Haploid rhapsody: the molecular and cellular orchestra of in vivo haploid induction in plants.
crop breeding
egg cell
embryo
genome elimination
haploid
haploid inducer
parthenogenesis
sperm cell
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
05 Jan 2024
05 Jan 2024
Historique:
received:
19
09
2023
accepted:
11
12
2023
medline:
5
1
2024
pubmed:
5
1
2024
entrez:
5
1
2024
Statut:
aheadofprint
Résumé
In planta haploid induction (HI), which reduces the chromosome number in the progeny after fertilization, has garnered increasing attention for its significant potential in crop breeding and genetic research. Despite the identification of several natural and synthetic HI systems in different plant species, the molecular and cellular mechanisms underlying these HI systems remain largely unknown. This review synthesizes the current understanding of HI systems in plants (with a focus on genes and molecular mechanisms involved), including the molecular and cellular interactions which orchestrate the HI process. As most HI systems can function across taxonomic boundaries, we particularly discuss the evidence for conserved mechanisms underlying the process. These include mechanisms involved in preserving chromosomal integrity, centromere function, gamete communication and/or fusion, and maintenance of karyogamy. While significant discoveries and advances on haploid inducer systems have arisen over the past decades, we underscore gaps in understanding and deliberate on directions for further research for a more comprehensive understanding of in vivo HI processes in plants.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Science Foundation Ireland
ID : RSF1676
Pays : Ireland
Informations de copyright
© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.
Références
Ahmadli U, Kalidass M, Khaitova LC, Fuchs J, Cuacos M, Demidov D, Zuo S, Pecinkova J, Mascher M, Ingouff M et al. 2023. High temperature increases centromere-mediated genome elimination frequency and enhances haploid induction in Arabidopsis. Plant Communications 4: 100507.
Bingham ET. 1969. Haploids from cultivated Alfalfa, Medicago sativa L. Nature 221: 865-866.
Bingham T. 1971. Isolation of haploids of tetraploid Alfalfa. Crop Science 11: 433-435.
Blower MD, Karpen GH. 2001. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biology 3: 730-739.
Brophy JAN, Magallon KJ, Duan L, Zhong V, Ramachandran P, Kniazev K, Dinneny JR. 2022. Synthetic genetic circuits as a means of reprogramming plant roots. Science 377: 747-751.
Buchwitz BJ, Ahmad K, Moore LL, Roth MB, Henikoff S. 1999. A histone-H3-like protein in C. elegans. Nature 401: 547-548.
Bui LT, Pandzic D, Youngstrom CE, Wallace S, Irish EE, Szövényi P, Cheng CL. 2017. A fern AINTEGUMENTA gene mirrors BABY BOOM in promoting apogamy in Ceratopteris richardii. The Plant Journal 90: 122-132.
Capitao C, Tanasa S, Fulnecek J, Raxwal VK, Akimcheva S, Bulankova P, Mikulkova P, Crhak Khaitova L, Kalidass M, Lermontova I et al. 2021. A CENH3 mutation promotes meiotic exit and restores fertility in SMG7-deficient Arabidopsis. PLoS Genetics 17: e1009779.
Chen B, Maas L, Figueiredo D, Zhong Y, Reis R, Li M, Horstman A, Riksen T, Weemen M, Liu H et al. 2022. BABY BOOM regulates early embryo and endosperm development. Proceedings of the National Academy of Sciences, USA 119: e2201761119.
Chen X, Li Y, Ai G, Chen J, Guo D, Zhu Z, Zhu X, Tian S, Wang J, Liu M et al. 2023. Creation of a watermelon haploid inducer line via ClDMP3-mediated single fertilization of the central cell. Horticulture Research 10: uhad081.
Cheng Z, Sun Y, Yang S, Zhi H, Yin T, Ma X, Zhang H, Diao X, Guo Y, Li X et al. 2021. Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnology Journal 19: 1089-1091.
Coe EH. 1959. A line of maize with high haploid frequency. The American Naturalist 93: 381-382.
Comai L, Tan EH. 2019. Haploid induction and genome instability. Trends in Genetics 35: 791-803.
Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P. 2015. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proceedings of the National Academy of Sciences, USA 112: 11205-11210.
Conner JA, Podio M, Ozias-Akins P. 2017. Haploid embryo production in rice and maize induced by PsASGR-BBML transgenes. Plant Reproduction 30: 41-52.
Cyprys P, Lindemeier M, Sprunck S. 2019. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins. Nature Plants 5: 253-257.
