A pan-genomic approach reveals novel Sulfurimonas clade in the ferruginous meromictic Lake Pavin.
Sulfurimonas
freshwater
meromictic lake
pan-genome
sulphur oxidation
Journal
Molecular ecology resources
ISSN: 1755-0998
Titre abrégé: Mol Ecol Resour
Pays: England
ID NLM: 101465604
Informations de publication
Date de publication:
08 Jan 2024
08 Jan 2024
Historique:
revised:
26
10
2023
received:
27
07
2023
accepted:
21
12
2023
medline:
8
1
2024
pubmed:
8
1
2024
entrez:
8
1
2024
Statut:
aheadofprint
Résumé
The permanently anoxic waters in meromictic lakes create suitable niches for the growth of bacteria using sulphur metabolisms like sulphur oxidation. In Lake Pavin, the anoxic water mass hosts an active cryptic sulphur cycle that interacts narrowly with iron cycling, however the metabolisms of the microorganisms involved are poorly known. Here we combined metagenomics, single-cell genomics, and pan-genomics to further expand our understanding of the bacteria and the corresponding metabolisms involved in sulphur oxidation in this ferruginous sulphide- and sulphate-poor meromictic lake. We highlighted two new species within the genus Sulfurimonas that belong to a novel clade of chemotrophic sulphur oxidisers exclusive to freshwaters. We moreover conclude that this genus holds a key-role not only in limiting sulphide accumulation in the upper part of the anoxic layer but also constraining carbon, phosphate and iron cycling.
Identifiants
pubmed: 38189173
doi: 10.1111/1755-0998.13923
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e13923Informations de copyright
© 2024 John Wiley & Sons Ltd.
Références
Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. Nature Methods, 11(11), 1144-1146. https://doi.org/10.1038/nmeth.3103
Alneberg, J., Karlsson, C. M. G., Divne, A.-M., Bergin, C., Homa, F., Lindh, M. V., Hugerth, L. W., Ettema, T. J. G., Bertilsson, S., Andersson, A. F., & Pinhassi, J. (2018). Genomes from uncultivated prokaryotes: A comparison of metagenome-assembled and single-amplified genomes. Microbiome, 6(1), 173. https://doi.org/10.1186/s40168-018-0550-0
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
Anantharaman, K., Brown, C. T., Hug, L. A., Sharon, I., Castelle, C. J., Probst, A. J., Thomas, B. C., Singh, A., Wilkins, M. J., Karaoz, U., Brodie, E. L., Williams, K. H., Hubbard, S. S., & Banfield, J. F. (2016). Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nature Communications, 7(1), 13219. https://doi.org/10.1038/ncomms13219
Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19(5), 455-477. https://doi.org/10.1089/cmb.2012.0021
Bell, E., Lamminmäki, T., Alneberg, J., Andersson, A. F., Qian, C., Xiong, W., Hettich, R. L., Frutschi, M., & Bernier-Latmani, R. (2020). Active sulfur cycling in the terrestrial deep subsurface. The ISME Journal, 14(5), 1260-1272. https://doi.org/10.1038/s41396-020-0602-x
Berben, T., Overmars, L., Sorokin, D. Y., & Muyzer, G. (2019). Diversity and distribution of sulfur oxidation-related genes in Thioalkalivibrio, a genus of Chemolithoautotrophic and Haloalkaliphilic sulfur-oxidizing bacteria. Frontiers in Microbiology, 10, 160. https://doi.org/10.3389/fmicb.2019.00160
Berg, J. S., Jézéquel, D., Duverger, A., Lamy, D., Laberty-Robert, C., & Miot, J. (2019). Microbial diversity involved in iron and cryptic sulfur cycling in the ferruginous, low-sulfate waters of Lake Pavin. PLoS One, 14(2), e0212787. https://doi.org/10.1371/journal.pone.0212787
