Loss of Direct Vascular Contact to Astrocytes in the Hippocampus as an Initial Event in Alzheimer's Disease. Evidence from Patients, In Vivo and In Vitro Experimental Models.

Alzheimer’s disease Astrocyte-microvasculature interaction HBMEC Neurovascular unit RAGE

Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
03 Jan 2024
Historique:
received: 30 08 2023
accepted: 20 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: aheadofprint

Résumé

Alzheimer's disease (AD) is characterized by the accumulation of aggregated amyloid peptides in the brain parenchyma and within the walls of cerebral vessels. The hippocampus-a complex brain structure with a pivotal role in learning and memory-is implicated in this disease. However, there is limited data on vascular changes during AD pathological degeneration in this susceptible structure, which has distinctive vascular traits. Our aim was to evaluate vascular alterations in the hippocampus of AD patients and PDAPP-J20 mice-a model of AD-and to determine the impact of Aβ40 and Aβ42 on endothelial cell activation. We found a loss of physical astrocyte-endothelium interaction in the hippocampus of individuals with AD as compared to non-AD donors, along with reduced vascular density. Astrocyte-endothelial interactions and levels of the tight junction protein occludin were altered early in PDAPP-J20 mice, preceding any signs of morphological changes or disruption of the blood-brain barrier in these mice. At later stages, PDAPP-J20 mice exhibited decreased vascular density in the hippocampus and leakage of fluorescent tracers, indicating dysfunction of the vasculature and the BBB. In vitro studies showed that soluble Aβ40 exposure in human brain microvascular endothelial cells (HBMEC) was sufficient to induce NFκB translocation to the nucleus, which may be linked with an observed reduction in occludin levels. The inhibition of the membrane receptor for advanced glycation end products (RAGE) prevented these changes in HBMEC. Additional results suggest that Aβ42 indirectly affects the endothelium by inducing astrocytic factors. Furthermore, our results from human and mouse brain samples provide evidence for the crucial involvement of the hippocampal vasculature in Alzheimer's disease.

Identifiants

pubmed: 38172288
doi: 10.1007/s12035-023-03897-5
pii: 10.1007/s12035-023-03897-5
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Fondo para la Investigación Científica y Tecnológica
ID : 2021-0509
Organisme : Fondo para la Investigación Científica y Tecnológica
ID : 2019-03419
Organisme : Fondo para la Investigación Científica y Tecnológica
ID : 2019-03692

