pickering C, Grgic J (2019) Caffeine and Exercise: What Next? Sports Med 49(7):1007–1030. https://doi.org/10.1007/s40279-019-01101-0
doi: 10.1007/s40279-019-01101-0 pubmed: 30977054 pmcid: 6548757
Pollock RD, Woledge RC, Martin FC (2012) Effects of whole body vibration on motor unit recruitment and threshold. J Appl Physiol 112(3):388–395. https://doi.org/10.1152/japplphysiol.01223.2010
doi: 10.1152/japplphysiol.01223.2010 pubmed: 22096119
Romaiguere P, Vedel JP, Azulay JP, Pagni S (1991) Differential activation of motor units in the wrist extensor muscles during the tonic vibration reflex in man. J Physiol 444:645–667. https://doi.org/10.1113/jphysiol.1991.sp018899
doi: 10.1113/jphysiol.1991.sp018899 pubmed: 1822565 pmcid: 1179954
Skinner TL, Desbrow B, Arapova J, Schaumberg MA, Osborne J, Grant GD, Anoopkumar-Dukie S, Leveritt MD (2019) Women experience the same ergogenic response to caffeine as men. Med Sci Sports Exerc 51(6):1195–1202. https://doi.org/10.1249/MSS.0000000000001885
doi: 10.1249/MSS.0000000000001885 pubmed: 30629046
Spriet LL (2014) Exercise and sport performance with low doses of caffeine. Sports Med 44(2):S175-184. https://doi.org/10.1007/s40279-014-0257-8
doi: 10.1007/s40279-014-0257-8 pubmed: 25355191
ter Haar Romeny BM, Denier van der Gon JJ, Gielen CC (1982) Changes in recruitment order of motor units in the human biceps muscle. Exp Neurol 78(2):360–368. https://doi.org/10.1016/0014-4886(82)90054-1
doi: 10.1016/0014-4886(82)90054-1 pubmed: 7140904
Tomita A, Kawade S, Moritani T, Watanabe K (2020) Novel perspective on contractile properties and intensity-dependent verification of force-frequency relationship during neuromuscular electrical stimulation. Physiol Rep 8(22):e14598. https://doi.org/10.14814/phy2.14598
doi: 10.14814/phy2.14598 pubmed: 33230975 pmcid: 7683877
Watanabe K, Holobar A (2021) Quercetin ingestion modifies human motor unit firing patterns and muscle contractile properties. Exp Brain Res 239(5):1567–1579. https://doi.org/10.1007/s00221-021-06085-w
doi: 10.1007/s00221-021-06085-w pubmed: 33742251 pmcid: 8144122
Watanabe K, Holobar A, Kouzaki M, Ogawa M, Akima H, Moritani T (2016) Age-related changes in motor unit firing pattern of vastus lateralis muscle during low-moderate contraction. Age (dordr) 38(3):48. https://doi.org/10.1007/s11357-016-9915-0
doi: 10.1007/s11357-016-9915-0 pubmed: 27084115
Watanabe K, Holobar A, Mita Y, Kouzaki M, Ogawa M, Akima H, Moritani T (2018) Effect of resistance training and fish protein intake on motor unit firing pattern and motor function of elderly. Front Physiol 9:1733. https://doi.org/10.3389/fphys.2018.01733
doi: 10.3389/fphys.2018.01733 pubmed: 30564141 pmcid: 6288440
Watanabe K, Holobar A, Mita Y, Tomita A, Yoshiko A, Kouzaki M, Uchida K, Moritani T (2020) Modulation of neural and muscular adaptation processes during resistance training by fish protein ingestions in older adults. J Gerontol A Biol Sci Med Sci 75(5):867–874. https://doi.org/10.1093/gerona/glz215
doi: 10.1093/gerona/glz215 pubmed: 31596471
Yavuz US, Negro F, Sebik O, Holobar A, Frommel C, Turker KS, Farina D (2015) Estimating reflex responses in large populations of motor units by decomposition of the high-density surface electromyogram. J Physiol 593(19):4305–4318. https://doi.org/10.1113/JP270635
doi: 10.1113/JP270635 pubmed: 26115007 pmcid: 4594244

Auteurs

Taichi Nishikawa (T)

Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan.
Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan.

Tetsuya Hirono (T)

Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan.
Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.

Aleš Holobar (A)

Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia.

Shun Kunugi (S)

Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan.
Center for General Education, Aichi Institute of Technology, Toyota, Japan.

Masamichi Okudaira (M)

Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan.

Toshiyuki Ohya (T)

Laboratory for Exercise Physiology and Biomechanics, Graduate School of Health and Sport Sciences, Chukyo University, Toyota, Japan.

Kohei Watanabe (K)

Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Kaizu-Cho, Tokodachi, Toyota, 470-0093, Japan. wkohei@lets.chukyo-u.ac.jp.

Classifications MeSH