Global fine-resolution data on springtail abundance and community structure.
Journal
Scientific data
ISSN: 2052-4463
Titre abrégé: Sci Data
Pays: England
ID NLM: 101640192
Informations de publication
Date de publication:
03 Jan 2024
03 Jan 2024
Historique:
received:
07
08
2023
accepted:
23
11
2023
medline:
4
1
2024
pubmed:
4
1
2024
entrez:
3
1
2024
Statut:
epublish
Résumé
Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
Identifiants
pubmed: 38172139
doi: 10.1038/s41597-023-02784-x
pii: 10.1038/s41597-023-02784-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
22Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SCHE 376/22-3
Informations de copyright
© 2024. The Author(s).
Références
Decaëns, T., Jiménez, J. J., Gioia, C., Measey, G. J. & Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 42, S23–S38 (2006).
doi: 10.1016/j.ejsobi.2006.07.001
Food and Agriculture Organization of the United Nations, Global Soil Biodiversity Initiative, Secretariat of the Convention of Biological, European Commission & Intergovernmental Technical Panel on Soils. State of knowledge of soil biodiversity - Status, challenges and potentialities: Report 2020. (Food & Agriculture Org., 2020).
Phillips, H. R. P. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).
pubmed: 31649197
pmcid: 7335308
doi: 10.1126/science.aax4851
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).
pubmed: 31341281
doi: 10.1038/s41586-019-1418-6
Potapov, A. M. et al. Globally invariant metabolism but density-diversity mismatch in springtails. Nat. Commun. 14, 674 (2023).
pubmed: 36750574
pmcid: 9905565
doi: 10.1038/s41467-023-36216-6
Schultheiss, P. et al. The abundance, biomass, and distribution of ants on Earth. Proc. Natl. Acad. Sci. USA 119, e2201550119 (2022).
pubmed: 36122199
pmcid: 9546634
doi: 10.1073/pnas.2201550119
Lavelle, P. et al. Soil macroinvertebrate communities: A world‐wide assessment. Glob. Ecol. Biogeogr. 31, 1261–1276 (2022).
doi: 10.1111/geb.13492
Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).
pubmed: 30868645
doi: 10.1111/cobi.13311
Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).
pubmed: 33446546
doi: 10.1126/science.abd7926
Rosenberg, Y. et al. The global biomass and number of terrestrial arthropods. Sci Adv 9, eabq4049 (2023).
pubmed: 36735788
pmcid: 9897674
doi: 10.1126/sciadv.abq4049
Mawan, A. et al. Response of arboreal Collembola communities to the conversion of lowland rainforest into rubber and oil palm plantations. BMC Ecol Evol 22, 144 (2022).
pubmed: 36517771
pmcid: 9753237
doi: 10.1186/s12862-022-02095-6
Potapov, A. et al. Towards a global synthesis of Collembola knowledge – challenges and potential solutions. https://doi.org/10.25674/SO92ISS3PP161 (2020).
Bellinger, P. F., Christiansen, K. A. & Janssens, F. Checklist of the Collembola of the World. In O. Bánki, et al., Catalogue of Life Checklist (Apr 2023). https://doi.org/10.48580/dfs6-4kh (2023).
doi: 10.48580/dfs6-4kh
van den Hoogen, J. et al. A global database of soil nematode abundance and functional group composition. Sci Data 7, 103 (2020).
pubmed: 32218461
pmcid: 7099023
doi: 10.1038/s41597-020-0437-3
Phillips, H. R. P. et al. Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Sci Data 8, 136 (2021).
pubmed: 34021166
pmcid: 8140120
doi: 10.1038/s41597-021-00912-z
Susanti, W. I. et al. Conversion of rainforest into oil palm and rubber plantations affects the functional composition of litter and soil Collembola. Ecol Evol 11, 10686–10708 (2021).
pubmed: 34367606
pmcid: 8328430
doi: 10.1002/ece3.7881
Alatalo, J. M., Jägerbrand, A. K. & Čuchta, P. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Scientific Reports 5, 18161 (2015).
pubmed: 26670681
pmcid: 4680968
doi: 10.1038/srep18161
Arbea, J. I. & Blasco-Zumeta, J. Ecología de los Colémbolos (Hexapoda, Collembola) en los Monegros (Zaragoza, España). Boletín de la Soc Entom Arag (S.E.A.) 28, 35–48 (2001).
Arbea, J. I. & Martínez-Monteagudo, A. Los colémbolos (Hexapoda, Collembola) asociados a plantas aromáticas (Labiatae) silvestres y cultivadas de la comarca valenciana de la Serranía. Boletín de la Asoc esp de Entom 30, 59–71 (2006).
Arbea, J. I. & Ariza, E. Dinámica estacional y características de las comunidades de Collembola en playas de la Costa Brava (Girona, España). Boletín de la Soc Entom Arag (S.E.A.) 51, 203–210 (2012).