Biderre-Petit, C., Boucher, D., Kuever, J., Alberic, P., Jézéquel, D., Chebance, B., Borrel, G., Fonty, G., & Peyret, P. (2011). Identification of sulfur-cycle prokaryotes in a low-sulfate Lake (Lake Pavin) using aprA and 16S rRNA gene markers. Microbial Ecology, 61(2), 313-327. https://doi.org/10.1007/s00248-010-9769-4
Biderre-Petit, C., Dugat-Bony, E., Mege, M., Parisot, N., Adrian, L., Moné, A., Denonfoux, J., Peyretaillade, E., Debroas, D., Boucher, D., & Peyret, P. (2016). Distribution of Dehalococcoidia in the anaerobic deep water of a remote meromictic crater Lake and detection of Dehalococcoidia-derived reductive dehalogenase homologous genes. PLoS One, 11(1), e0145558. https://doi.org/10.1371/journal.pone.0145558
Biderre-Petit, C., Jézéquel, D., Dugat-Bony, E., Lopes, F., Kuever, J., Borrel, G., Viollier, E., Fonty, G., & Peyret, P. (2011). Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake: Methane cycle in a stratified freshwater ecosystem. FEMS Microbiology Ecology, 77(3), 533-545. https://doi.org/10.1111/j.1574-6941.2011.01134.x
Biderre-Petit, C., Taib, N., Gardon, H., Hochart, C., & Debroas, D. (2019). New insights into the pelagic microorganisms involved in the methane cycle in the meromictic Lake Pavin through metagenomics. FEMS Microbiology Ecology, 95(3), fiy183. https://doi.org/10.1093/femsec/fiy183
Block, K. R., O'Brien, J. M., Edwards, W. J., & Marnocha, C. L. (2021). Vertical structure of the bacterial diversity in meromictic Fayetteville green Lake. MicrobiologyOpen, 10(4), e1228. https://doi.org/10.1002/mbo3.1228
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
Booker, A. E., Borton, M. A., Daly, R. A., Welch, S. A., Nicora, C. D., Hoyt, D. W., Wilson, T., Purvine, S. O., Wolfe, R. A., Sharma, S., Mouser, P. J., Cole, D. R., Lipton, M. S., Wrighton, K. C., & Wilkins, M. J. (2017). Sulfide generation by dominant Halanaerobium microorganisms in hydraulically fractured shales. MSphere, 2(4), e00257-17. https://doi.org/10.1128/mSphereDirect.00257-17
Bowers, R. M., Stepanauskas, R., Harmon-Smith, M., Doud, D., Reddy, T. B. K., Schulz, F., Jarett, J., Rivers, A. R., Eloe-Fadrosh, E. A., Tringe, S. G., Ivanova, N. N., Copeland, A., Clum, A., Becraft, E. D., Malmstrom, R. R., Birren, B., Podar, M., Bork, P., Weinstock, G. M., … Woyke, T. (2017). Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nature Biotechnology, 35(8), 725-731. https://doi.org/10.1038/nbt.3893
Bradley, J. M., Svistunenko, D. A., Wilson, M. T., Hemmings, A. M., Moore, G. R., & Le Brun, N. E. (2020). Bacterial iron detoxification at the molecular level. Journal of Biological Chemistry, 295(51), 17602-17623. https://doi.org/10.1074/jbc.REV120.007746
Buchfink, B., Reuter, K., & Drost, H.-G. (2021). Sensitive protein alignments at 321 tree-of-life scale using DIAMOND. Nature Methods, 18, 366-368. https://doi.org/10.1038/s41592-021-01101-x
Bura-Nakić, E., Viollier, E., & Ciglenečki, I. (2012). Electrochemical and colorimetric measurements show the dominant role of FeS in a permanently anoxic Lake. Environmental Science & Technology, 47(2), 741-749. https://doi.org/10.1021/es303603j
Callbeck, C. M., Canfield, D. E., Kuypers, M. M. M., Yilmaz, P., Lavik, G., Thamdrup, B., Schubert, C. J., & Bristow, L. A. (2021). Sulfur cycling in oceanic oxygen minimum zones. Limnology and Oceanography, 66(6), 2360-2392. https://doi.org/10.1002/lno.11759
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST+: Architecture and applications. BMC Bioinformatics, 10(1), 421. https://doi.org/10.1186/1471-2105-10-421
