Factors influencing sex ratio at birth in Krosno, Poland.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 Jan 2024
Historique:
received: 29 06 2023
accepted: 21 12 2023
medline: 4 1 2024
pubmed: 4 1 2024
entrez: 3 1 2024
Statut: epublish

Résumé

The secondary sex ratio (SSR) is a widely used descriptor that reflects the living conditions and health status during pregnancy. The aim of study was to assess the impact of maternal factors, season of birth, and air pollution with the heating season on the sex ratio at birth in the Subcarpathian population from the Krosno district, Poland. A retrospective study involving 11,587 births was occurred at the John Paul II Podkarpackie Province Hospital in Krosno between 2016 and 2020. Sex of the newborn, the season of their birth, as well as the maternal age, birth order, the interval between births, and the season of birth were analysed. Furthermore, the relationship between the SSR and the level of air pollution during the heating season was investigated. To determine the significance of differences in sex ratios, chi-square analysis and multifactorial regression were used, with a significance level set at p < 0.05. At the chi-square level, all the studied factors indicated a statistically significant relationship with the SSR. However, the regression model used shows that maternal age and birth order were the most important factors in shaping the SSR in the study group.

Identifiants

pubmed: 38167565
doi: 10.1038/s41598-023-50555-w
pii: 10.1038/s41598-023-50555-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

98

Informations de copyright

© 2024. The Author(s).