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M et al (2022) Amyloid cascade hypothesis for the treatment of Alzheimer’s disease: progress and challenges. Aging Dis 13:1745–1758
pubmed: 36465173 pmcid: 9662281 doi: 10.14336/AD.2022.0412
Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185
pubmed: 1566067 doi: 10.1126/science.1566067
Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608
pubmed: 27025652 pmcid: 4888851 doi: 10.15252/emmm.201606210
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ (2020) Cerebral amyloid angiopathy and Alzheimer disease - one peptide, two pathways. Nat Rev Neurol 16:30–42
pubmed: 31827267 doi: 10.1038/s41582-019-0281-2
Miller DL, Papayannopoulos IA, Styles J, Bobin SA, Lin YY, Biemann K, Iqbal K (1993) Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer’s disease. Arch Biochem Biophys 301:41–52
pubmed: 8442665 doi: 10.1006/abbi.1993.1112
Yamada M (2015) Cerebral amyloid angiopathy: emerging concepts. J Stroke 17:17–30
pubmed: 25692104 pmcid: 4325636 doi: 10.5853/jos.2015.17.1.17
Iturria-Medina Y, Sotero RC, Toussaint PJ, Mateos-Perez JM, Evans AC, and Initiative Alzheimer’s Disease Neuroimaging (2016) Early role of vascular dysregulation on late-onset Alzheimer’s disease based on multifactorial data-driven analysis. Nat Commun 7:11934
pubmed: 27327500 pmcid: 4919512 doi: 10.1038/ncomms11934
Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK (2019) Nuclear factor-kappa beta as a therapeutic target for Alzheimer’s disease. J Neurochem 150:113–137
pubmed: 30802950 doi: 10.1111/jnc.14687
Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172
pubmed: 33318676 doi: 10.1038/s41582-020-00435-y
Koerich S, Parreira GM, de Almeida DL, Vieira RP, de Oliveira ACP (2023) Receptors for advanced glycation end products (RAGE): promising targets aiming at the treatment of neurodegenerative conditions. Curr Neuropharmacol 21:219–234
pubmed: 36154605 pmcid: 10190138 doi: 10.2174/1570159X20666220922153903
Park R, Kook SY, Park JC, Mook-Jung I (2014) Abeta1-42 reduces P-glycoprotein in the blood-brain barrier through RAGE-NF-kappaB signaling. Cell Death Dis 5:e1299
pubmed: 24967961 pmcid: 4611731 doi: 10.1038/cddis.2014.258
Tolstova AP, Adzhubei AA, Mitkevich VA, Petrushanko IY, Makarov AA (2022) ‘Docking and molecular dynamics-based identification of interaction between various beta-amyloid isoforms and RAGE receptor’. Int J Mol Sci 23
Beauquis J, Homo-Delarche F, Giroix MH, Ehses J, Coulaud J, Roig P, Portha B, De Nicola AF et al (2010) Hippocampal neurovascular and hypothalamic-pituitary-adrenal axis alterations in spontaneously type 2 diabetic GK rats. Exp Neurol 222:125–134
pubmed: 20045412 doi: 10.1016/j.expneurol.2009.12.022
Diniz Pereira J, Gomes Fraga V, Morais Santos AL, Carvalho MDG, Caramelli P, Braga Gomes K (2021) Alzheimer’s disease and type 2 diabetes mellitus: a systematic review of proteomic studies. J Neurochem 156:753–776
pubmed: 32909269 doi: 10.1111/jnc.15166
Vinuesa A, Pomilio C, Gregosa A, Bentivegna M, Presa J, Bellotto M, Saravia F, Beauquis J (2021) Inflammation and insulin resistance as risk factors and potential therapeutic targets for Alzheimer’s disease. Front Neurosci 15:653651
pubmed: 33967682 pmcid: 8102834 doi: 10.3389/fnins.2021.653651
Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738
pubmed: 22048062 pmcid: 4036520 doi: 10.1038/nrn3114
Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ et al (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16:580–586
pubmed: 23542688 doi: 10.1038/nn.3371
Horng S, Therattil A, Moyon S, Gordon A, Kim K, Argaw AT, Hara Y, Mariani JN et al (2017) Astrocytic tight junctions control inflammatory CNS lesion pathogenesis. J Clin Invest 127:3136–3151
pubmed: 28737509 pmcid: 5531407 doi: 10.1172/JCI91301
Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C, Robel S (2021) Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia 69:436–472