Campbell, B. J., Engel, A. S., Porter, M. L., & Takai, K. (2006). The versatile ε-proteobacteria: Key players in sulphidic habitats. Nature Reviews Microbiology, 4(6), 458-468. https://doi.org/10.1038/nrmicro1414
Capella-Gutiérrez, S., Silla-Martínez, J. M., & Gabaldón, T. (2009). trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25(15), 1972-1973. https://doi.org/10.1093/bioinformatics/btp348
Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: A toolkit to classify genomes with the genome taxonomy database. Bioinformatics, 36(6), 1925-1927. https://doi.org/10.1093/bioinformatics/btz848
Coluzzi, C., Guédon, G., Devignes, M.-D., Ambroset, C., Loux, V., Lacroix, T., Payot, S., & Leblond-Bourget, N. (2017). A glimpse into the world of integrative and Mobilizable elements in streptococci reveals an unexpected diversity and novel families of mobilization proteins. Frontiers in Microbiology, 8, 443. https://doi.org/10.3389/fmicb.2017.00443
Crutcher, F. K., Puckhaber, L. S., Stipanovic, R. D., Bell, A. A., Nichols, R. L., Lawrence, K. S., & Liu, J. (2017). Microbial resistance mechanisms to the antibiotic and Phytotoxin Fusaric acid. Journal of Chemical Ecology, 43(10), 996-1006. https://doi.org/10.1007/s10886-017-0889-x
Dahl, C. (2015). Cytoplasmic sulfur trafficking in sulfur-oxidizing prokaryotes. IUBMB Life, 67(4), 268-274. https://doi.org/10.1002/iub.1371
Diao, M., Huisman, J., & Muyzer, G. (2018). Spatio-temporal dynamics of sulfur bacteria during oxic-Anoxic regime shifts in a seasonally stratified lake. FEMS Microbiology Ecology, 94(4), fiy040. https://doi.org/10.1093/femsec/fiy040
Dy, R. L., Przybilski, R., Semeijn, K., Salmond, G. P. C., & Fineran, P. C. (2014). A widespread bacteriophage abortive infection system functions through a Type IV toxin-antitoxin mechanism. Nucleic Acids Research, 42(7), 4590-4605. https://doi.org/10.1093/nar/gkt1419
Edgar, R. C. (2004). MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5(1), 113. https://doi.org/10.1186/1471-2105-5-113
Edgar, R. C. (2022). Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. BMC Bioinformatics, 13(1), 6968. https://doi.org/10.1038/s41467-022-34630-w
Eren, A. M., Esen, Ö. C., Quince, C., Vineis, J. H., Morrison, H. G., Sogin, M. L., & Delmont, T. O. (2015). Anvi'o: An advanced analysis and visualization platform for 'omics data. PeerJ, 3, e1319. https://doi.org/10.7717/peerj.1319
Fang, Y., Liu, J., Yang, J., Wu, G., Hua, Z., Dong, H., Hedlund, B. P., Baker, B. J., & Jiang, H. (2022). Compositional and metabolic responses of autotrophic microbial community to salinity in lacustrine environments. MSystems, 7(4), e00335-22. https://doi.org/10.1128/msystems.00335-22
Fraikin, N., Goormaghtigh, F., & Van Melderen, L. (2020). Type II toxin-antitoxin systems: Evolution and revolutions. Journal of Bacteriology, 202(7), e00763. https://doi.org/10.1128/JB.00763-19
French, C. E., Bell, J. M. L., & Ward, F. B. (2008). Diversity and distribution of hemerythrin-like proteins in prokaryotes. FEMS Microbiology Letters, 279(2), 131-145. https://doi.org/10.1111/j.1574-6968.2007.01011.x
Goris, J., Konstantinidis, K. T., Klappenbach, J. A., Coenye, T., Vandamme, P., & Tiedje, J. M. (2007). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. International Journal of Systematic and Evolutionary Microbiology, 57(1), 81-91. https://doi.org/10.1099/ijs.0.64483-0
Götz, F., Longnecker, K., Kido Soule, M. C., Becker, K. W., McNichol, J., Kujawinski, E. B., & Sievert, S. M. (2018). Targeted metabolomics reveals proline as a major osmolyte in the chemolithoautotroph Sulfurimonas denitrificans. MicrobiologyOpen, 7(4), e00586. https://doi.org/10.1002/mbo3.586