Références

Grech, V. State and regional differences in the male-to-female ratio at birth in the United States of America, 1995–2012. West Indian Med. J. 65(1), 180. https://doi.org/10.7727/wimj.2014.284 (2016).
doi: 10.7727/wimj.2014.284
Masukume, G. et al. COVID-19 induced birth sex ratio changes in England and Wales. Peer J. 11, e14618. https://doi.org/10.7717/peerj.14618 (2023).
doi: 10.7717/peerj.14618 pubmed: 36814957 pmcid: 9940645
Sánchez-Barricarte, J. Factors influencing the sex ratio at birth in the United States from a historical perspective. J. Biosoc. Sci. https://doi.org/10.1017/S0021932022000554 (2023).
doi: 10.1017/S0021932022000554 pubmed: 36645016
Ein-Mor, E., Mankuta, D., Hochner-Celnikier, D., Hurwitz, A. & Haimov-Kochman, R. Sex ratio is remarkably constant. Fertil. Steril. 93(6), 1961–1965. https://doi.org/10.1016/j.fertnstert.2008.12.036 (2010).
doi: 10.1016/j.fertnstert.2008.12.036 pubmed: 19159875
Mathews, T. J. & Hamilton, B. E. Trend analysis of the sex ratio at birth in the United States. Natl. Vital Stat. Rep. 53, 1–17 (2005).
pubmed: 15974501
Chao, F., Kc, S. & Ombao, H. Estimation and probabilistic projection of levels and trends in the sex ratio at birth in seven provinces of Nepal from 1980 to 2050: A Bayesian modeling approach. BMC Public Health 22(1), 358. https://doi.org/10.1186/s12889-022-12693-0 (2022).
doi: 10.1186/s12889-022-12693-0 pubmed: 35183138 pmcid: 8858562
Davis, D. L., Gottlieb, M. B. & Stampnitzky, J. R. Reduced ratio of male to female births in several industrial countries: A sentinel health indicator?. JAMA 279, 1018–1023. https://doi.org/10.1001/jama.279.13.1018 (1998).
doi: 10.1001/jama.279.13.1018 pubmed: 9533502
Stein, A. D., Zybert, P. A. & Lumey, L. H. Acute undernutrition is not associated with excess of females at birth in humans: The Dutch hunger winter. Proc. Biol. Sci. 271(Suppl 4), 138–141. https://doi.org/10.1098/rsbl.2003.0123 (2004).
doi: 10.1098/rsbl.2003.0123
Zhao, Z., Zhu, Y. & Reimondos, A. Could changes in reported sex ratios at birth during and after China’s 1958–1961 famine support the adaptive sex ratio adjustment hypothesis?. Demographic Res. 29, 885–906. https://doi.org/10.4054/DemRes.2013.29.33 (2013).
doi: 10.4054/DemRes.2013.29.33
Grech, V. & Masukume, G. The sex ratio at birth in South Africa may be a sentinel health indicator. Early Hum. Dev. 103, 225–227. https://doi.org/10.1016/j.earlhumdev.2016.10.008 (2016).
doi: 10.1016/j.earlhumdev.2016.10.008 pubmed: 27825042
Grech, V. Evidence of socio-economic stress and female foeticide in racial disparities in the gender ratio at birth in the United States (1995–2014). Early Hum. Dev. 106–107, 63–65. https://doi.org/10.1016/j.earlhumdev.2017.02.003 (2017).
doi: 10.1016/j.earlhumdev.2017.02.003 pubmed: 28282529
Fakorede, S. T. et al. Trends and seasonal variations in human secondary sex ratio in Southwest Nigeria: A 10-year survey. Adv. Hum. Biol. 12(3), 271–276. https://doi.org/10.4103/aihb.aihb_165_21 (2022).
doi: 10.4103/aihb.aihb_165_21
Bae, J. et al. Preconception stress and the secondary sex ratio in a population-based preconception cohort. Fertil. Steril. 107(3), 714–722. https://doi.org/10.1016/j.fertnstert.2016.12.011 (2017).
doi: 10.1016/j.fertnstert.2016.12.011 pubmed: 28104242 pmcid: 5337443
McMillen, M. M. Differential mortality by sex in fetal and neonatal deaths. Science 204, 89–91 (1979).
doi: 10.1126/science.571144 pubmed: 571144
Pergament, E., Toydemir, P. B. & Fiddler, M. Sex ratio: A biological perspective of ‘Sex and the City’. Reprod. Biomed. Online 5, 43–46. https://doi.org/10.1016/s1472-6483(10)61596-9 (2002).
