The low-density lipoprotein receptor promotes infection of multiple encephalitic alphaviruses.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
04 Jan 2024
Historique:
received: 19 07 2023
accepted: 19 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

Members of the low-density lipoprotein receptor (LDLR) family, including LDLRAD3, VLDLR, and ApoER2, were recently described as entry factors for different alphaviruses. However, based on studies with gene edited cells and knockout mice, blockade or abrogation of these receptors does not fully inhibit alphavirus infection, indicating the existence of additional uncharacterized entry factors. Here, we perform a CRISPR-Cas9 genome-wide loss-of-function screen in mouse neuronal cells with a chimeric alphavirus expressing the Eastern equine encephalitis virus (EEEV) structural proteins and identify LDLR as a candidate receptor. Expression of LDLR on the surface of neuronal or non-neuronal cells facilitates binding and infection of EEEV, Western equine encephalitis virus, and Semliki Forest virus. Domain mapping and binding studies reveal a low-affinity interaction with LA domain 3 (LA3) that can be enhanced by concatenation of LA3 repeats. Soluble decoy proteins with multiple LA3 repeats inhibit EEEV infection in cell culture and in mice. Our results establish LDLR as a low-affinity receptor for multiple alphaviruses and highlight a possible path for developing inhibitors that could mitigate infection and disease.

Identifiants

pubmed: 38172096
doi: 10.1038/s41467-023-44624-x
pii: 10.1038/s41467-023-44624-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

246

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI141436
Pays : United States
Organisme : NIAID NIH HHS
ID : U19 AI142790
Pays : United States

Informations de copyright

© 2024. The Author(s).