pubmed: 32955153 doi: 10.1002/glia.23908
Yue Q, Hoi MPM (2023) Emerging roles of astrocytes in blood-brain barrier disruption upon amyloid-beta insults in Alzheimer’s disease. Neural Regen Res 18:1890–1902
pubmed: 36926705 pmcid: 10233760
Arranz AM, De Strooper B (2019) The role of astroglia in Alzheimer’s disease: pathophysiology and clinical implications. Lancet Neurol 18:406–414
pubmed: 30795987 doi: 10.1016/S1474-4422(18)30490-3
Presa JL, Saravia F, Bagi Z, Filosa JA (2020) Vasculo-neuronal coupling and neurovascular coupling at the neurovascular unit: impact of hypertension. Front Physiol 11:584135
pubmed: 33101063 pmcid: 7546852 doi: 10.3389/fphys.2020.584135
Abbott NJ, Ronnback L, Hansson E (2006) Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci 7:41–53
pubmed: 16371949 doi: 10.1038/nrn1824
Demene C, Tiran E, Sieu LA, Bergel A, Gennisson JL, Pernot M, Deffieux T, Cohen I et al (2016) 4D microvascular imaging based on ultrafast Doppler tomography. Neuroimage 127:472–483
pubmed: 26555279 doi: 10.1016/j.neuroimage.2015.11.014
Johnson AC (2023) Hippocampal vascular supply and its role in vascular cognitive impairment. Stroke 54:673–685
pubmed: 36848422 doi: 10.1161/STROKEAHA.122.038263
Soto-Rojas LO, Pacheco-Herrero M, Martinez-Gomez PA, Campa-Cordoba BB, Apatiga-Perez R, Villegas-Rojas MM, Harrington CR, de la Cruz F et al (2021) ‘The neurovascular unit dysfunction in Alzheimer’s disease’. Int J Mol Sci 22
Wan W, Cao L, Liu L, Zhang C, Kalionis B, Tai X, Li Y, Xia S (2015) Abeta(1–42) oligomer-induced leakage in an in vitro blood-brain barrier model is associated with up-regulation of RAGE and metalloproteinases, and down-regulation of tight junction scaffold proteins. J Neurochem 134:382–393
pubmed: 25866188 doi: 10.1111/jnc.13122
Yao D, Zhang R, Xie M, Ding F, Wang M, Wang W (2023) Updated understanding of the glial-vascular unit in central nervous system disorders. Neurosci Bull 39:503–518
pubmed: 36374471 doi: 10.1007/s12264-022-00977-9
Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS (2023) Vascular contributions to Alzheimer’s disease. Transl Res 254:41–53
pubmed: 36529160 doi: 10.1016/j.trsl.2022.12.003
Dorr A, Sahota B, Chinta LV, Brown ME, Lai AY, Ma K, Hawkes CA, McLaurin J et al (2012) Amyloid-beta-dependent compromise of microvascular structure and function in a model of Alzheimer’s disease. Brain 135:3039–3050
pubmed: 23065792 doi: 10.1093/brain/aws243
Kimbrough IF, Robel S, Roberson ED, Sontheimer H (2015) Vascular amyloidosis impairs the gliovascular unit in a mouse model of Alzheimer’s disease. Brain 138:3716–3733
pubmed: 26598495 pmcid: 5006220 doi: 10.1093/brain/awv327
Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, Kokjohn TA, Kalback WM, Luehrs DC et al (2001) The evolution of A beta peptide burden in the APP23 transgenic mice: implications for A beta deposition in Alzheimer disease. Mol Med 7:609–618
pubmed: 11778650 pmcid: 1950067 doi: 10.1007/BF03401867
Kuo YM, Crawford F, Mullan M, Kokjohn TA, Emmerling MR, Weller RO, Roher AE (2000) Elevated A beta and apolipoprotein E in A betaPP transgenic mice and its relationship to amyloid accumulation in Alzheimer’s disease. Mol Med 6:430–439
pubmed: 10952022 pmcid: 1949958 doi: 10.1007/BF03401785
Scheffer S, Hermkens DMA, van der Weerd L, de Vries HE, Daemen M (2021) Vascular hypothesis of alzheimer disease: topical review of mouse models. Arterioscler Thromb Vasc Biol 41:1265–1283
pubmed: 33626911 doi: 10.1161/ATVBAHA.120.311911
Galvan V, Gorostiza OF, Banwait S, Ataie M, Logvinova AV, Sitaraman S, Carlson E, Sagi SA et al (2006) Reversal of Alzheimer’s-like pathology and behavior in human APP transgenic mice by mutation of Asp664. Proc Natl Acad Sci USA 103:7130–7135
pubmed: 16641106 pmcid: 1459029 doi: 10.1073/pnas.0509695103
Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC et al (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci USA 96:3228–3233
pubmed: 10077666 pmcid: 15924 doi: 10.1073/pnas.96.6.3228
Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D et al (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058
pubmed: 10818140 pmcid: 6772621 doi: 10.1523/JNEUROSCI.20-11-04050.2000
Beauquis J, Vinuesa A, Pomilio C, Pavia P, Galvan V, Saravia F (2014) Neuronal and glial alterations, increased anxiety, and cognitive impairment before hippocampal amyloid deposition in PDAPP mice, model of Alzheimer’s disease. Hippocampus 24:257–269
pubmed: 24132937 doi: 10.1002/hipo.22219
Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ, Javors M, Shih YY et al (2013) Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab 33:1412–21
pubmed: 23801246 pmcid: 3764385 doi: 10.1038/jcbfm.2013.82
Simon AM, Schiapparelli L, Salazar-Colocho P, Cuadrado-Tejedor M, Escribano L, de Maturana RL, Del Rio J, Perez-Mediavilla A et al (2009) Overexpression of wild-type human APP in mice causes cognitive deficits and pathological features unrelated to Abeta levels. Neurobiol. Dis. 33:369–78
pubmed: 19101630 doi: 10.1016/j.nbd.2008.11.005
Stins MF, Gilles F, Kim KS (1997) Selective expression of adhesion molecules on human brain microvascular endothelial cells. J Neuroimmunol 76:81–90
pubmed: 9184636 doi: 10.1016/S0165-5728(97)00036-2
Eigenmann DE, Xue G, Kim KS, Moses AV, Hamburger M, Oufir M (2013) Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies. Fluids Barriers CNS 10:33
pubmed: 24262108 pmcid: 4176484 doi: 10.1186/2045-8118-10-33
Miraglia MC, Rodriguez AM, Barrionuevo P, Rodriguez J, Kim KS, Dennis VA, Delpino MV, Giambartolomei GH (2018) Brucella abortus Traverses brain microvascular endothelial cells using infected monocytes as a Trojan horse. Front Cell Infect Microbiol 8:200
pubmed: 29963502 pmcid: 6011031 doi: 10.3389/fcimb.2018.00200
Benda P, Lightbody J, Sato G, Levine L, Sweet W (1968) Differentiated rat glial cell strain in tissue culture. Science 161:370–371
pubmed: 4873531 doi: 10.1126/science.161.3839.370
Ajit D, Udan ML, Paranjape G, Nichols MR (2009) Amyloid-beta(1–42) fibrillar precursors are optimal for inducing tumor necrosis factor-alpha production in the THP-1 human monocytic cell line. Biochemistry 48:9011–9021
pubmed: 19694428 doi: 10.1021/bi9003777
Paranjape GS, Gouwens LK, Osborn DC, Nichols MR (2012) Isolated amyloid-beta(1–42) protofibrils, but not isolated fibrils, are robust stimulators of microglia. ACS Chem Neurosci 3:302–311
pubmed: 22860196 pmcid: 3402375 doi: 10.1021/cn2001238
Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE (2000) Inflammatory mechanisms in Alzheimer’s disease: inhibition of beta-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARgamma agonists. J Neurosci 20:558–567
pubmed: 10632585 pmcid: 6772401 doi: 10.1523/JNEUROSCI.20-02-00558.2000
Gregosa A, Vinuesa A, Todero MF, Pomilio C, Rossi SP, Bentivegna M, Presa J, Wenker S et al (2019) Periodic dietary restriction ameliorates amyloid pathology and cognitive impairment in PDAPP-J20 mice: potential implication of glial autophagy. Neurobiol Dis 132:104542
pubmed: 31351172 doi: 10.1016/j.nbd.2019.104542
Lagenaur C, Lemmon V (1987) An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc Natl Acad Sci U S A 84:7753–7757
pubmed: 3478724 pmcid: 299379 doi: 10.1073/pnas.84.21.7753
Pomilio C, Pavia P, Gorojod RM, Vinuesa A, Alaimo A, Galvan V, Kotler ML, Beauquis J et al (2016) Glial alterations from early to late stages in a model of Alzheimer’s disease: evidence of autophagy involvement in Abeta internalization. Hippocampus 26:194–210
pubmed: 26235241 doi: 10.1002/hipo.22503
Apatiga-Perez R, Soto-Rojas LO, Campa-Cordoba BB, Luna-Viramontes NI, Cuevas E, Villanueva-Fierro I, Ontiveros-Torres MA, Bravo-Munoz M et al (2022) Neurovascular dysfunction and vascular amyloid accumulation as early events in Alzheimer’s disease. Metab Brain Dis 37:39–50