doi: 10.1016/s1472-6483(10)61596-9 pubmed: 12470545
Kraemer, S. The fragile male. BMJ Br. Med. J. 321, 1609–1612. https://doi.org/10.1136/bmj.321.7276.1609 (2000).
doi: 10.1136/bmj.321.7276.1609
Degenhardt, A., Tholey, P. & Michaelis, H. Primary sex ratio of 125 males to 100 females? Analysis of an artifact. J. Hum. Evol. 9, 651–654. https://doi.org/10.1016/0047-2484(80)90098-6 (1980).
doi: 10.1016/0047-2484(80)90098-6
Boklage, C. E. The epigenetic environment: Secondary sex ratio depends on differential survival in embryogenesis. Hum. Reprod. 20, 583–587. https://doi.org/10.1093/humrep/deh662 (2005).
doi: 10.1093/humrep/deh662 pubmed: 15618256
Orzack, S. H. et al. The human sex ratio from conception to birth. PNAS 112(16), E2102–E2111. https://doi.org/10.1073/pnas.141654611 (2015).
doi: 10.1073/pnas.141654611 pubmed: 25825766 pmcid: 4413259
Hassold, T. et al. A cytogenetic study of spontaneous abortions in Hawaii. Ann. Hum. Genet. 14, 443–454. https://doi.org/10.1111/j.1469-1809.1978.tb00914.x (1978).
doi: 10.1111/j.1469-1809.1978.tb00914.x
Coale, A. Excess female mortality and the balance of the sexes in the population: An estimate of the number of “Missing Females”. Popul. Dev. Rev. 17(3), 517–523. https://doi.org/10.2307/1971953 (1991).
doi: 10.2307/1971953
Egan, J. F. et al. Distortions of sex ratios at birth in the United States; Evidence for prenatal gender selection. Prenat. Diagn. 31, 560–565. https://doi.org/10.1002/pd.2747 (2011).
doi: 10.1002/pd.2747 pubmed: 21442626
Fellman, J. Historical outlook on the study of secondary sex ratio. JP J. Biostat. 16(1), 17–38. https://doi.org/10.17654/BS016010017 (2019).
doi: 10.17654/BS016010017
Graffelman, J. & Hoekstra, R. F. A statistical analysis of the effect of warfare on the human secondary sex ratio. Hum. Biol. 72, 433–445 (2000).
pubmed: 10885189
Manning, J., Anderton, R. & Shutt, M. Parental age gap skews child sex ratio. Nature 389, 344. https://doi.org/10.1038/38647 (1997).
doi: 10.1038/38647 pubmed: 9311775
Astolfi, P. & Zonta, L. A. Sex ratio and parental age gap. Hum. Biol. 71(1), 135–141 (1999).
pubmed: 9972104
Jacobsen, R., Møller, H. & Mouritsen, A. Natural variation in the human sex ratio. Hum. Reprod. 14(12), 3120–3125. https://doi.org/10.1093/humrep/14.12.3120 (1999).
doi: 10.1093/humrep/14.12.3120 pubmed: 10601107
Cagnacci, A., Renzi, A., Arangino, S., Alessandrini, C. & Volpe, A. The male disadvantage and the seasonal rhythm of sex ratio at the time of conception. Hum. Reprod. 18(4), 885–887. https://doi.org/10.1093/humrep/deg185 (2023).
doi: 10.1093/humrep/deg185
Davis, G. E. & Lowell, W. E. Peaks of solar cycles affect the gender ratio. Med. Hypotheses 71(6), 829–838. https://doi.org/10.1016/j.mehy.2008.07.020 (2008).
doi: 10.1016/j.mehy.2008.07.020 pubmed: 18755551
Saadat, M. & Ansari-Lari, M. Sex ratio of birth during wartime and psychological tensions. Hum. Reprod. 19, 465 (2004).
doi: 10.1093/humrep/deh086 pubmed: 14747201
Ruckstuhl, K. E., Colijn, G. P., Amiot, V. & Vinish, E. Mother’s occupation and sex ratio at birth. BMC Public Health. 10, 269. https://doi.org/10.1186/1471-2458-10-269 (2010).
doi: 10.1186/1471-2458-10-269 pubmed: 20492728 pmcid: 2888741
Cossi, M. et al. Role of infant sex in the association between air pollution and preterm birth. Ann. Epidemiol. 25(11), 874–876. https://doi.org/10.1016/j.annepidem.2015.08.005 (2015).
doi: 10.1016/j.annepidem.2015.08.005 pubmed: 26475983 pmcid: 4671488