Grein, F., Ramos, A. R., Venceslau, S. S., & Pereira, I. A. C. (2013). Unifying concepts in anaerobic respiration: Insights from dissimilatory sulfur metabolism. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1827(2), 145-160. https://doi.org/10.1016/j.bbabio.2012.09.001
Grote, J., Schott, T., Bruckner, C. G., Glöckner, F. O., Jost, G., Teeling, H., Labrenz, M., & Jürgens, K. (2012). Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proceedings of the National Academy of Sciences, 109(2), 506-510. https://doi.org/10.1073/pnas.1111262109
Gwak, J.-H., Awala, S. I., Nguyen, N.-L., Yu, W.-J., Yang, H.-Y., von Bergen, M., Jehmlich, N., Kits, K. D., Loy, A., Dunfield, P. F., Dahl, C., Hyun, J.-H., & Rhee, S.-K. (2022). Sulfur and methane oxidation by a single microorganism. Proceedings of the National Academy of Sciences, 119(32), e2114799119. https://doi.org/10.1073/pnas.2114799119
Hahn, C. R., Farag, I. F., Murphy, C. L., Podar, M., Elshahed, M. S., & Youssef, N. H. (2022). Microbial diversity and sulfur cycling in an early earth analogue: From ancient novelty to modern commonality. MBio, 13(2), e00016-22. https://doi.org/10.1128/mbio.00016-22
Hamilton, T. L., Bovee, R. J., Thiel, V., Sattin, S. R., Mohr, W., Schaperdoth, I., Vogl, K., Gilhooly, W. P., III, Lyons, T. W., Tomsho, L. P., Schuster, S. C., Overmann, J., Bryant, D. A., Pearson, A., & Macalady, J. L. (2014). Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. Geobiology, 12(5), 451-468. https://doi.org/10.1111/gbi.12092
Han, Y., & Perner, M. (2015). The globally widespread genus Sulfurimonas: Versatile energy metabolisms and adaptations to redox clines. Frontiers in Microbiology, 6, 989. https://doi.org/10.3389/fmicb.2015.00989
Henkel, J. V., Vogts, A., Werner, J., Neu, T. R., Spröer, C., Bunk, B., & Schulz-Vogt, H. N. (2021). Candidatus Sulfurimonas marisnigri sp. Nov. and Candidatus Sulfurimonas baltica sp. Nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Systematic and Applied Microbiology, 44(1), 126155. https://doi.org/10.1016/j.syapm.2020.126155
Hu, Q., Wang, S., Lai, Q., Shao, Z., & Jiang, L. (2021). Sulfurimonas indica sp. Nov., a hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean. International Journal of Systematic and Evolutionary Microbiology, 71(1), e004575. https://doi.org/10.1099/ijsem.0.004575
Huang, Y., Gilna, P., & Li, W. (2009). Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics, 25(10), 1338-1340. https://doi.org/10.1093/bioinformatics/btp161
Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, S. K., Cook, H., Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C., & Bork, P. (2019). eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research, 47(D1), D309-D314. https://doi.org/10.1093/nar/gky1085
Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11(1), 119. https://doi.org/10.1186/1471-2105-11-119
Jaffe, A. L., Bardot, C., Lejeune, A. L., Liu, J., Colombet, J., Perrière, F., Billard, H., Castelle, C. J., Lehours, A.-C., & Banfield, J. F. (2023). Variable impact of geochemical gradients on the functional potential of bacteria, archaea, and phages from the permanently stratified lac Pavin. Microbiome, 11(1), 14. https://doi.org/10.1186/s40168-022-01416-7
Johnson, L. A., & Hug, L. A. (2019). Distribution of reactive oxygen species defense mechanisms across domain bacteria. Free Radical Biology and Medicine, 140, 93-102. https://doi.org/10.1016/j.freeradbiomed.2019.03.032