De Storme N, Geelen D. 2013. Sexual polyploidization in plants - cytological mechanisms and molecular regulation. New Phytologist 198: 670-684.
d'Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R. 2009. Turning meiosis into mitosis. PLoS Biology 7: e1000124.
Duara BN, Stebbins GL Jr. 1952. A polyhaploid obtained from a hybrid derivative of Sorghum halepense × S. vulgare var. sudanense. Genetics 37: 369-374.
Dunwell JM. 2010. Haploids in flowering plants: origins and exploitation. Plant Biotechnology Journal 8: 377-424.
Feng K, Hou X-L, Xing G-M, Liu J-X, Duan A-Q, Xu Z-S, Li M-Y, Zhuang J, Xiong A-S. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40: 750-776.
Figueiredo DD, Köhler C. 2018. Auxin: a molecular trigger of seed development. Genes & Development 32: 479-490.
Gerstel DU. 1950. On the inheritance of apomixis in Parthenium argentatum. Botanical Gazette 112: 96-106.
Gilles LM, Calhau ARM, La Padula V, Jacquier NMA, Lionnet C, Martinant J-P, Rogowsky PM, Widiez T. 2021. Lipid anchoring and electrostatic interactions target NOT-LIKE-DAD to pollen endo-plasma membrane. Journal of Cell Biology 220: e202010077.
Gilles LM, Khaled A, Laffaire JB, Chaignon S, Gendrot G, Laplaige J, Bergès H, Beydon G, Bayle V, Barret P. 2017a. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. EMBO Journal 36: 707-717.
Gilles LM, Martinant J-P, Rogowsky PM, Widiez T. 2017b. Haploid induction in plants. Current Biology 27: R1095-R1097.
Guha S, Maheshwari SC. 1964. In vitro production of embryos from anthers of datura. Nature 204: 497.
Haufler CH, Pryer KM, Schuettpelz E, Sessa EB, Farrar DR, Moran R, Schneller JJ, Watkins JE Jr, Windham MD. 2016. Sex and the single gametophyte: revising the homosporous vascular plant life cycle in light of contemporary research. Bioscience 66: 928-937.
Hooghvorst I, Nogués S. 2021. Chromosome doubling methods in doubled haploid and haploid inducer-mediated genome-editing systems in major crops. Plant Cell Reports 40: 255-270.
Horstman A, Willemsen V, Boutilier K, Heidstra R. 2014. AINTEGUMENTA-LIKE proteins: hubs in a plethora of networks. Trends in Plant Science 19: 146-157.
Howman EV, Fowler KJ, Newson AJ, Redward S, MacDonald AC, Kalitsis P, Choo KA. 2000. Early disruption of centromeric chromatin organization in centromere protein A (Cenpa) null mice. Proceedings of the National Academy of Sciences, USA 97: 1148-1153.
Hu H, Schrag TA, Peis R, Unterseer S, Schipprack W, Chen S, Lai J, Yan J, Prasanna BM, Nair SK. 2016. The genetic basis of haploid induction in maize identified with a novel genome-wide association method. Genetics 202: 1267-1276.
Immler S, Otto SP. 2018. The evolutionary consequences of selection at the haploid gametic stage. The American Naturalist 192: 241-249.
Ishii T, Karimi-Ashtiyani R, Houben A. 2016. Haploidization via chromosome elimination: means and mechanisms. Annual Review of Plant Biology 67: 421-438.
Jackson RC, Jordan RG. 1975. Haploidy in Haplopappus gracilis (N = 2). American Journal of Botany 62: 628-632.
Jacquier NMA, Calhau ARM, Fierlej Y, Martinant J-P, Rogowsky PM, Gilles LM, Widiez T. 2023. In planta haploid induction by kokopelli mutants. Plant Physiology 193: 182-185.
Jacquier NMA, Gilles LM, Pyott DE, Martinant J-P, Rogowsky PM, Widiez T. 2020. Puzzling out plant reproduction by haploid induction for innovations in plant breeding. Nature Plants 6: 610-619.
Jacquier NMA, Widiez T. 2021. Absent daddy, but important father. Nature Plants 7: 1544-1545.
Jang JH, Noh G, Seo HS, Jung K-H, Kim Y-J, Lee OR. 2023a. Loss of function of pollen-expressed phospholipase OsMATL2 triggers haploid induction in japonica rice. Plant Physiology 193: 1749-1752.
Jang JH, Seo HS, Widiez T, Lee OR. 2023b. Loss-of-function of gynoecium-expressed phospholipase pPLAIIγ triggers maternal haploid induction in Arabidopsis. New Phytologist 238: 1813-1824.