Pillarisetti, J. R. Skewed sex ratio, environmental toxins and human wellbeing: The need for policies. Int. J. Environ. Stud. 73, 692701. https://doi.org/10.1080/00207233.2016.1192387 (2016).
doi: 10.1080/00207233.2016.1192387
Pavic, D. A review of environmental and occupational toxins in relation to sex ratio at birth. Early Hum. Dev. 141, 104873. https://doi.org/10.1016/j.earlhumdev.2019.104873 (2020).
doi: 10.1016/j.earlhumdev.2019.104873 pubmed: 31506206
Schacht, R. et al. Frail males on the American Frontier: The role of environmental harshness on sex ratios at birth across a period of rapid industrialization. Soc. Sci. 10(9), 319. https://doi.org/10.3390/socsci10090319 (2021).
doi: 10.3390/socsci10090319
Wielgosiński, G. & Czerwińska, J. Smog episodes in Poland. Atmosphere 11(3), 277. https://doi.org/10.3390/atmos11030277 (2020).
doi: 10.3390/atmos11030277
Fellman, J. & Eriksson, A. Temporal trends in the secondary sex ratio in Nordic countries. Biodemography Soc. Biol. 57(2), 143–154. https://doi.org/10.1080/19485565.2011.614193 (2011).
doi: 10.1080/19485565.2011.614193 pubmed: 22329084
Grech, V. A socio-economic hypothesis for lower birth sex ratios at racial, national and global levels. Early Hum. Dev. 116, 81–83. https://doi.org/10.1016/j.earlhumdev.2017.11.008 (2018).
doi: 10.1016/j.earlhumdev.2017.11.008 pubmed: 29216543
Radwan, M. et al. Air pollution and human sperm sex ratio. Am. J. Mens Health 12(4), 907–912. https://doi.org/10.1177/1557988317752608 (2018).
doi: 10.1177/1557988317752608 pubmed: 29320903 pmcid: 6131459
Long, Y., Chen, Q., Larsson, H. & Rzhetsky, A. Observable variations in human sex ratio at birth. PLoS Comput. Biol. 17(12), e1009586. https://doi.org/10.1371/journal.pcbi.1009586 (2021).
doi: 10.1371/journal.pcbi.1009586 pubmed: 34855745 pmcid: 8638995
Gebreegziabher, E. et al. Influence of maternal age on birth and infant outcomes at 6 months: A cohort study with quantitative bias analysis. Int. J. Epidemiol. 2(2), 414–425. https://doi.org/10.1093/ije/dyac236 (2023).
doi: 10.1093/ije/dyac236
Central Statistical Office of Poland https://bip.stat.gov.pl/files/gfx/bip/pl/defaultstronaopisowa/1568/1/1/13._podkarpackie.pdf (2019).
Central Statistical Office of Poland 2020: TABL. II. Ludność, ruch naturalny oraz migracje ludności według powiatów w pierwszym półroczu 2020r. https://stat.gov.pl/obszary-tematyczne/ludnosc/ludnosc/ludnosc-stan-i-struktura-ludnosci-oraz-ruch-naturalny-w-przekroju-terytorialnym-stan-w-dniu-30-06-2020,6,28.html (2020).
CIEP Chief Inspectorate for Environmental Protection, https://powietrze.gios.gov.pl/pjp/archives (2023).
Austad, S. N. The human prenatal sex ratio: A major surprise. Proc. Natl. Acad. Sci. U. S. A. 112(16), 4839–4840. https://doi.org/10.1073/pnas.1505165112 (2015).
doi: 10.1073/pnas.1505165112 pubmed: 25848060 pmcid: 4413335
Garcı́a-Enguı́danos, A., Calle, M. E., Valero, J., Luna, S. & Domı́nguez-Rojas V. Risk factors in miscarriage: A review. Eur. J. Obstet. Gynecol. Reprod. Biol. 102(2), 111–119. https://doi.org/10.1016/S0301-2115(01)00613-3 (2002).
Quenby, S. et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss. Lancet 397(10285), 1658–1667. https://doi.org/10.1016/S0140-6736(21)00682-6 (2021).
doi: 10.1016/S0140-6736(21)00682-6 pubmed: 33915094
Wyatt, P. R., Owolabi, T., Meier, C. & Huang, T. Age-specific risk of fetal loss observed in a second trimester serum screening population. Am. J. Obstet. Gynecol. 192(1), 240–246. https://doi.org/10.1016/j.ajog.2004.06.099 (2005).
doi: 10.1016/j.ajog.2004.06.099 pubmed: 15672031
