Metal-Organic Framework-Based Materials for Advanced Sodium Storage: Development and Anticipation.
Derivatives
Electrochemical performance
Electrodes
Metal-organic frameworks
Sodium-ion batteries
Journal
Advanced materials (Deerfield Beach, Fla.)
ISSN: 1521-4095
Titre abrégé: Adv Mater
Pays: Germany
ID NLM: 9885358
Informations de publication
Date de publication:
09 Jan 2024
09 Jan 2024
Historique:
revised:
16
12
2023
received:
21
11
2023
medline:
9
1
2024
pubmed:
9
1
2024
entrez:
9
1
2024
Statut:
aheadofprint
Résumé
As a pioneering battery technology, even though sodium-ion batteries (SIBs) are safe, non-flammable, and capable of exhibiting better temperature endurance performance than lithium-ion batteries (LIBs), because of lower energy density and larger ionic size, they are not amicable for large-scale applications. Generally, the electrochemical storage performance of a secondary battery can be improved by monitoring the composition and morphology of electrode materials. Because more is the intricacy of a nanostructured composite electrode material, more electrochemical storage applications would be expected. Despite the conventional methods suitable for practical production, the synthesis of metal-organic frameworks (MOFs) would offer enormous opportunities for next-generation battery applications by delicately systematizing the structure and composition at the molecular level to store sodium ions with larger sizes compared with lithium ions. Here in this review, we comprehensively discuss the progress of nanostructured MOFs and their derivatives applied as negative and positive electrode materials for effective sodium storage in SIBs. The commercialization goal has prompted the development of MOFs and their derivatives as electrode materials, before which the synthesis and mechanism for MOF-based SIB electrodes with improved sodium storage performance were systematically discussed. Finally, the existing challenges, possible perspectives, and future opportunities will be anticipated. This article is protected by copyright. All rights reserved.
Identifiants
pubmed: 38193792
doi: 10.1002/adma.202312471
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
e2312471Informations de copyright
This article is protected by copyright. All rights reserved.