Ashwood, F. et al. Earthworms and soil mesofauna as early bioindicators for landfill restoration. Soil Research Online Early (2022).
Bendjaballah, M. et al. Annotated checklist of the springtails (Hexapoda: Collembola) of the Collo massif, northeastern Algeria. Zoosystema 40, 389–414 (2018).
doi: 10.5252/zoosystema2018v40a16
Bokhorst, S., Berg, M. P. & Wardle, D. A. Micro-arthropod community responses to ecosystem retrogression in boreal forest. Soil Biol Biochem 110, 79–86 (2017).
doi: 10.1016/j.soilbio.2017.03.009
Bokhorst, S. et al. Dwarf shrub and grass vegetation resistant to long-term experimental warming while microarthropod abundance declines on the Falkland Islands. Austral Ecology 42, 984–994 (2017).
doi: 10.1111/aec.12527
Bokhorst, S. et al. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem 40, 1547–1556 (2008).
doi: 10.1016/j.soilbio.2008.01.017
Bokhorst, S. et al. Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences. Soil Biol Biochem 106, 69–79 (2017).
doi: 10.1016/j.soilbio.2016.12.014
Bokhorst, S., Metcalfe, D. B. & Wardle, D. A. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol Biochem 62, 157–164 (2013).
doi: 10.1016/j.soilbio.2013.03.016
Bokhorst, S. et al. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biology 18, 1152–1162 (2012).
doi: 10.1111/j.1365-2486.2011.02565.x
Bokhorst, S. et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia 67, 57–64 (2018).
doi: 10.1016/j.pedobi.2018.02.004
Bokhorst, S. et al. Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence. Plant and Soil 379, 121–133 (2014).
doi: 10.1007/s11104-014-2055-3
Bokhorst, S. & Wardle, D. A. Snow fungi as a food source for micro-arthropods. Europ Jour Soil Biol 60, 77–80 (2014).
doi: 10.1016/j.ejsobi.2013.11.006
Bolger, T. & Curry, J. P. Effects of cattle slurry on soil arthropods in grassland. Pedobiologia 20, 246–253 (1980).
doi: 10.1016/S0031-4056(23)03537-0
Bolger, T. & Curry, J. P. Influences of pig slurry on soil microarthropods in grassland. Rev d’Ecolog Biolog Sol 21, 269–281 (1984).
Raymond-Leonard, L. et al. Dead wood provides habitat for springtails across a latitudinal gradient of forests in Quebec, Canada. Forest Ecol Manag 472, 118237 (2020).
doi: 10.1016/j.foreco.2020.118237
Gomez-Anaya, J. A., Castaño-Meneses, G. & Palacios-Vargas, J. G. Land use at St. Marta Range, Los Tuxtlas, Veracruz, Mexico-how does it affect the Collembola community? Appl Ecol Envir Res 16, 4357–4373 (2018).
doi: 10.15666/aeer/1604_43574373
Chauvat, M. et al. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For Ecol Manag 262, 317–324 (2011).
doi: 10.1016/j.foreco.2011.03.037
Chomel, M. et al. Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. Journal of Ecology 102, 411–424 (2014).
doi: 10.1111/1365-2745.12205
Liu, W. P. A., Janion, C. & Chown, S. L. Collembola diversity in the critically endangered Cape Flats Sand Fynbos and adjacent pine plantations. Pedobiologia 55, 203–209 (2012).
doi: 10.1016/j.pedobi.2012.03.002
Janion-Scheepers, C. et al. High spatial turnover of springtails in the Cape Floristic Region. J Biogeogr 47, 1007–1018 (2020).
doi: 10.1111/jbi.13801
Treasure, A. M. et al. Species-energy relationships of indigenous and invasive species may arise in different ways – a demonstration using springtails. Scientific Reports 9, 13799 (2019).
pubmed: 31551483
pmcid: 6760167
doi: 10.1038/s41598-019-48871-1
Classen, A. T. et al. Impacts of herbivorous insects on decomposer communities during the early stages of primary succession in a semi-arid woodland. Soil Biol Biochem 38, 972–982 (2006).
doi: 10.1016/j.soilbio.2005.08.009
Classen, A. T. et al. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland. Plant Soil 295, 217–227 (2007).
doi: 10.1007/s11104-007-9277-6
Cebron, A. et al. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. Res Microbiol 162, 896–907 (2011).
pubmed: 21392572
doi: 10.1016/j.resmic.2011.02.011
Cluzeau, D. et al. Intégration de la biodiversité des sols dans les reseaux de surveillance de la qualité des sols: exemple du programme-pilote à l’échelle régionale, le RMQS BioDiv. Etude Gest Sols 16, 187–201 (2009).