Kamruzzaman, M., Wu, A. Y., & Iredell, J. R. (2021). Biological functions of type II toxin-antitoxin Systems in Bacteria. Microorganisms, 9(6), 1276. https://doi.org/10.3390/microorganisms9061276
Kang, D. K., Froula, J., Egan, R., & Wang, Z. (2015). MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ, 27(3), e1165. https://doi.org/10.7717/peerj.1165
Kim, M., Oh, H.-S., Park, S.-C., & Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_2), 346-351. https://doi.org/10.1099/ijs.0.059774-0
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33(7), 1870-1874. https://doi.org/10.1093/molbev/msw054
Lahme, S., Callbeck, C. M., Eland, L. E., Wipat, A., Enning, D., Head, I. M., & Hubert, C. R. J. (2020). Comparison of sulfide-oxidizing Sulfurimonas strains reveals a new mode of thiosulfate formation in subsurface environments. Environmental Microbiology, 22(5), 1784-1800. https://doi.org/10.1111/1462-2920.14894
Lahme, S., Enning, D., Callbeck, C. M., Menendez Vega, D., Curtis, T. P., Head, I. M., & Hubert, C. R. J. (2019). Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion. Applied and Environmental Microbiology, 85(3), e01891-18. https://doi.org/10.1128/AEM.01891-18
Lee, M. D. (2019). GToTree: A user-friendly workflow for phylogenomics. Bioinformatics, 35(20), 4162-4164. https://doi.org/10.1093/bioinformatics/btz188
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
Li, D., Liu, C.-M., Luo, R., Sadakane, K., & Lam, T.-W. (2015). MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31(10), 1674-1676. https://doi.org/10.1093/bioinformatics/btv033
Li, W., & Godzik, A. (2006). Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics, 22(13), 1658-1659. https://doi.org/10.1093/bioinformatics/btl158
Lin, S.-H., & Liao, Y.-C. (2013). CISA: Contig integrator for sequence assembly of bacterial genomes. PLoS One, 8(3), e60843. https://doi.org/10.1371/journal.pone.0060843
Liu, B., Zheng, D., Jin, Q., Chen, L., & Yang, J. (2019). VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Research, 47(D1), D687-D692. https://doi.org/10.1093/nar/gky1080
Liu, L.-J., Stockdreher, Y., Koch, T., Sun, S.-T., Fan, Z., Josten, M., Sahl, H.-G., Wang, Q., Luo, Y.-M., Liu, S.-J., Dahl, C., & Jiang, C.-Y. (2014). Thiosulfate transfer mediated by DsrE/TusA homologs from Acidothermophilic sulfur-oxidizing archaeon Metallosphaera cuprina. Journal of Biological Chemistry, 289(39), 26949-26959. https://doi.org/10.1074/jbc.M114.591669
Liu, M., Li, X., Xie, Y., Bi, D., Sun, J., Li, J., Tai, C., Deng, Z., & Ou, H.-Y. (2019). ICEberg 2.0: An updated database of bacterial integrative and conjugative elements. Nucleic Acids Research, 47(D1), D660-D665. https://doi.org/10.1093/nar/gky1123
Lushchak, V. I. (2011). Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 153(2), 175-190. https://doi.org/10.1016/j.cbpc.2010.10.004
Marietou, A., Røy, H., Jørgensen, B. B., & Kjeldsen, K. U. (2018). Sulfate transporters in dissimilatory sulfate reducing microorganisms: A comparative genomics analysis. Frontiers in Microbiology, 9, 309. https://doi.org/10.3389/fmicb.2018.00309
Maschmann, Z. A., Chua, T. K., Chandrasekaran, S., Ibáñez, H., & Crane, B. R. (2022). Redox properties and PAS domain structure of the Escherichia coli energy sensor Aer indicate a multistate sensing mechanism. Journal of Biological Chemistry, 298(12), 102598. https://doi.org/10.1016/j.jbc.2022.102598