Doubilet, P. M, Benson, C. B, Bourne, T. & Blaivas M. Society of Radiologists in ultrasound multispecialty panel on early first trimester diagnosis of miscarriage and exclusion of a viable intrauterine pregnancy; Barnhart, K. T., Benacerraf, B. R., Brown, D. L., Filly, R. A., Fox, J. C., Goldstein, S. R., Kendall, J. L., Lyons, E. A., Porter, M. B., Pretorius, D. H., Timor-Tritsch, I. E. Diagnostic criteria for nonviable pregnancy early in the first trimester. N. Engl. J. Med. 369(15), 1443–1451. https://doi.org/10.1056/NEJMra1302417 (2013).
Kolte, A. M. et al. ESHRE Special Interest Group, Early Pregnancy. Terminology for pregnancy loss prior to viability: A consensus statement from the ESHRE early pregnancy special interest group. Hum. Reprod. 30(3), 495–498. https://doi.org/10.1093/humrep/deu299 (2015).
doi: 10.1093/humrep/deu299 pubmed: 25376455
McPherson, E. Recurrence of stillbirth and second trimester pregnancy loss. Am. J. Med. Genet. A 170A(5), 1174–1180. https://doi.org/10.1002/ajmg.a.37606 (2016).
doi: 10.1002/ajmg.a.37606 pubmed: 26945668
Gielen, M. et al. Secular trends in gestational age and birthweight in twins. Hum. Reprod. 25, 2346–2353. https://doi.org/10.1093/humrep/deq160 (2010).
doi: 10.1093/humrep/deq160 pubmed: 20601680
Wandel, L. et al. Mode of birth in monochorionic versus dichorionic twin pregnancies: A retrospective study from a large tertiary centre in Germany. BMC Pregnancy Childbirth 22(1), 214. https://doi.org/10.1186/s12884-022-04531-3 (2022).
doi: 10.1186/s12884-022-04531-3 pubmed: 35300616 pmcid: 8932227
Qin, J. B., Wang, H., Sheng, X., Xie, Q. & Gao, S. Assisted reproductive technology and risk of adverse obstetric outcomes in dichorionic twin pregnancies: A systematic review and meta-analysis. Fertil. Steril. 105(5), 1180–1192. https://doi.org/10.1016/j.fertnstert.2015.12.131 (2016).
doi: 10.1016/j.fertnstert.2015.12.131 pubmed: 26801066
Monden, C. W. S. & Smits, J. Mortality among twins and singletons in sub-Saharan Africa between 1995 and 2014: A pooled analysis of data from 90 Demographic and Health Surveys in 30 countries. Lancet Glob. Health 5(7), e673–e679. https://doi.org/10.1016/S2214-109X(17)30197-3 (2017).
doi: 10.1016/S2214-109X(17)30197-3 pubmed: 28578941
Epstein, F. H. & Karumanchi, S. A. Twin pregnancy and the risk of preeclampsia: Bigger placenta or relative ischemia?. Am. J. Obstet. Gynecol. 198(428), e1-6. https://doi.org/10.1016/j.ajog.2007.10.783 (2008).
doi: 10.1016/j.ajog.2007.10.783
Bdolah, Y. et al. Estimation and probabilistic projection of levels and trends in the sex ratio at birth in seven provinces of Nepal from 1980 to 2050: A Bayesian modeling approach. BMC Public Health 22, 358. https://doi.org/10.1186/s12889-022-12693-0 (2022).
doi: 10.1186/s12889-022-12693-0
Li, P., Jiang, Y., Xie, M. & You, Y. Factors associated with intrahepatic cholestasis of pregnancy and its influence on maternal and infant outcomes. Medicine 102(1), e32586. https://doi.org/10.1097/MD.0000000000032586 (2023).
doi: 10.1097/MD.0000000000032586 pubmed: 36607861 pmcid: 9829298
Tingleff, T. et al. Different pathways for preterm birth between singleton and twin pregnancies: A population-based registry study of 481 176 nulliparous women. BJOG 130(4), 387–395. https://doi.org/10.1111/1471-0528.17344 (2023).
doi: 10.1111/1471-0528.17344 pubmed: 36372962
Chen, M. The sex ratio of singleton and twin delivery offspring in assisted reproductive technology in China. Sci. Rep. 7(1), 7754. https://doi.org/10.1038/s41598-017-06152-9 (2017).
doi: 10.1038/s41598-017-06152-9 pubmed: 28839144 pmcid: 5570918