pubmed: 34406560 doi: 10.1007/s11011-021-00814-4
Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, Toga AW, Jacobs RE et al (2015) Blood-brain barrier breakdown in the aging human hippocampus. Neuron 85:296–302
pubmed: 25611508 pmcid: 4350773 doi: 10.1016/j.neuron.2014.12.032
Merlini M, Meyer EP, Ulmann-Schuler A, Nitsch RM (2011) Vascular beta-amyloid and early astrocyte alterations impair cerebrovascular function and cerebral metabolism in transgenic arcAbeta mice. Acta Neuropathol 122:293–311
pubmed: 21688176 pmcid: 3168476 doi: 10.1007/s00401-011-0834-y
Jones RS, Minogue AM, Connor TJ, Lynch MA (2013) Amyloid-beta-induced astrocytic phagocytosis is mediated by CD36, CD47 and RAGE. J Neuroimmune Pharmacol 8:301–311
pubmed: 23238794 doi: 10.1007/s11481-012-9427-3
Villarreal A, Seoane R, Gonzalez Torres A, Rosciszewski G, Angelo MF, Rossi A, Barker PA, Ramos AJ (2014) S100B protein activates a RAGE-dependent autocrine loop in astrocytes: implications for its role in the propagation of reactive gliosis. J Neurochem 131:190–205
pubmed: 24923428 doi: 10.1111/jnc.12790
Deane R, Singh I, Sagare AP, Bell RD, Ross NT, LaRue B, Love R, Perry S et al (2012) A multimodal RAGE-specific inhibitor reduces amyloid beta-mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 122:1377–1392
pubmed: 22406537 pmcid: 3314449 doi: 10.1172/JCI58642
Yeung JHY, Calvo-Flores Guzman B, Palpagama TH, Ethiraj J, Zhai Y, Tate WP, Peppercorn K, Waldvogel HJ et al (2020) Amyloid-beta(1–42) induced glutamatergic receptor and transporter expression changes in the mouse hippocampus. J Neurochem 155:62–80
pubmed: 32491248 doi: 10.1111/jnc.15099
Graham WV, Bonito-Oliva A, Sakmar TP (2017) Update on Alzheimer’s disease therapy and prevention strategies. Annu Rev Med 68:413–430
pubmed: 28099083 doi: 10.1146/annurev-med-042915-103753
Beshir SA, Aadithsoorya AM, Parveen A, Goh SSL, Hussain N, Menon VB (2022) Aducanumab therapy to treat Alzheimer’s disease: a narrative review. Int J Alzheimers Dis 2022:9343514
pubmed: 35308835 pmcid: 8926483
Dhillon S (2021) Aducanumab: First Approval. Drugs 81:1437–1443
pubmed: 34324167 doi: 10.1007/s40265-021-01569-z
Avgerinos KI, Ferrucci L, Kapogiannis D (2021) Effects of monoclonal antibodies against amyloid-beta on clinical and biomarker outcomes and adverse event risks: a systematic review and meta-analysis of phase III RCTs in Alzheimer’s disease. Ageing Res Rev 68:101339
pubmed: 33831607 pmcid: 8161699 doi: 10.1016/j.arr.2021.101339
Fillit H, Green A (2021) Aducanumab and the FDA - where are we now? Nat Rev Neurol 17:129–130
pubmed: 33442064 doi: 10.1038/s41582-020-00454-9
Foley KE, Wilcock DM (2022) Vascular considerations for amyloid immunotherapy. Curr Neurol Neurosci Rep 22:709–719
pubmed: 36269539 pmcid: 9714255 doi: 10.1007/s11910-022-01235-1
Boche D, Zotova E, Weller RO, Love S, Neal JW, Pickering RM, Wilkinson D, Holmes C et al (2008) Consequence of Abeta immunization on the vasculature of human Alzheimer’s disease brain. Brain 131:3299–3310
pubmed: 18953056 doi: 10.1093/brain/awn261
Liu B, Rasool S, Yang Z, Glabe CG, Schreiber SS, Ge J, Tan Z (2009) Amyloid-peptide vaccinations reduce {beta}-amyloid plaques but exacerbate vascular deposition and inflammation in the retina of Alzheimer’s transgenic mice. Am J Pathol 175:2099–2110
pubmed: 19834067 pmcid: 2774073 doi: 10.2353/ajpath.2009.090159
Mo JJ, Li JY, Yang Z, Liu Z, Feng JS (2017) Efficacy and safety of anti-amyloid-beta immunotherapy for Alzheimer’s disease: a systematic review and network meta-analysis. Ann Clin Transl Neurol 4:931–942
pubmed: 29296624 pmcid: 5740249 doi: 10.1002/acn3.469
Wang YJ (2014) Alzheimer disease: lessons from immunotherapy for Alzheimer disease. Nat Rev Neurol 10:188–189
pubmed: 24638135 doi: 10.1038/nrneurol.2014.44