Meier, D. V., Pjevac, P., Bach, W., Hourdez, S., Girguis, P. R., Vidoudez, C., Amann, R., & Meyerdierks, A. (2017). Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. The ISME Journal, 11(7), 1545-1558. https://doi.org/10.1038/ismej.2017.37
Miot, J., Jézéquel, D., Benzerara, K., Cordier, L., Rivas-Lamelo, S., Skouri-Panet, F., Férard, C., Poinsot, M., & Duprat, E. (2016). Mineralogical diversity in Lake Pavin: Connections with water column chemistry and biomineralization processes. Minerals, 6(2), 24. https://doi.org/10.3390/min6020024
Molari, M., Hassenrueck, C., Laso-Pérez, R., Wegener, G., Offre, P., Scilipoti, S., & Boetius, A. (2023). A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes. Nature Microbiology, 8(4), 651-665. https://doi.org/10.1038/s41564-023-01342-w
Möller, L., Laas, P., Rogge, A., Goetz, F., Bahlo, R., Leipe, T., & Labrenz, M. (2019). Sulfurimonas subgroup GD17 cells accumulate polyphosphate under fluctuating redox conditions in the Baltic Sea: Possible implications for their ecology. The ISME Journal, 13(2), 482-493. https://doi.org/10.1038/s41396-018-0267-x
Nosalova, L., Piknova, M., Kolesarova, M., & Pristas, P. (2023). Cold Sulfur Springs-Neglected niche for autotrophic sulfur-oxidizing bacteria. Microorganisms, 11(6), 1436. https://doi.org/10.3390/microorganisms11061436
Parks, D. H., Chuvochina, M., Rinke, C., Mussig, A. J., Chaumeil, P.-A., & Hugenholtz, P. (2022). GTDB: An ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Research, 50(D1), D785-D794. https://doi.org/10.1093/nar/gkab776
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., & Tyson, G. W. (2015). CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Research, 25(7), 1043-1055. https://doi.org/10.1101/gr.186072.114
Peng, Y., Leung, H. C. M., Yiu, S. M., & Chin, F. Y. L. (2012). IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics, 28(11), 1420-1428. https://doi.org/10.1093/bioinformatics/bts174
Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLoS One, 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490
Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G., & Toth, I. K. (2015). Genomics and taxonomy in diagnostics for food security: Soft-rotting enterobacterial plant pathogens. Analytical Methods, 8(1), 12-24. https://doi.org/10.1039/C5AY02550H
Probst, A. J., Ladd, B., Jarett, J. K., Geller-McGrath, D. E., Sieber, C. M. K., Emerson, J. B., Anantharaman, K., Thomas, B. C., Malmstrom, R. R., Stieglmeier, M., Klingl, A., Woyke, T., Ryan, M. C., & Banfield, J. F. (2018). Differential depth distribution of microbial function and putative symbionts through sediment-hosted aquifers in the deep terrestrial subsurface. Nature Microbiology, 3(3), 328-336. https://doi.org/10.1038/s41564-017-0098-y
Ratnikova, N. M., Slobodkin, A. I., Merkel, A. Y., Kopitsyn, D. S., Kevbrin, V. V., Bonch-Osmolovskaya, E. A., & Slobodkina, G. B. (2020). Sulfurimonas crateris sp. Nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano. International Journal of Systematic and Evolutionary Microbiology, 70(1), 487-492. https://doi.org/10.1099/ijsem.0.003779
Ravot, G., Magot, M., Ollivier, B., Patel, B. K. C., Ageron, E., Grimont, P. A. D., Thomas, P., & Garcia, J.-L. (2006). Haloanaerobium congolense sp. Nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiology Letters, 147(1), 81-88. https://doi.org/10.1111/j.1574-6968.1997.tb10224.x
Rivas-Lamelo, S., Benzerara, K., Lefèvre, C. T., Monteil, C. L., Jézéquel, D., Menguy, N., Viollier, E., Guyot, F., Férard, C., Poinsot, M., Skouri-Panet, F., Trcera, N., Miot, J., & Duprat, E. (2017). Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin. Geochemical Perspectives Letters, 5, 35-41. https://doi.org/10.7185/geochemlet.1743