Cluzeau, D. et al. Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol 49, 63–72 (2012).
doi: 10.1016/j.ejsobi.2011.11.003
Cortet, J. et al. Evaluation of effects of transgenic Bt maize on microarthropods in a European multi-site experiment. Pedobiologia 51, 207–218 (2007).
doi: 10.1016/j.pedobi.2007.04.001
Cortet, J. et al. Impacts of different agricultural practices on the biodiversity of microarthropod communities in arable crop systems. Eur J Soil Biol 38, 239–244 (2002).
doi: 10.1016/S1164-5563(02)01152-4
El Zemrany, H. et al. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biol Biochem 38, 1712–1726 (2006).
doi: 10.1016/j.soilbio.2005.11.025
Huot, H. et al. Diversity and activity of soil fauna in an industrial settling pond managed by natural attenuation. Appl Soil Ecol 132, 34–44 (2018).
doi: 10.1016/j.apsoil.2018.08.020
Joimel, S. et al. Contrasting homogenization patterns of plant and collembolan communities in urban vegetable gardens. Urban Ecosystems 22, 553–556 (2019).
doi: 10.1007/s11252-019-00843-z
Joimel, S. et al. Functional and Taxonomic Diversity of Collembola as Complementary Tools to Assess Land Use Effects on Soils Biodiversity. Frontiers Ecol Evol 9, 630919 (2021).
doi: 10.3389/fevo.2021.630919
Renaud, A., Poinsot-Balaguer, N. & Cortet, J. & Le Petit, J. Influence of four soil maintenance practices on Collembola communities in a Mediterranean vineyard. Pedobiologia 48, 623–630 (2004).
doi: 10.1016/j.pedobi.2004.07.002
Santorufo, L. et al. Early colonization of constructed Technosol by microarthropods. Ecol Engin 162, 106174 (2021).
doi: 10.1016/j.ecoleng.2021.106174
Doblas-Miranda, E., Espelta, J. M. & Pino, J. Connectivity affects species turnover in soil microarthropod communities during Mediterranean forest establishment. Ecosphere 12, e03865 (2021).
doi: 10.1002/ecs2.3865
Ferreira, A. S., Bellini, B. C. & Vasconcellos, A. Temporal variations of Collembola (Arthropoda: Hexapoda) in the semiarid Caatinga in northeastern Brazil. Zoologia 30, 639–644 (2013).
doi: 10.1590/S1984-46702013005000009
Franken, O. et al. A Common Yardstick to Measure the Effects of Different Extreme Climatic Events on Soil Arthropod Community Composition Using Time-Series Data. Frontiers Ecol Evol 6, 195 (2018).
doi: 10.3389/fevo.2018.00195
Gao, M. X. et al. Distinct patterns suggest that assembly processes differ for dominant arthropods in above-ground and below-ground ecosystems. Pedobiologia 69, 17–28 (2018).
doi: 10.1016/j.pedobi.2018.06.003
Cassagne, N. et al. Changes in humus properties and collembolan communities following the replanting of beech forests with spruce. Pedobiologia 48, 267–276 (2004).
doi: 10.1016/j.pedobi.2004.01.004
Hasegawa, M. et al. Effects of roads on collembolan community structure in subtropicalevergreen forests on Okinawa Island, southwestern Japan. Pedobiologia 58, 13–21 (2015).
doi: 10.1016/j.pedobi.2014.11.002
Hasegawa, M. et al. The effects of mixed broad-leaved trees on the collembolan community in larch plantations of central Japan. Appl Soil Ecol 83, 125–132 (2014).
doi: 10.1016/j.apsoil.2013.06.005
Heiniger, C. et al. Effect of habitat spatiotemporal structure on collembolan diversity. Pedobilogia 57, 103–117 (2014).
doi: 10.1016/j.pedobi.2014.01.006
Hishi, T. et al. Topography is more important than forest type as a determinant for functional trait composition of Collembola community. Pedobiologia 90, 150776
Bonfanti, J. et al. Communities of Collembola show functional resilience in a long-term field experiment simulating climate change. Pedobiologia 90, 10 (2022).
doi: 10.1016/j.pedobi.2022.150789
Holmstrup, M. et al. Functional diversity of Collembola is reduced in soils subjected to short-term, but not long-term, geothermal warming. Funct Ecol 32, 1304–1316 (2018).
doi: 10.1111/1365-2435.13058
Holmstrup, M. et al. Soil microarthropods are only weakly impacted after 13 years of repeated drought treatment in wet and dry heathland soils. Soil Biol Biochem 66, 110–118 (2013).
doi: 10.1016/j.soilbio.2013.06.023
Homet, P. et al. Soil fauna modulates the effect of experimental drought on litter decomposition in forests invaded by an exotic pathogen. Journal of Ecology 109, 2963–2980 (2021).