Références

Strauss, J. H. & Strauss, E. G. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58, 491–562 (1994).
pubmed: 7968923 pmcid: 372977 doi: 10.1128/mr.58.3.491-562.1994
Weaver, S. C., Winegar, R., Manger, I. D. & Forrester, N. L. Alphaviruses: population genetics and determinants of emergence. Antiviral. Res. 94, 242–257 (2012).
pubmed: 22522323 pmcid: 3737490 doi: 10.1016/j.antiviral.2012.04.002
Suhrbier, A., Jaffar-Bandjee, M. C. & Gasque, P. Arthritogenic alphaviruses–an overview. Nat. Rev. Rheumatol. 8, 420–429 (2012). nrrheum.2012.64 [pii].
pubmed: 22565316 doi: 10.1038/nrrheum.2012.64
Weaver, S. C., Ferro, C., Barrera, R., Boshell, J. & Navarro, J. C. Venezuelan equine encephalitis. Annu. Rev. Entomol. 49, 141–174 (2004).
pubmed: 14651460 doi: 10.1146/annurev.ento.49.061802.123422
Weaver, S. C., Powers, A. M., Brault, A. C. & Barrett, A. D. Molecular epidemiological studies of veterinary arboviral encephalitides. Vet. J. 157, 123–138 (1999).
pubmed: 10204408 doi: 10.1053/tvjl.1998.0289
Zacks, M. A. & Paessler, S. Encephalitic alphaviruses. Vet. Microbiol. 140, 281–286 (2010).
pubmed: 19775836 doi: 10.1016/j.vetmic.2009.08.023
Reed, D. S. et al. Severe encephalitis in cynomolgus macaques exposed to aerosolized Eastern equine encephalitis virus. J. Infect. Dis. 196, 441–450 (2007).
pubmed: 17597459 doi: 10.1086/519391
Phelps, A. L. et al. Aerosol infection of Balb/c mice with eastern equine encephalitis virus; susceptibility and lethality. Virol. J. 16, 2 (2019).
pubmed: 30611287 pmcid: 6321726 doi: 10.1186/s12985-018-1103-7
Zhang, R. et al. 4.4 A cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus. Embo j 30, 3854–3863 (2011).
pubmed: 21829169 pmcid: 3173789 doi: 10.1038/emboj.2011.261
Jose, J., Snyder, J. E. & Kuhn, R. J. A structural and functional perspective of alphavirus replication and assembly. Future Microbiol. 4, 837–856 (2009).
pubmed: 19722838 doi: 10.2217/fmb.09.59
Kielian, M. & Jungerwirth, S. Mechanisms of enveloped virus entry into cells. Mol. Biol. Med. 7, 17–31 (1990).
pubmed: 2182968
Leung, J. Y., Ng, M. M. & Chu, J. J. Replication of alphaviruses: a review on the entry process of alphaviruses into cells. Adv. Virol. 2011, 249640 (2011).
pubmed: 22312336 pmcid: 3265296 doi: 10.1155/2011/249640
Elmasri, Z., Nasal, B. L. & Jose, J. Alphavirus-induced membrane rearrangements during replication, assembly, and budding. Pathogens 10, 984 (2021).
pubmed: 34451448 pmcid: 8399458 doi: 10.3390/pathogens10080984
Holmes, A. C., Basore, K., Fremont, D. H. & Diamond, M. S. A molecular understanding of alphavirus entry. PLoS Pathog 16, e1008876 (2020).
pubmed: 33091085 pmcid: 7580943 doi: 10.1371/journal.ppat.1008876
Zimmerman, O., Holmes, A. C., Kafai, N. M., Adams, L. J. & Diamond, M. S. Entry receptors - the gateway to alphavirus infection. J. Clin. Invest. 133, e165307 (2023).
pubmed: 36647825 pmcid: 9843064 doi: 10.1172/JCI165307
Rose, P. P. et al. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Cell Host Microbe. 10, 97–104 (2011).
pubmed: 21843867 pmcid: 3164510 doi: 10.1016/j.chom.2011.06.009
Zhang, R. et al. Expression of the Mxra8 receptor promotes alphavirus infection and pathogenesis in mice and Drosophila. Cell Rep. 28, 2647–2658 (2019).
pubmed: 31484075 pmcid: 6745702 doi: 10.1016/j.celrep.2019.07.105
Zhang, R. et al. Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature 557, 570–574 (2018).
pubmed: 29769725 pmcid: 5970976 doi: 10.1038/s41586-018-0121-3
Basore, K. et al. Cryo-EM structure of Chikungunya virus in complex with the Mxra8 receptor. Cell 177, 1725–1737 (2019).
pubmed: 31080061 pmcid: 7227486 doi: 10.1016/j.cell.2019.04.006
Song, H. et al. Molecular basis of arthritogenic alphavirus receptor mxra8 binding to chikungunya virus envelope protein. Cell 177, 1714–1724.e1712 (2019).
pubmed: 31080063 doi: 10.1016/j.cell.2019.04.008
Feng, F. et al. Colocalization of chikungunya virus with its receptor mxra8 during cell attachment, internalization, and membrane fusion. J Virol 97, e0155722 (2023).
pubmed: 37133449 doi: 10.1128/jvi.01557-22
Song, D. et al. Identification of the receptor of oncolytic virus M1 as a therapeutic predictor for multiple solid tumors. Signal transduction and targeted therapy 7, 100 (2022).
pubmed: 35393389 pmcid: 8989880 doi: 10.1038/s41392-022-00921-3
Ma, H. et al. LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature 588, 308–314 (2020).
Basore, K. et al. Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature 598, 672–676 (2021).
pubmed: 34646020 pmcid: 8550936 doi: 10.1038/s41586-021-03963-9
Ma, B., Huang, C., Ma, J., Xiang, Y. & Zhang, X. Structure of Venezuelan equine encephalitis virus with its receptor LDLRAD3. Nature 598, 677–681 (2021).
pubmed: 34646021 doi: 10.1038/s41586-021-03909-1
Clark, L. E. et al. VLDLR and ApoER2 are receptors for multiple alphaviruses. Nature 602, 475–480 (2022).
pubmed: 34929721 doi: 10.1038/s41586-021-04326-0
Cao, D., Ma, B., Cao, Z., Zhang, X. & Xiang, Y. Structure of Semliki Forest virus in complex with its receptor VLDLR. Cell 186, 2208–2218.e2215 (2023).
pubmed: 37098345 doi: 10.1016/j.cell.2023.03.032
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
pubmed: 25075903 pmcid: 4486245 doi: 10.1038/nmeth.3047
Vogel, P., Kell, W. M., Fritz, D. L., Parker, M. D. & Schoepp, R. J. Early events in the pathogenesis of eastern equine encephalitis virus in mice. Am. J. Pathol. 166, 159–171 (2005).
pubmed: 15632009 pmcid: 1602312 doi: 10.1016/S0002-9440(10)62241-9
Gardner, C. L. et al. Natural variation in the heparan sulfate binding domain of the eastern equine encephalitis virus E2 glycoprotein alters interactions with cell surfaces and virulence in mice. J. Virol. 87, 8582–8590 (2013).