Tamimi, R. M. et al. Average energy intake among pregnant women carrying a boy compared with a girl. BMJ 326(7401), 1245–1246. https://doi.org/10.1136/bmj.326.7401.1245 (2003).
doi: 10.1136/bmj.326.7401.1245 pubmed: 12791740 pmcid: 161555
Pirkle, C. M. et al. Early maternal age at first birth is associated with chronic diseases and poor physical performance in older age: Cross-sectional analysis from the International Mobility in Aging Study. BMC Public Health 14, 293. https://doi.org/10.1186/1471-2458-14-293 (2014).
doi: 10.1186/1471-2458-14-293 pubmed: 24684705 pmcid: 3977880
Rosenfeld, C. S. & Roberts, R. M. Maternal diet and other factors affecting offspring sex ratio: A review. Biol. Reprod. 71(4), 1063–1070. https://doi.org/10.1095/biolreprod.104.030890 (2004).
doi: 10.1095/biolreprod.104.030890 pubmed: 15229140
Smits, L. J., de Bie, R. A., Essed, G. G. & van den Brandt, P. A. Time to pregnancy and sex of offspring: Cohort study. BMJ 331(7530), 1437–1438. https://doi.org/10.1136/bmj.331.7530.1437 (2005).
doi: 10.1136/bmj.331.7530.1437 pubmed: 16356978 pmcid: 1315646
Bonde, J. P. & Wilcox, A. Ratio of boys to girls at birth. BMJ. 334(7592), 486–487. https://doi.org/10.1136/bmj.39141.622917.80 (2007).
doi: 10.1136/bmj.39141.622917.80 pubmed: 17347191 pmcid: 1819522
Joffe, M., Bennett, J., Best, N. & Jensen, T. K. Sex ratio and time to pregnancy: Analysis of four large European population surveys. BMJ 334(7592), 524. https://doi.org/10.1136/bmj.39097.508426.BE (2007).
doi: 10.1136/bmj.39097.508426.BE pubmed: 17277014 pmcid: 1819486
Rapaport, T., Villaseñor, F. A., Altman, R. M. & Nepomnaschy, P. A. Sex ratio and maternal age in a natural fertility, subsistence population: Daughters, sons, daughters. Am. J. Phys. Anthropol. 169(2), 368–376. https://doi.org/10.1002/ajpa.23838 (2019).
doi: 10.1002/ajpa.23838 pubmed: 30993674
Barclay, K. & Myrskylä, M. Advanced maternal age and offspring outcomes: Reproductive aging and counterbalancing period trends. Popul. Dev. Rev. 42(1), 69–94. https://doi.org/10.1111/j.1728-4457.2016.00105.x (2016).
doi: 10.1111/j.1728-4457.2016.00105.x
Gravio, Di. et al. The association of maternal age with fetal growth and newborn measures: The Mumbai Maternal Nutrition Project (MMNP). Reprod. Sci. 26(7), 918–927. https://doi.org/10.1177/1933719118799202 (2019).
doi: 10.1177/1933719118799202 pubmed: 30419799
Chahnazarian, A. Determinants of the sex ratio at birth: Review of recent literature. Soc. Biol. 35(3–4), 214–235. https://doi.org/10.1080/19485565.1988.9988703 (1988).
doi: 10.1080/19485565.1988.9988703 pubmed: 3071849
Song, S. Malnutrition, sex ratio, and selection: A study based on the great leap forward famine. Hum. Nat. 25(4), 580–595. https://doi.org/10.1007/s12110-014-9208-1 (2014).
doi: 10.1007/s12110-014-9208-1 pubmed: 25129431
Javed, R. & Mughal, M. Changing patterns of son preference and fertility in Pakistan. J. Int. Dev. 34(6), 1086–1109. https://doi.org/10.1002/jid.3618 (2022).
doi: 10.1002/jid.3618
Pörtner, C. C. birth spacing and fertility in the presence of son preference and sex-selective abortions: India’s experience over four decades. Demography 59(1), 61–88. https://doi.org/10.1215/00703370-9580703 (2022).
doi: 10.1215/00703370-9580703 pubmed: 34779484
Xu, T. et al. Association of interpregnancy interval with adverse birth outcomes. JAMA 5(6), e2216658. https://doi.org/10.1001/jamanetworkopen.2022.16658 (2022).
doi: 10.1001/jamanetworkopen.2022.16658
Roenneberg, T. & Aschoff, J. Annual rhythm of human reproduction: I. Biology, sociology, or both?. J. Biol. Rhythm. 5, 195–216. https://doi.org/10.1177/074873049000500303 (1990).