Jiang C, Sun J, Li R, Yan S, Chen W, Guo L, Qin G, Wang P, Luo C, Huang W et al. 2022. A reactive oxygen species burst causes haploid induction in maize. Molecular Plant 15: 943-955.
Jiang J, Stührwohldt N, Liu T, Huang Q, Li L, Zhang L, Gu H, Fan L, Zhong S, Schaller A et al. 2022. Egg cell-secreted aspartic proteases ECS1/2 promote gamete attachment to prioritize the fertilization of egg cells over central cells in Arabidopsis. Journal of Integrative Plant Biology 64: 2047-2059.
Kalinowska K, Chamas S, Unkel K, Demidov D, Lermontova I, Dresselhaus T, Kumlehn J, Dunemann F, Houben A. 2019. State-of-the-art and novel developments of in vivo haploid technologies. Theoretical and Applied Genetics 132: 593-605.
Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W. 2017. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542: 105-109.
Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio ML, Martin B. 2016. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Frontiers in Plant Science 7: 414.
Kerstens MH, Schranz ME, Bouwmeester K. 2020. Phylogenomic analysis of the APETALA2 transcription factor subfamily across angiosperms reveals both deep conservation and lineage-specific patterns. The Plant Journal 103: 1516-1524.
Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V. 2019. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565: 91-95.
Khoshoo TN. 1957. A polyhaploid plant of the tetraploid race of Sisymbrium irio. Journal of Heredity 48: 239-242.
Lermontova I, Kuhlmann M, Friedel S, Rutten T, Heckmann S, Sandmann M, Demidov D, Schubert V, Schubert I. 2013. Arabidopsis kinetochore null2 is an upstream component for centromeric histone H3 variant cenH3 deposition at centromeres. Plant Cell 25: 3389-3404.
Lermontova I, Schubert V, Fuchs J, Klatte S, Macas J, Schubert I. 2006. Loading of Arabidopsis centromeric histone CENH3 occurs mainly during G2 and requires the presence of the histone fold domain. Plant Cell 18: 2443-2451.
Li X, Meng D, Chen S, Luo H, Zhang Q, Jin W, Yan J. 2017. Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nature Communications 8: 991.
Li Y, Lin Z, Yue Y, Zhao H, Fei X, Lizhu E, Liu C, Chen S, Lai J, Song W. 2021. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nature Plants 7: 1579-1588.
Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L. 2017. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Molecular Plant 10: 520-522.
Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, Wang D et al. 2020. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnology Journal 18: 316-318.
Liu J, Qu L-J. 2008. Meiotic and mitotic cell cycle mutants involved in gametophyte development in Arabidopsis. Molecular Plant 1: 564-574.
Lv J, Yu K, Wei J, Gui H, Liu C, Liang D, Wang Y, Zhou H, Carlin R, Rich R et al. 2020. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nature Biotechnology 38: 1397-1401.
Maheshwari S, Ishii T, Brown CT, Houben A, Comai L. 2017. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome Research 27: 471-478.
Maheshwari S, Tan EH, West A, Franklin FCH, Comai L, Chan SWL. 2015. Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids. PLoS Genetics 11: e1004970.
Malik HS, Henikoff S. 2003. Phylogenomics of the nucleosome. Nature Structural & Molecular Biology 10: 882-891.
Mallet J. 2005. Hybridization as an invasion of the genome. Trends in Ecology & Evolution 20: 229-237.
Mao Y, Nakel T, Erbasol Serbes I, Joshi S, Tekleyohans DG, Baum T, Groß-Hardt R. 2023. ECS1 and ECS2 suppress polyspermy and the formation of haploid plants by promoting double fertilization. eLife 12: e85832.
Maren NA, Duan H, Da K, Yencho GC, Ranney TG, Liu W. 2022. Genotype-independent plant transformation. Horticulture Research 9: uhac047.
Marimuthu MPA, Maruthachalam R, Bondada R, Kuppu S, Tan EH, Britt A, Chan SWL, Comai L. 2021. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. Science Advances 7: eabk1151.
Maruyama D, Völz R, Takeuchi H, Mori T, Igawa T, Kurihara D, Kawashima T, Ueda M, Ito M, Umeda M et al. 2015. Rapid elimination of the persistent synergid through a cell fusion mechanism. Cell 161: 907-918.
Meng D, Luo H, Dong Z, Huang W, Liu F, Li F, Chen S, Yu H, Jin W. 2022. Overexpression of modified CENH3 in maize Stock6-derived inducer lines can effectively improve maternal haploid induction rates. Frontiers in Plant Science 13: 892055.
Mieulet D, Jolivet S, Rivard M, Cromer L, Vernet A, Mayonove P, Pereira L, Droc G, Courtois B, Guiderdoni E et al. 2016. Turning rice meiosis into mitosis. Cell Research 26: 1242-1254.