doi: 10.1111/1365-2745.13711
Ivask, M. et al. Springtails of flooded meadows along Matsalu Bay and the Kasari River, Estonia. Pedobiologia 66, 1–10 (2018).
doi: 10.1016/j.pedobi.2017.12.001
Jacques, R. G. et al. Earthworm-Collembola interactions affecting water-soluble nutrients, fauna and physiochemistry in a mesocosm manure-straw composting experiment. Waste Management 134, 57–66 (2021).
pubmed: 34416671
doi: 10.1016/j.wasman.2021.08.008
Ouvrard, S. et al. In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytoremed 13, 245–263 (2011).
doi: 10.1080/15226514.2011.568546
Jorge, B. C. S. et al. Effects of defoliation frequencies on above- and belowground biodiversity and ecosystem processes in subtropical grasslands of southern Brazil. Pedobiologia 90, 150786 (2022).
doi: 10.1016/j.pedobi.2021.150786
Jorge, B. C. S. et al. Grassland afforestation with Eucalyptus affect Collembola communities and soil functions in southern Brazil. Biodivers Conserv 32, 275–295 (2022).
doi: 10.1007/s10531-022-02501-x
Jucevica, E. & Melecis, V. Global warming affect Collembola community: A long-term study. Pedobiologia 50, 177–184 (2006).
doi: 10.1016/j.pedobi.2005.10.006
Juceviča, E. & Melecis, V. Long-term dynamics of Collembola in a pine forest ecosystem. Pedobiologia 46, 365–372 (2002).
doi: 10.1078/0031-4056-00144
Kapinga, E. M. et al. Collembola Communities, 20 Years After the Establishment of Distinct Revegetation Treatments in a Severely Eroded Area in South Iceland. Studia Ecolog Bioethic 20, 37–50 (2022).
doi: 10.21697/seb.2022.28
Kováč et al. Soil Oribatida and Collembola communities across a land depression in an arable field. Eur J Soil Biol 37, 285–289 (2001).
doi: 10.1016/S1164-5563(01)01106-2
Kováč, Ľ. et al. Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak wood and Pinus nigra plantation in the Slovak Karst (Slovakia). Pedobiologia 49, 29–40 (2005).
doi: 10.1016/j.pedobi.2004.07.009
Krab, E. J. et al. Turning northern peatlands upside down: disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Functional Ecology 24, 1362–1369 (2010).
doi: 10.1111/j.1365-2435.2010.01754.x
Krab, E. J. et al. Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra. Soil Biol Biochem 138, 107569 (2019).
doi: 10.1016/j.soilbio.2019.107569
Kuznetsova, N. A. & Sterzynska, M. Effects of single trees on the community structure of soil-dwelling Collembola in urban and non-urban environments. Fragmenta faunistica 37, 413–426 (1995).
doi: 10.3161/00159301FF1995.37.18.413
Sterzynska, M. & Kuznetsova, N. The faunal complex of Collembola in lowland subcontinental pine forests (Peucedano-Pinetum) of Poland, Byelorussia, Lithuania and Russia. Fragmenta faunistica 38, 145–153 (1995).
doi: 10.3161/00159301FF1995.38.4.145
Krest’yaninova, A. I. & Kuznetsova, N. A. Dynamics of collembolan (Hexapoda, Collembola) association in the soil of an urban boulevard. Entomological Review 76, 1220–1230 (1996).
Kuznetsova, N. A. & Potapov, M. B. Changes in structure of communities of soil springtails (Hexapoda: Collembola) under industrial pollution of the south-taiga bilberry pine forests. Russian. J Ecology 28, 386–392 (1997).
Sterzynska, M. & Kuznetsova, N. Comparative analysis of dominant species in springtail communities (Hexapoda: Collembola) of urban greens in Moscow and Warsaw. Fragmenta faunistica 40, 15–26 (1997).
doi: 10.3161/00159301FF1997.40.2.015
Chernova, N. M. & Kuznetsova, N. A. Collembolan community organization and its temporal predictability. Pedobiologia 44, 451–466 (2000).
doi: 10.1078/S0031-4056(04)70063-3
Kuznetsova, N. A. & Krest’yaninova, A. I. Long-term dynamics of collembolan communities (Hexapoda: Collembola) in hydrological series of pine forests in southern taiga. Entomological Review 78, 969–981 (1998).
Kuznetsova, N. A. Classification of collembolan communities in the East-European taiga. Pedobiologia 46, 373–384 (2002).
Kuznetsova, N. A. Biotopic Groups of Collembolans in the Mixed Forest Subzone of Eastern Europe. Entomological Review 82, 1047–1057 (2002).
Kuznetsova, N. A. Humidity and Distribution of Springtails. Entomological Review 83, 230–238 (2003).