Rogge, A., Vogts, A., Voss, M., Jürgens, K., Jost, G., & Labrenz, M. (2017). Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r -strategists: SUP05 and Sulfurimonas in sulfidic redox zones. Environmental Microbiology, 19(6), 2495-2506. https://doi.org/10.1111/1462-2920.13783
Römling, U., Galperin, M. Y., & Gomelsky, M. (2013). Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews, 77(1), 1-52. https://doi.org/10.1128/MMBR.00043-12
Salmaso, N. (2019). Effects of habitat partitioning on the distribution of Bacterioplankton in Deep Lakes. Frontiers in Microbiology, 10, 2257. https://doi.org/10.3389/fmicb.2019.02257
Sikorski, J., Munk, C., Lapidus, A., Djao, O. D. N., Tapia, R., Goodwin, L., Pitluck, S., Liolios, K., Ivanova, N., Mavromatis, K., Mikhailova, N., Pati, A., Sims, D., Meincke, L., Brettin, T., Detter, J. C., Chen, A., Palaniappan, K., Land, M., … Klenk, H.-P. (2010). Sulfurimonas autotrophica type strain (OK10). Standards in Genomic Sciences, 3(2), 194-202. https://doi.org/10.4056/sigs.1173118
Soto-Jimenez, L., Estrada, K., & Sanchez-Flores, A. (2014). GARM: Genome assembly, reconciliation and merging pipeline. Current Topics in Medicinal Chemistry, 14(3), 418-424. https://doi.org/10.2174/1568026613666131204110628
Takai, K., Suzuki, M., Nakagawa, S., Miyazaki, M., Suzuki, Y., Inagaki, F., & Horikoshi, K. (2006). Sulfurimonas paralvinellae sp. Nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. Nov. And emended description of the genus Sulfurimonas. International Journal of Systematic and Evolutionary Microbiology, 56(8), 1725-1733. https://doi.org/10.1099/ijs.0.64255-0
Tanaka, Y., Yoshikaie, K., Takeuchi, A., Ichikawa, M., Mori, T., Uchino, S., Sugano, Y., Hakoshima, T., Takagi, H., Nonaka, G., & Tsukazaki, T. (2020). Crystal structure of a YeeE/YedE family protein engaged in thiosulfate uptake. Science. Advances, 6(35), eaba7637. https://doi.org/10.1126/sciadv.aba7637
Taviti, A. C., & Beuria, T. K. (2019). Bacterial min proteins beyond the cell division. Critical Reviews in Microbiology, 45(1), 22-32. https://doi.org/10.1080/1040841X.2018.1538932
Taylor, G. T., Suter, E. A., Pachiadaki, M. G., Astor, Y., Edgcomb, V. P., & Scranton, M. I. (2018). Temporal shifts in dominant sulfur-oxidizing chemoautotrophic populations across the Cariaco Basin's redoxcline. Deep Sea Research Part II: Topical Studies in Oceanography, 156, 80-96. https://doi.org/10.1016/j.dsr2.2017.11.016
Thompson, C. C., Chimetto, L., Edwards, R. A., Swings, J., Stackebrandt, E., & Thompson, F. L. (2013). Microbial genomic taxonomy. BMC Genomics, 23(14), 913. https://doi.org/10.1186/1471-2164-14--913
Tian, H., Gao, P., Chen, Z., Li, Y., Li, Y., Wang, Y., Zhou, J., Li, G., & Ma, T. (2017). Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Frontiers in Microbiology, 8, 143. https://doi.org/10.3389/fmicb.2017.00143
Tully, B. J., Wheat, C. G., Glazer, B. T., & Huber, J. A. (2018). A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. The ISME Journal, 12(1), 1-16. https://doi.org/10.1038/ismej.2017.187
Van Dongen, S. (2008). Graph clustering via a discrete uncoupling process. SIAM Journal on Matrix Analysis and Applications, 30, 1. https://doi.org/10.1137/040608635
van Vliet, D. M., von Meijenfeldt, F. A. B., Dutilh, B. E., Villanueva, L., Sinninghe Damsté, J. S., Stams, A. J. M., & Sánchez-Andrea, I. (2021). The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environmental Microbiology, 23(6), 2834-2857. https://doi.org/10.1111/1462-2920.15265