pubmed: 23720725 pmcid: 3719831 doi: 10.1128/JVI.00937-13
Gardner, C. L., Ebel, G. D., Ryman, K. D. & Klimstra, W. B. Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc. Natl Acad. Sci. USA 108, 16026–16031 (2011).
pubmed: 21896745 pmcid: 3179095 doi: 10.1073/pnas.1110617108
Paessler, S. et al. Recombinant sindbis/Venezuelan equine encephalitis virus is highly attenuated and immunogenic. J. Virol. 77, 9278–9286 (2003).
pubmed: 12915543 pmcid: 187387 doi: 10.1128/JVI.77.17.9278-9286.2003
Goodman, C. H. et al. Production of a Sindbis/Eastern Equine Encephalitis chimeric virus inactivated cell culture antigen. J. Virol. Methods 223, 19–24 (2015).
pubmed: 26205552 pmcid: 4624339 doi: 10.1016/j.jviromet.2015.07.007
Lednicky, J. A. et al. Emergence of Madariaga virus as a cause of acute febrile illness in children, Haiti, 2015-2016. PLoS Negl. Trop. Dis. 13, e0006972 (2019).
pubmed: 30629592 pmcid: 6328082 doi: 10.1371/journal.pntd.0006972
Arrigo, N. C., Adams, A. P. & Weaver, S. C. Evolutionary patterns of eastern equine encephalitis virus in North versus South America suggest ecological differences and taxonomic revision. J. Virol. 84, 1014–1025 (2010).
pubmed: 19889755 doi: 10.1128/JVI.01586-09
Jeon, H. & Blacklow, S. C. Structure and physiologic function of the low-density lipoprotein receptor. Annu. Rev. Biochem. 74, 535–562 (2005).
pubmed: 15952897 doi: 10.1146/annurev.biochem.74.082803.133354
Ko, S. Y. et al. A virus-like particle vaccine prevents equine encephalitis virus infection in nonhuman primates. Sci. Transl. Med. 11, eaav3113 (2019).
pubmed: 31092692 doi: 10.1126/scitranslmed.aav3113
Henikoff, S. & Henikoff, J. G. Amino acid substitution matrices from protein blocks. Proc. Natl Acad. Sci. USA 89, 10915–10919 (1992).
pubmed: 1438297 pmcid: 50453 doi: 10.1073/pnas.89.22.10915
Finkelshtein, D., Werman, A., Novick, D., Barak, S. & Rubinstein, M. LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc. Natl Acad. Sci. USA 110, 7306–7311 (2013).
pubmed: 23589850 pmcid: 3645523 doi: 10.1073/pnas.1214441110
Nikolic, J. et al. Structural basis for the recognition of LDL-receptor family members by VSV glycoprotein. Nat. Commun. 9, 1029 (2018).
pubmed: 29531262 pmcid: 5847621 doi: 10.1038/s41467-018-03432-4
Hofer, F. et al. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Natl Acad. Sci. USA 91, 1839–1842 (1994).
pubmed: 8127891 pmcid: 43259 doi: 10.1073/pnas.91.5.1839
Monazahian, M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 57, 223–229 (1999).
pubmed: 10022791 doi: 10.1002/(SICI)1096-9071(199903)57:3<223::AID-JMV2>3.0.CO;2-4
Verdaguer, N., Fita, I., Reithmayer, M., Moser, R. & Blaas, D. X-ray structure of a minor group human rhinovirus bound to a fragment of its cellular receptor protein. Nat. Struct. Mol. Biol. 11, 429–434 (2004).
pubmed: 15064754 doi: 10.1038/nsmb753
Sun, C., Gardner, C. L., Watson, A. M., Ryman, K. D. & Klimstra, W. B. Stable, high-level expression of reporter proteins from improved alphavirus expression vectors to track replication and dissemination during encephalitic and arthritogenic disease. J. Virol. 88, 2035–2046 (2014).
pubmed: 24307590 pmcid: 3911548 doi: 10.1128/JVI.02990-13
Kim, A. S. et al. Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nat. Microbiol. 4, 187–197 (2019).
pubmed: 30455470 doi: 10.1038/s41564-018-0286-4
Kim, A. S. et al. Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell 184, 4414–4429.e4419 (2021).
pubmed: 34416146 pmcid: 8382027 doi: 10.1016/j.cell.2021.07.006
Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15 554, https://doi.org/10.1186/s13059-014-0554-4 (2014).
Fass, D., Blacklow, S., Kim, P. S. & Berger, J. M. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature 388, 691–693 (1997).
pubmed: 9262405 doi: 10.1038/41798
Terskikh, A. V. et al. “Peptabody”: a new type of high avidity binding protein. Proc. Natl Acad. Sci. USA 94, 1663–1668 (1997).
pubmed: 9050835 pmcid: 19973 doi: 10.1073/pnas.94.5.1663
Willnow, T. E. et al. RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. Embo j 15, 2632–2639 (1996).
pubmed: 8654360 pmcid: 450198 doi: 10.1002/j.1460-2075.1996.tb00623.x
Oliphant, T. et al. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat. Med. 11, 522–530 (2005).
pubmed: 15852016 pmcid: 1458527 doi: 10.1038/nm1240
Pal, P. et al. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog 9, e1003312 (2013).
pubmed: 23637602 pmcid: 3630103 doi: 10.1371/journal.ppat.1003312

Auteurs

Hongming Ma (H)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Lucas J Adams (LJ)

Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Saravanan Raju (S)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Alan Sariol (A)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Natasha M Kafai (NM)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Hana Janova (H)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

William B Klimstra (WB)

The Center for Vaccine Research and Department of Immunology, The University of Pittsburgh, Pittsburgh, PA, 15261, USA.

Daved H Fremont (DH)

Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.

Michael S Diamond (MS)

Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. mdiamond@wustl.edu.
Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA. mdiamond@wustl.edu.
Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA. mdiamond@wustl.edu.
Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, 63110, USA. mdiamond@wustl.edu.
Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, Saint Louis, MO, 63110, USA. mdiamond@wustl.edu.

Classifications MeSH