Otto SP, Gerstein AC. 2008. The evolution of haploidy and diploidy. Current Biology 18: R1121-R1124.
Otto SP, Scott MF, Immler S. 2015. Evolution of haploid selection in predominantly diploid organisms. Proceedings of the National Academy of Sciences, USA 112: 15952-15957.
Pejchar P, Sekereš J, Novotný O, Žárský V, Potocký M. 2020. Functional analysis of phospholipase Dδ family in tobacco pollen tubes. The Plant Journal 103: 212-226.
Potocký M, Eliáš M, Profotová B, Novotná Z, Valentová O, Žárský V. 2003. Phosphatidic acid produced by phospholipase D is required for tobacco pollen tube growth. Planta 217: 122-130.
Prigge V, Xu X, Li L, Babu R, Chen S, Atlin GN, Melchinger AE. 2012. New insights into the genetics of in vivo induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics 190: 781-793.
Ravi M, Chan SW. 2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464: 615-618.
Ravi M, Kwong PN, Menorca RM, Valencia JT, Ramahi JS, Stewart JL, Tran RK, Sundaresan V, Comai L, Chan SW. 2010. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186: 461-471.
Ravi M, Shibata F, Ramahi JS, Nagaki K, Chen C, Murata M, Chan SWL. 2011. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS Genetics 7: e1002121.
Röber F, Gordillo G, Geiger H. 2005. In vivo haploid induction in maize. Performance of new inducers and significance of doubled haploid lines in hybrid breeding [Zea mays L.]. Maydica 50: 275-283.
Ron M, Alandete Saez M, Eshed Williams L, Fletcher JC, McCormick S. 2010. Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes & Development 24: 1010-1021.
Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. 2011. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proceedings of the National Academy of Sciences, USA 108: E498-E505.
Scandola S, Samuel MA. 2019. A flower-specific phospholipase D is a stigmatic compatibility factor targeted by the self-incompatibility response in Brassica napus. Current Biology 29: 506-512.
Scheres B, Krizek BA. 2018. Coordination of growth in root and shoot apices by AIL/PLT transcription factors. Current Opinion in Plant Biology 41: 95-101.
Sharma HC. 1995. How wide can a wide cross be? Euphytica 82: 43-64.
Shen K, Qu M, Zhao P. 2023. The roads to haploid embryogenesis. Plants 12: 243.
Song M, Wang W, Ji C, Li S, Liu W, Hu X, Feng A, Ruan S, Du S, Wang H et al. 2023. Simultaneous production of high-frequency synthetic apomixis with high fertility and improved agronomic traits in hybrid rice. Molecular Plant, in press. doi: 10.1016/j.molp.2023.11.007.
Sun G, Geng S, Zhang H, Jia M, Wang Z, Deng Z, Tao S, Liao R, Wang F, Kong X et al. 2022. Matrilineal empowers wheat pollen with haploid induction potency by triggering postmitosis reactive oxygen species activity. New Phytologist 233: 2405-2414.
Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. 2002. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053-1066.
Tan EH, Henry IM, Ravi M, Bradnam KR, Mandakova T, Marimuthu MPA, Korf I, Lysak MA, Comai L, Chan SWL. 2015. Catastrophic chromosomal restructuring during genome elimination in plants. eLife 4: e06516.
Tian S, Zhang J, Zhao H, Zong M, Li M, Gong G, Wang J, Zhang J, Ren Y, Zhang H et al. 2023. Production of double haploid watermelon via maternal haploid induction. Plant Biotechnology Journal 21: 1308-1310.
Touraev A, Forster BP, Jain SM. 2009. Advances in haploid production the Netherlands in higher plants. Dordrecht, the Netherlands: Springer.
Trentin HU, Krause MD, Zunjare RU, Almeida VC, Peterlini E, Rotarenco V, Frei UK, Beavis WD, Lübberstedt T. 2023. Genetic basis of maize maternal haploid induction beyond MATRILINEAL and ZmDMP. Frontiers in Plant Science 14: 1218042.
Underwood CJ, Vijverberg K, Rigola D, Okamoto S, Oplaat C, Camp RHMO, Radoeva T, Schauer SE, Fierens J, Jansen K et al. 2022. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nature Genetics 54: 84-93.
Valero M, Richerd S, Perrot V, Destombe C. 1992. Evolution of alternation of haploid and diploid phases in life cycles. Trends in Ecology & Evolution 7: 25-29.
Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R et al. 2019. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology 37: 283-286.