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J., & Brasier, M. D. (2011). Microfossils of Sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience, 4(10), 698-702. https://doi.org/10.1038/ngeo1238
Wang, L., Cheung, M. K., Liu, R., Wong, C. K., Kwan, H. S., & Hwang, J.-S. (2017). Diversity of Total bacterial communities and chemoautotrophic populations in sulfur-rich sediments of shallow-water hydrothermal vents off Kueishan Island. Taiwan. Microbial Ecology, 73(3), 571-582. https://doi.org/10.1007/s00248-016-0898-2
Wang, S., Jiang, L., Hu, Q., Cui, L., Zhu, B., Fu, X., Lai, Q., Shao, Z., & Yang, S. (2021). Characterization of Sulfurimonas hydrogeniphila sp. Nov., a novel bacterium predominant in Deep-Sea hydrothermal vents and comparative genomic analyses of the genus Sulfurimonas. Frontiers in Microbiology, 12, 626705. https://doi.org/10.3389/fmicb.2021.626705
Wang, S., Jiang, L., Xie, S., Alain, K., Wang, Z., Wang, J., Liu, D., & Shao, Z. (2023). Disproportionation of inorganic sulfur compounds by mesophilic Chemolithoautotrophic Campylobacterota. MSystems, 8(1), e00954-22. https://doi.org/10.1128/msystems.00954-22
Wang, S., Shao, Z., Lai, Q., Liu, X., Xie, S., Jiang, L., & Yang, S. (2021). Sulfurimonas sediminis sp. Nov., a novel hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal vent at the Longqi system, southwestern Indian ocean. Antonie Van Leeuwenhoek, 114(6), 813-822. https://doi.org/10.1007/s10482-021-01560-4
Wang, X., Preston, J. F., & Romeo, T. (2004). The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide Adhesin required for biofilm formation. Journal of Bacteriology, 186(9), 2724-2734. https://doi.org/10.1128/JB.186.9.2724-2734.2004
Wang, Z., Wang, S., Lai, Q., Wei, S., Jiang, L., & Shao, Z. (2022). Sulfurimonas marina sp. Nov., an obligately chemolithoautotrophic, Sulphur-oxidizing bacterium isolated from a deep-sea sediment sample from the South China Sea. International Journal of Systematic and Evolutionary Microbiology, 72(10), 005582. https://doi.org/10.1099/ijsem.0.005582
Waskom, M. (2021). seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
Whelan, S., & Goldman, N. (2001). A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution, 18(5), 691-699. https://doi.org/10.1093/oxfordjournals.molbev.a003851
Xie, Y., Wei, Y., Shen, Y., Li, X., Zhou, H., Tai, C., Deng, Z., & Ou, H.-Y. (2018). TADB 2.0: An updated database of bacterial type II toxin-antitoxin loci. Nucleic Acids Research, 46(D1), D749-D753. https://doi.org/10.1093/nar/gkx1033
Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K.-H., Whitman, W. B., Euzéby, J., Amann, R., & Rosselló-Móra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635-645. https://doi.org/10.1038/nrmicro3330
Yeo, C. C. (2018). GNAT toxins of bacterial toxin-antitoxin systems: Acetylation of charged tRNAs to inhibit translation: GNAT toxins of bacterial toxin-antitoxin systems. Molecular Microbiology, 108(4), 331-335. https://doi.org/10.1111/mmi.13958
Zankari, E., Hasman, H., Cosentino, S., Vestergaard, M., Rasmussen, S., Lund, O., Aarestrup, F. M., & Larsen, M. V. (2012). Identification of acquired antimicrobial resistance genes. Journal of Antimicrobial Chemotherapy, 67(11), 2640-2644. https://doi.org/10.1093/jac/dks261
Zeng, X., Alain, K., & Shao, Z. (2021). Microorganisms from deep-sea hydrothermal vents. Marine Life Science & Technology, 3(2), 204-230. https://doi.org/10.1007/s42995-020-00086-4