doi: 10.1177/074873049000500303
Huber, S., Fieder, M., Wallner, B., Iber, K. & Moser, G. Season of birth effects on reproduction in contemporary humans. Hum. Reprod. 19, 445–447. https://doi.org/10.1093/humrep/deh072 (2004).
doi: 10.1093/humrep/deh072 pubmed: 14747195
Wallner, B., Huber, S., Mitterauer, L., Pavlova, B. & Fieder, M. Academic mothers have a pronounced seasonal variation in their offspring sex ratio. Neuro Endocrinol. Lett. 26(6), 759–762 (2005).
pubmed: 16380678
Kirkpatric, B., Messias, E. & LaPorte, D. Schizoid-like features and season of birth in a nonpatient sample. Schizophr. Res. 103(1–3), 151–155. https://doi.org/10.1016/j.schres.2007.12.479 (2008).
doi: 10.1016/j.schres.2007.12.479
Purdue-Smithe, A. C. The role of maternal preconception vitamin D status in human offspring sex ratio. Nat. Commun. 12(1), 2789. https://doi.org/10.1038/s41467-021-23083-2 (2021).
doi: 10.1038/s41467-021-23083-2 pubmed: 33986298 pmcid: 8119683
Mocarelli, P., Brambilla, P., Gerthoux, P. M., Patterson, D. G. Jr. & Needham, L. L. Change in sex ratio with exposure to dioxin. Lancet 348, 409. https://doi.org/10.1016/S0140-6736(05)65030-1 (1996).
doi: 10.1016/S0140-6736(05)65030-1 pubmed: 8709758
Garry, V. F., Harkins, M., Lyubimov, A., Erickson, L. & Long, L. Reproductive outcomes in the women of the Red River Valley of the north. I. The spouses of pesticide applicators: Pregnancy loss, age at menarche, and exposures to pesticides. J. Toxicol. Environ. Health A 65, 769–786. https://doi.org/10.1080/00984100290071333 (2002).
doi: 10.1080/00984100290071333 pubmed: 12079613
Miraglia, S. G. E. K., Veras, M. M., Amato-Lourenço, L. F., Rodrigues-Silva, F. & Saldiva, P. H. N. Follow-up of the air pollution and the human male-to-female ratio analysis in Sao Paulo, Brazil: A times series study. BMJ Open 3(7), e002552. https://doi.org/10.1136/bmjopen-2013-002552 (2013).
doi: 10.1136/bmjopen-2013-002552 pubmed: 23892420 pmcid: 3731748
Van Larebeke, N. A. et al. Sex ratio changes as sentinel health events of endocrine disruption. Int. J. Occup. Environ. Health 14(2), 138–143. https://doi.org/10.1179/oeh.2008.14.2.138 (2008).
doi: 10.1179/oeh.2008.14.2.138 pubmed: 18507291
Schacht, R., Tharo, D. & Smith, K. R. Sex ratios at birth vary with environmental harshness but not maternal condition. Sci. Rep. 9(1), 9066. https://doi.org/10.1038/s41598-019-45316-7 (2019).
doi: 10.1038/s41598-019-45316-7 pubmed: 31227750 pmcid: 6588635
Douhard, M. & Dray, S. Are human natal sex ratio differences across the world adaptive? A test of Fisher’s principle. Biol. Lett. 17(3), 20200620. https://doi.org/10.1098/rsbl.2020.0620 (2021).
doi: 10.1098/rsbl.2020.0620 pubmed: 33726565 pmcid: 8086949

Auteurs

Joanna Nieczuja-Dwojacka (J)

Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938, Warsaw, Poland. j.nieczuja@uksw.edu.pl.

Justyna Marchewka-Długońska (J)

Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938, Warsaw, Poland.

Alicja Budnik (A)

Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938, Warsaw, Poland.

Patryk Wojtowicz (P)

Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, 01-938, Warsaw, Poland.

Bogdan Giemza (B)

John Paul II Podkarpackie Province Hospital in Krosno, 38-400, Krosno, Poland.

Bożena Skrzypczyk (B)

John Paul II Podkarpackie Province Hospital in Krosno, 38-400, Krosno, Poland.

Aneta Zvarik (A)

John Paul II Podkarpackie Province Hospital in Krosno, 38-400, Krosno, Poland.

Classifications MeSH