Kirabali T, Rust R, Rigotti S, Siccoli A, Nitsch RM, Kulic L (2020) Distinct changes in all major components of the neurovascular unit across different neuropathological stages of Alzheimer’s disease. Brain Pathol 30:1056–1070
pubmed: 32866303 pmcid: 8018068 doi: 10.1111/bpa.12895
Wang J, Fan DY, Li HY, He CY, Shen YY, Zeng GH, Chen DW, Yi X et al (2022) Dynamic changes of CSF sPDGFRbeta during ageing and AD progression and associations with CSF ATN biomarkers. Mol Neurodegener 17:9
pubmed: 35033164 pmcid: 8760673 doi: 10.1186/s13024-021-00512-w
Sweeney MD, Ayyadurai S, Zlokovic BV (2016) Pericytes of the neurovascular unit: key functions and signaling pathways. Nat Neurosci 19:771–783
pubmed: 27227366 pmcid: 5745011 doi: 10.1038/nn.4288
Kisler K, Nelson AR, Rege SV, Ramanathan A, Wang Y, Ahuja A, Lazic D, Tsai PS et al (2017) Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain. Nat Neurosci 20:406–416
pubmed: 28135240 pmcid: 5323291 doi: 10.1038/nn.4489
‘2023 Alzheimer’s disease facts and figures’ (2023) Alzheimers Dement 19:1598–695
Duncombe J, Lennen RJ, Jansen MA, Marshall I, Wardlaw JM, Horsburgh K (2017) Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis. Neuropathol Appl Neurobiol 43:477–491
pubmed: 28039950 doi: 10.1111/nan.12375
Hussong SA, Banh AQ, Van Skike CE, Dorigatti AO, Hernandez SF, Hart MJ, Ferran B, Makhlouf H et al (2023) Soluble pathogenic tau enters brain vascular endothelial cells and drives cellular senescence and brain microvascular dysfunction in a mouse model of tauopathy. Nat Commun 14:2367
pubmed: 37185259 pmcid: 10126555 doi: 10.1038/s41467-023-37840-y
Li H, Guo Q, Inoue T, Polito VA, Tabuchi K, Hammer RE, Pautler RG, Taffet GE et al (2014) Vascular and parenchymal amyloid pathology in an Alzheimer disease knock-in mouse model: interplay with cerebral blood flow. Mol Neurodegener 9:28
pubmed: 25108425 pmcid: 4132280 doi: 10.1186/1750-1326-9-28
Liu Y, Hu PP, Zhai S, Feng WX, Zhang R, Li Q, Marshall C, Xiao M et al (2022) Aquaporin 4 deficiency eliminates the beneficial effects of voluntary exercise in a mouse model of Alzheimer’s disease. Neural Regen Res 17:2079–2088
pubmed: 35142700 pmcid: 8848602 doi: 10.4103/1673-5374.335169
Robertson RT, Levine ST, Haynes SM, Gutierrez P, Baratta JL, Tan Z, Longmuir KJ (2015) Use of labeled tomato lectin for imaging vasculature structures. Histochem Cell Biol 143:225–234
pubmed: 25534591 doi: 10.1007/s00418-014-1301-3
Zeng F, Liu Y, Huang W, Qing H, Kadowaki T, Kashiwazaki H, Ni J, Wu Z (2021) Receptor for advanced glycation end products up-regulation in cerebral endothelial cells mediates cerebrovascular-related amyloid beta accumulation after Porphyromonas gingivalis infection. J Neurochem 158:724–736
pubmed: 32441775 doi: 10.1111/jnc.15096

Auteurs

C Pomilio (C)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.

J Presa (J)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.

C Oses (C)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.

A Vinuesa (A)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.

M Bentivegna (M)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.

A Gregosa (A)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.

M Riudavets (M)

FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina.

G Sevlever (G)

FLENI, Instituto de Investigaciones Neurológicas Dr Raúl Carrea, Buenos Aires, Argentina.

V Galvan (V)

Department of Biochemistry and Molecular Biology and Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK, 73104, USA.

V Levi (V)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.

J Beauquis (J)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina.

F Saravia (F)

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina. fsaravia@qb.fcen.uba.ar.
Instituto de Biología y Medicina Experimental, CONICET, Buenos Aires, Argentina. fsaravia@qb.fcen.uba.ar.

Classifications MeSH