Kuznetsova, N. A. Long-term dynamics of Collembola in two contrast ecosystems. Pedobiologia 50, 157–164 (2006).
doi: 10.1016/j.pedobi.2005.12.004
Kuznetsova, N. A. Long-term Dynamics of Collembolan population in Forest and Meadow Ecosystems. Entomological Review 87, 11–24 (2007).
doi: 10.1134/S0013873807010022
Kuznetsova, N. A. Soil-Dwelling Collembola in Coniferous Forests along the Gradient of Pollution with Emissions from the Middle Ural Copper Smelter. Russian J Ecology 40, 415–423 (2009).
doi: 10.1134/S106741360906006X
Chernov, A. V., Kuznetsova, N. A. & Potapov, M. B. Springtail communities (Collembola) of Eastern European broad-leaf forests. Entomological Review 90, 556–570 (2010).
doi: 10.1134/S0013873810050039
Saraeva, A. K., Potapov, M. B. & Kuznetsova, N. A. Different-Scale Distribution of Collembola in Uniform Ground Cover: Sphagnum Moss. Entomological Review 95, 557–577 (2015).
doi: 10.1134/S0013873815050012
Saraeva, A. K., Potapov, M. B. & Kuznetsova, N. A. Different-Scale Distribution of Collembola in Uniform Ground Cover: stability of parameters in space and time. Entomological Review 95, 699–713 (2015).
doi: 10.1134/S0013873815060032
Kuznetsova, N. A. & Saraeva, A. K. Beta-diversity partitioning approach in soil zoology: A case of Collembola in pine forests. Geoderma 332, 142–152 (2018).
doi: 10.1016/j.geoderma.2017.09.030
Kuznetsova, N., Gomina, A., Smirnova, O. & Potapov, M. Soil mesofauna and diversity of vegetation: Collembola in pristine taiga forests (Pechora-Ilych Biosphere Reserve, Russia). Eur J Forest Res 137, 659–674 (2018).
doi: 10.1007/s10342-018-1132-1
Kuznetsova, N. A., Bokova, A. I., Saraeva, A. K. & Shveenkova, Y. B. Communities of Collembola in the Forests of Southern Primorye as a Benchmark of High Diversity and Organization Complexity. Biology Bulletin 46, 483–491 (2019).
doi: 10.1134/S1062359019050066
Kuznetsova, N. A., Bokova, A. I., Saraeva, A. K. & Shveenkova, Y. B. Structure of the Species Diversity of Soil Springtails (Hexapoda, Collembola) in Pine Forests of the Caucasus and the Russian Plain: a Multi-Scale Approach. Entomological Review 99, 1–15 (2019).
doi: 10.1134/S0013873819020027
Kuznetsova, N. & Ivanova, N. Diversity of Collembola under various types of anthropogenic load on ecosystems of European part of Russia. Biodiv Data J 8, e58951 (2020).
doi: 10.3897/BDJ.8.e58951
Kuznetsova, N. et al. The extremely high diversity of Collembola in relict forests of Primorskii Krai of Russia. Biodiv Data J 9, e76007 (2021).
doi: 10.3897/BDJ.9.e76007
Vasenkova, N. V. & Kuznetsova, N. A. A multiscale approach to evaluating the diversity structure of Collembola in boreo-nemoral forests of the Russian Plane. Nature Cons Res 7, 38–51 (2022).
Potapov, M. B. et al. Organic farming and moderate tillage change the dominance and spatial structure of soil Collembola communities but have little effects on bulk abundance and species richness. Soil Organisms 94, 99–110 (2022).
Striuchkova, A., Malykh, I., Potapov, M. & Kuznetsova, N. Sympatry of genetic lineages of Parisotoma notabilis s. l. (Collembola, Isotomidae) in the East European Plain. ZooKeys 1137, 1–15 (2022).
pubmed: 36760483
pmcid: 9836473
doi: 10.3897/zookeys.1137.95769
Lu, J.-Z. & Scheu, S. RTG 2300 - Soil microarthropods (Collembola, Insecta) in current and future forest stands of Central Europe. Pangaea https://doi.org/10.1594/PANGAEA.944669 (2022).
Ochoa-Hueso, R. et al. Simulated nitrogen deposition affects soil fauna from a semiarid Mediterranean ecosystem in central Spain. Biol Fertil Soil 50, 191–196 (2014).
doi: 10.1007/s00374-013-0838-y
Marx, M. T. et al. Responses and adaptations of collembolan communities (Hexapoda: Collembola) to flooding and hypoxic conditions. Pesq Agropec Brasil 44, 1002–1010 (2009).
doi: 10.1590/S0100-204X2009000800032
Marx, M. T. & Weber, D. Cave Collembola from Southwestern Germany. Soil Organisms 87, 201–208 (2015).