Wang N, Gent JI, Dawe RK. 2021. Haploid induction by a maize cenh3 null mutant. Science Advances 7: eabe2299.
Wang N, Xia X, Jiang T, Li L, Zhang P, Niu L, Cheng H, Wang K, Lin H. 2022. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula. Plant Biotechnology Journal 20: 22-24.
Wang W, Xiong H, Cyprys P, Malka R, Flores-Tornero M, Zhao P, Peng X, Sprunck S, Sun M-X. 2022. DMP8 and 9 regulate HAP2/GCS1 trafficking for the timely acquisition of sperm fusion competence. Proceedings of the National Academy of Sciences, USA 119: e2207608119.
Wang X, Chen L, Ma J. 2019. Genomic introgression through interspecific hybridization counteracts genetic bottleneck during soybean domestication. Genome Biology 20: 22.
Wang Z, Butel N, Santos-González J, Simon L, Wärdig C, Köhler C. 2021. Transgenerational effect of mutants in the RNA-directed DNA methylation pathway on the triploid block in Arabidopsis. Genome Biology 22: 141.
Wang Z, Chen M, Yang H, Hu Z, Yu Y, Xu H, Yan S, Yi K, Li J. 2023. A simple and highly efficient strategy to induce both paternal and maternal haploids through temperature manipulation. Nature Plants 9: 699-705.
Wędzony M, Forster BP, Żur I, Golemiec E, Szechyńska-Hebda M, Dubas E, Gotębiowska G, Wędzony M. 2009. Progress in doubled haploid technology in higher plants. In: Touraev A, Forster BP, Jain SM, eds. Advances in haploid production in higher plants. Dordrecht, the Netherlands: Springer Netherlands, 1-33.
WO2017081011A1/RIJKZWAAN. 2017. Non-transgenic haploid inducer lines in cucurbits.
WO2017200386A1/KEYGENE. 2017. Method for the production of haploid and subsequent doubled haploid plants.
Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T. 2018. OsMATL mutation induces haploid seed formation in indica rice. Nature Plants 4: 530-533.
Yu X, Zhang X, Zhao P, Peng X, Chen H, Bleckmann A, Bazhenova A, Shi C, Dresselhaus T, Sun M-X. 2021. Fertilized egg cells secrete endopeptidases to avoid polytubey. Nature 592: 433-437.
Zhang J, Yin J, Luo J, Tang D, Zhu X, Wang J, Liu Z, Wang P, Zhong Y, Liu C et al. 2022. Construction of homozygous diploid potato through maternal haploid induction. aBIOTECH 3: 163-168.
Zhang X, Shi C, Li S, Zhang B, Luo P, Peng X, Zhao P, Dresselhaus T, Sun MX. 2023. A female in vivo haploid-induction system via mutagenesis of egg cell-specific peptidases. Molecular Plant 16: 471-480.
Zhang Y, Maruyama D, Toda E, Kinoshita A, Okamoto T, Mitsuda N, Takasaki H, Ohme-Takagi M. 2023. Transcriptome analyses uncover reliance of endosperm gene expression on Arabidopsis embryonic development. FEBS Letters 597: 407-417.
Zhang Z, Conner J, Guo Y, Ozias-Akins P. 2020. Haploidy in tobacco induced by PsASGR-BBML transgenes via parthenogenesis. Genes 11: 1072.
Zhao X, Xu X, Xie H, Chen S, Jin W. 2013. Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiology 163: 721-731.
Zhao X, Yuan K, Liu Y, Zhang N, Yang L, Zhang Y, Wang Y, Ji J, Fang Z, Han F et al. 2022. In vivo maternal haploid induction based on genome editing of DMP in Brassica oleracea. Plant Biotechnology Journal 20: 2242-2244.
Zhong Y, Chen B, Li M, Wang D, Jiao Y, Qi X, Wang M, Liu Z, Chen C, Wang Y et al. 2020. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nature Plants 6: 466-472.
Zhong Y, Chen B, Wang D, Zhu X, Li M, Zhang J, Chen M, Wang M, Riksen T, Liu J et al. 2022a. In vivo maternal haploid induction in tomato. Plant Biotechnology Journal 20: 250-252.
Zhong Y, Liu C, Qi X, Jiao Y, Wang D, Wang Y, Liu Z, Chen C, Chen B, Tian X et al. 2019. Mutation of ZmDMP enhances haploid induction in maize. Nature Plants 5: 575-580.
Zhong Y, Wang Y, Chen B, Liu J, Wang D, Li M, Qi X, Liu C, Boutilier K, Chen S. 2022b. Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. Journal of Integrative Plant Biology 64: 1281-1294.