Lessel, T., Marx, M. T. & Eisenbeis, G. Effects of ecological flooding on the temporal and spatial dynamics of carabid beetles (Coleoptera, Carabidae) and springtails (Collembola) in a polder habitat. ZooKeys 100, 421–446 (2011).
doi: 10.3897/zookeys.100.1538
McCary, M. A. & Wise, D. H. Plant invader alters soil food web via changes to fungal resources. Oecologia 191, 587–599 (2019).
pubmed: 31529212
doi: 10.1007/s00442-019-04510-0
Minor, M., Babenko, A. & Ermilov, S. Oribatid mites (Acari: Oribatida) and springtails (Collembola) in alpine habitats of southern New Zealand. NZ J Zoology 44, 65–85 (2017).
doi: 10.1080/03014223.2016.1251950
Nakamori, T. et al. Collembolan fauna in arable land, including the first record of Mesaphorura silvicola (Folsom) from Japan. Edaphologia 84, 5–9 (2009).
Negri, I. Spatial distribution of Collembola in presence and absence of a predator. Pedobiologia 48, 585–588 (2004).
doi: 10.1016/j.pedobi.2004.07.004
Frati, F. et al. Ultrastructural and molecular identification of a new Rickettsia endosymbiont in the springtail Onychiurus sinensis (Hexapoda, Collembola). J Invert Path 93, 150–156 (2006).
doi: 10.1016/j.jip.2006.07.002
Frati, F. et al. High levels of genetic differentiation between Wolbachia-infected and non-infected populations of Folsomia candida (Collembola, Isotomidae). Pedobiologia 48, 461–468 (2004).
doi: 10.1016/j.pedobi.2004.04.004
Mazzoglio, P. J. et al. Pedofaunistic and soil investigation in Scots pine forests in the Aosta Valley and Piedmont (northwest Italy). Rev Vald d’Hist Nat 65, 153–170 (2011).
Machado, J. S. et al. Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotropica 19, e20180618 (2019).
doi: 10.1590/1676-0611-bn-2018-0618
Ortiz, D. C. et al. Diversity of springtails (Collembola) in agricultural and forest systems in Southern Santa Catarina. Biota Neotropica 19, e20180720 (2019).
doi: 10.1590/1676-0611-bn-2018-0720
Santos, M. A. B. et al. Morphological Diversity of Springtails in Land Use Systems. Rev Brasil Ciên Solo 41, e0170277 (2018).
Pollierer, M. M. & Scheu, S. Driving factors and temporal fluctuation of Collembola communities and reproductive mode across forest types and regions. Ecol Evol 7, 4390–4403 (2017).
pubmed: 28649350
pmcid: 5478087
doi: 10.1002/ece3.3035
Querner, P. & Bruckner, A. Combining pitfall traps and soil cores to collect Collembola for site scale biodiversity assessments. Appl Soil Ecol 45, 293–297 (2010).
doi: 10.1016/j.apsoil.2010.05.005
Querner, P. et al. Effects of site and landscape parameters on Collembola diversity in 29 winter oilseed rape fields. Agr Ecos Env 164, 145–154 (2013).
doi: 10.1016/j.agee.2012.09.016
Winkler, M. et al. Side by side? Vascular plant, invertebrate and microorganism distribution patterns along an alpine to nival elevation gradient. AAAR 50, e1475951 (2018).
Buchholz, J. et al. Soil biota in vineyards are more influenced by plants than by tillage intensity, site parameters or the surrounding landscape. Scentific Reports 7, 17445 (2017).
doi: 10.1038/s41598-017-17601-w
Bruckner, A. et al. No indication of methodological biases in tullgren and macfadyen extraction of edaphic microarthropods. Eur J Soil Biol 115, 103464 (2023).
doi: 10.1016/j.ejsobi.2022.103464
Kováč, Ľ., Raschmanová, N. & Miklisová, D. Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak wood and Pinus nigra plantation in the Slovak Karst (Slovakia). Pedobiologia 49, 29–40 (2005).
doi: 10.1016/j.pedobi.2004.07.009
Raschmanová, N., Kováč, Ľ. & Miklisová, D. The effect of mesoclimate on the Collembola diversity in the Zádiel Valley, Slovak Karst (Slovakia). Eur J Soil Biol 44, 463–472 (2008).
doi: 10.1016/j.ejsobi.2008.07.005
Raschmanová, N., Miklisová, D. & Kováč, Ľ. A unique small-scale microclimatic gradient in a temperate karst harbours exceptionally high diversity of soil Collembola. Int J Speleol 47, 247–262 (2018).
doi: 10.5038/1827-806X.47.2.2194
Rashid, M. I. et al. Production-ecological modelling explains the difference between potential soil N mineralisation and actual herbage N uptake. Appl Soil Ecol 84, 83–92 (2014).
doi: 10.1016/j.apsoil.2014.07.002
Raymond-Léonard, L. J. et al. Springtail community structure is influenced by functional traits but not biogeographic origin of leaf litter in soils of novel forest ecosystems. Proc Roy Soc B 285, 20180647 (2018).
doi: 10.1098/rspb.2018.0647
Raymond-Léonard, L. J., Bouchard, M. & Handa, I. T. Dead wood provides habitat for springtails across a latitudinal gradient of forests in Quebec. Canada. For Ecol Manag 472, 118237 (2020).
Rousseau, L. et al. Long-term effects of biomass removal on soil mesofaunal communities in northeastern Ontario (Canada) jack pine (Pinus banksiana) stands. For Ecol Manag 421, 72–83 (2018).
doi: 10.1016/j.foreco.2018.02.017
Rousseau, L. et al. Forest floor mesofauna communities respond to a gradient of biomass removal and soil disturbance in a boreal jack pine (Pinus banksiana) stand of northeastern Ontario (Canada). For Ecol Manag 407, 155–165 (2018).
doi: 10.1016/j.foreco.2017.08.054
Saifutdinov, R. A., Gongalsky, K. B. & Zaitsev, A. S. Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma 332, 173–179 (2018).
doi: 10.1016/j.geoderma.2017.07.021
Saifutdinov, R. A., Gongalsky, K. B. & Zaitsev, A. S. Springtail (Hexapoda: Collembola) fauna in the burnt boreal forests of European Russia. Invert. Zoology 15, 115–130 (2018).
Zaitsev, A. S. et al. Reduced functionality of soil food webs in burnt boreal forests: a case study in Central Russia. Contemp Probl Ecol 10, 277–285 (2017).
doi: 10.1134/S199542551703012X
Sayer, E. J. et al. Arthropod abundance and diversity in the forest floor of a lowland tropical forest: the role of habitat space vs. nutrient concentrations. Biotropica 42, 194–200 (2010).
doi: 10.1111/j.1744-7429.2009.00576.x
Sayer, E. J., Tanner, E. V. J. & Lacey, A. L. Litter quantity affects early-stage decomposition and meso-arthropod abundance in a moist tropical forest. For Ecol Manag 229, 285–293 (2006).
doi: 10.1016/j.foreco.2006.04.007
Laird-Hopkins, B. C., Brechet, L. M. & Sayer, E. J. Tree functional diversity affects litter decomposition and arthropod community composition in a tropical forest. Biotropica 49, 903–911 (2017).
doi: 10.1111/btp.12477
Scheunemann, N. et al. The role of shoot residues vs. crop species for soil arthropod diversity and abundance of arable systems. Soil Biol Biochem 81, 81–88 (2015).
doi: 10.1016/j.soilbio.2014.11.006
Seeber, J. et al. Soil invertebrate diversity across steep high elevation snowmelt gradients in the European Alps. Arct Antar Alpine Res 53, 288–299 (2021).
doi: 10.1080/15230430.2021.1982665
Sterzynska, M. et al. Urban species richness decreases with increasing air pollution. Ecological Indicators 94, 328–335 (2018).
doi: 10.1016/j.ecolind.2018.06.063
Rzeszowski, K. & Sterzyńska, M. Changes through time in soil Collembola communities exposed to urbanization. Urban Ecosys 19, 143–158 (2015).
doi: 10.1007/s11252-015-0478-0
Xie, Z. et al. Drivers of Collembola assemblages along an altitudinal gradient in northeast China. Ecol Evol 12, e8559 (2022).
pubmed: 35169449
pmcid: 8840876
doi: 10.1002/ece3.8559
Sun, X. et al. Response of Collembola to the addition of nutrients along an altitudinal gradient of tropical montane rainforests. Appl Soil Ecol 147, 103382 (2020).
doi: 10.1016/j.apsoil.2019.103382
Taskaeva, A. A. et al. Diversity of soil invertebrates in ecosystems near the Padimeyskie lakes in the Bolshezemelskaya tundra region of Russia. Euroas Entomol J 14, 480–488 [in Russian] (2015).
Babenko, A. B., Potapov, M. B. & Taskaeva, A. A. The Collembola fauna of the East-European tundra. Rus Entomol J 26, 1–30 (2017).
doi: 10.15298/rusentj.26.1.01
Konakova, T. N. et al. Diversity of soil invertebrates in ecosystems of the Chernaya river basin, the Bolshezemelskaya tundra, Nenetskii Autonomnyi Okrug, Russia. Euroas Entomol J 16, 88–91 [in Russian] (2017).
Taskaeva, A. A. & Nakul, G. L. Collembola from the Korotaikha river valley of Bolshezemelskaya tundra, Nenetskii Autonomnyi Okrug of Russia. Euroas Entomol J 16, 57–59 [in Russian] (2017).
Taskaeva, A. A. et al. Characteristics of the Microarthropod Communities in Postagrogenic and Tundra Soils of the European Northeast of Russia. Euras Soil Sci 52, 661–670 (2019).
doi: 10.1134/S1064229319060127
Konakova, T. N., Kolesnikova, A. A. & Taskaeva, A. A. Soil invertebrate occurrences in European North-East of Russia. Biodiv Data J 8, e58836 (2020).
doi: 10.3897/BDJ.8.e58836
Taskaeva, A. A., Kolesnikova, A. A. & Nakul, G. L. Springtails (Hexapoda, Collembola) of some plant communities of the Pechora Delta. Rus Entomol J 29, 343–349 (2020).
doi: 10.15298/rusentj.29.4.01
Taskaeva, Collembola of Kolguev, Malozemelskaya tundra and Delta Pechora. GBIF https://doi.org/10.15468/52pvpz (2020).
Taskaeva, A. Collembola of the Chernaya river basin. GBIF https://doi.org/10.15468/mivwrm (2019).
Taskaeva, A. Collembola of Padimeiskie lakes territory on the Bolshezemelskaya tundra (European North-East Russia). GBIF https://doi.org/10.15468/pfwjw9 (2018).
Konakova, T., Kolesnikova, A., Taskaeva, A. Soil invertebrates occurrences in European North-East of Russia. GBIF https://doi.org/10.15468/5a8ydf (2020).
Thakur, M. P., Berg, M. P., Eisenhauer, N. & Van Langevelde, F. Disturbance-diversity relation is explained by the community biomass of soil fauna in salt marsh. Soil Biol Biochem 78, 30–37 (2014).
doi: 10.1016/j.soilbio.2014.06.021
Tsiafouli, M. A. et al. Responses of soil microarthropods to experimental short-term manipulations of soil moisture. Appl Soil Ecol 29, 17–26 (2005).
doi: 10.1016/j.apsoil.2004.10.002
Widenfalk, L. W. et al. Small-scale Collembola community composition in a pine forest soil - Overdispersion in functional traits indicate the importance of species interactions. Soil Biol Biochem 103, 52–62 (2016).
doi: 10.1016/j.soilbio.2016.08.006
Winkler, D. et al. Long-term ecological effects of the red mud disaster in Hungary: Regeneration of red mud flooded areas in a contaminated industrial region. Sci Tot Env 644, 1292–1303 (2018).
doi: 10.1016/j.scitotenv.2018.07.059
Harta, I. et al. Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area. J For Res 32, 1819–1832 (2021).
doi: 10.1007/s11676-020-01238-z
Winkler, D. & Tóth, V. Effects of afforestation with pines on Collembola diversity in the limestone hills of Szárhalom (West Hungary). Acta Silv Lign Hung 8, 9–20 (2012).
doi: 10.2478/v10303-012-0001-8
Winkler, D. & Traser, G. N. Eco-faunistic study on the Collembola fauna in the Vasvár-Nagymákfa area (Western Hungary). Natura Somogyiensis 22, 39–52 (2012).
doi: 10.24394/NatSom.2012.22.39
Szigeti, N. et al. Soil mesofauna and herbaceous vegetation patterns in an agroforestry landscape. Agroforestry Systems 96, 773–786 (2022).
doi: 10.1007/s10457-022-00739-6
Ni, Z. et al. Habitat preferences rather than morphological traits affect the recovery process of Collembola (Arthropoda, Hexapoda) on a bare saline–alkaline land. PeerJ 8, e9519 (2020).
pubmed: 32742797
pmcid: 7380278
doi: 10.7717/peerj.9519
Burkhardt, U. et al. The Edaphobase project of GBIF-Germany—A new online soil-zoological data warehouse. Appl. Soil Ecol. 83, 3–12 (2014).
doi: 10.1016/j.apsoil.2014.03.021
R Core Team, 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Potapov, A. et al. #GlobalCollembola - full sample-level database. Figshare https://doi.org/10.6084/m9.figshare.23851695.v2 (2023).
Macfadyen, A. Improved funnel-type extractors for soil arthropods. J. Anim. Ecol. 30, 171 (1961).
doi: 10.2307/2120
Edwards, C. A. The assessment of populations of soil-inhabiting invertebrates. Agric. Ecosyst. Environ. 34, 145–176 (1991).
doi: 10.1016/0167-8809(91)90102-4
Zhang, B., Chen, T.-W., Mateos, E., Scheu, S. & Schaefer, I. Cryptic species in Lepidocyrtus lanuginosus (Collembola: Entomobryidae) are sorted by habitat type. Pedobiologia 68, 12–19 (2018).
doi: 10.1016/j.pedobi.2018.03.001
Porco, D. et al. Challenging species delimitation in Collembola: Cryptic diversity among common springtails unveiled by DNA barcoding. Invertebrate Systematics 26, 470–477 (2012).
doi: 10.1071/IS12026
Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B. & Schigel, D. Data integration enables global biodiversity synthesis. Proc. Natl. Acad. Sci. USA 118, (2021).