Increased SARS-CoV-2 reactive low avidity T cells producing inflammatory cytokines in pediatric post-acute COVID-19 sequelae (PASC).
T cells
long COVID
neutralizing antibodies
pediatric PASC
Journal
Pediatric allergy and immunology : official publication of the European Society of Pediatric Allergy and Immunology
ISSN: 1399-3038
Titre abrégé: Pediatr Allergy Immunol
Pays: England
ID NLM: 9106718
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
revised:
13
11
2023
received:
22
07
2023
accepted:
29
11
2023
medline:
26
12
2023
pubmed:
26
12
2023
entrez:
26
12
2023
Statut:
ppublish
Résumé
A proportion of the convalescent SARS-CoV-2 pediatric population presents nonspecific symptoms, mental health problems, and a reduction in quality of life similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID-19 symptomatic. However, data regarding its clinical manifestation and immune mechanisms are currently scarce. In this study, we perform a comprehensive clinical and immunological profiling of 17 convalescent COVID-19 children with post-acute COVID-19 sequelae (PASC) manifestation and 13 convalescent children without PASC manifestation. A detailed medical history, blood and instrumental tests, and physical examination were obtained from all patients. SARS-CoV-2 reactive T-cell response was analyzed via multiparametric flow cytometry and the humoral immunity was addressed via pseudovirus neutralization and ELISA assay. The most common PASC symptoms were shortness of breath/exercise intolerance, paresthesia, smell/taste disturbance, chest pain, dyspnea, headache, and lack of concentration. Blood count and clinical chemistry showed no statistical differences among the study groups. We detected higher frequencies of spike (S) reactive CD4 Our data might indicate a possible involvement of a persistent cellular inflammatory response triggered by SARS-CoV-2 in the development of the observed sequelae in pediatric PASC. These results may have implications on future therapeutic and prevention strategies.
Sections du résumé
BACKGROUND
BACKGROUND
A proportion of the convalescent SARS-CoV-2 pediatric population presents nonspecific symptoms, mental health problems, and a reduction in quality of life similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID-19 symptomatic. However, data regarding its clinical manifestation and immune mechanisms are currently scarce.
METHODS
METHODS
In this study, we perform a comprehensive clinical and immunological profiling of 17 convalescent COVID-19 children with post-acute COVID-19 sequelae (PASC) manifestation and 13 convalescent children without PASC manifestation. A detailed medical history, blood and instrumental tests, and physical examination were obtained from all patients. SARS-CoV-2 reactive T-cell response was analyzed via multiparametric flow cytometry and the humoral immunity was addressed via pseudovirus neutralization and ELISA assay.
RESULTS
RESULTS
The most common PASC symptoms were shortness of breath/exercise intolerance, paresthesia, smell/taste disturbance, chest pain, dyspnea, headache, and lack of concentration. Blood count and clinical chemistry showed no statistical differences among the study groups. We detected higher frequencies of spike (S) reactive CD4
CONCLUSIONS
CONCLUSIONS
Our data might indicate a possible involvement of a persistent cellular inflammatory response triggered by SARS-CoV-2 in the development of the observed sequelae in pediatric PASC. These results may have implications on future therapeutic and prevention strategies.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e14060Informations de copyright
© 2023 The Authors. Pediatric Allergy and Immunology published by European Academy of Allergy and Clinical Immunology and John Wiley & Sons Ltd.
Références
Fainardi V, Meoli A, Chiopris G, et al. Long COVID in children and adolescents. Life. 2022;12(2):285. doi:10.3390/life12020285
Mehta NS, Mytton OT, Mullins EWS, et al. SARS-CoV-2 (COVID-19): what do we know about children? A systematic review. Clin Infect Dis. 2020;71:2469-2479. doi:10.1093/cid/ciaa556
Fialkowski A, Gernez Y, Arya P, Weinacht KG, Kinane TB, Yonker LM. Insight into the pediatric and adult dichotomy of COVID-19: age-related differences in the immune response to SARS-CoV-2 infection. Pediatr Pulmonol. 2020;55(10):2556-2564. doi:10.1002/ppul.24981
Consiglio CR, Cotugno N, Sardh F, et al. The immunology of multisystem inflammatory syndrome in children with COVID-19. Cell. 2020;183(4):968-981.e7. doi:10.1016/j.cell.2020.09.016
Bogunovic D, Merad M. Children and SARS-CoV-2. Cell Host Microbe. 2021;29:1040-1042. doi:10.1016/j.chom.2021.06.015
Sorg AL, Becht S, Jank M, et al. Association of SARS-CoV-2 seropositivity with myalgic encephalomyelitis and/or chronic fatigue syndrome among children and adolescents in Germany. JAMA Netw Open. 2022;5(9):e2233454. doi:10.1001/jamanetworkopen.2022.33454
Borch L, Holm M, Knudsen M, Ellermann-Eriksen S, Hagstroem S. Long COVID symptoms and duration in SARS-CoV-2 positive children - a nationwide cohort study. Eur J Pediatr. 2022;181(4):1597-1607. doi:10.1007/s00431-021-04345-z
Leftin Dobkin SC, Collaco JM, McGrath-Morrow SA. Protracted respiratory findings in children post-SARS-CoV-2 infection. Pediatr Pulmonol. 2021;56(12):3682-3687. doi:10.1002/ppul.25671
Ortona E, Malorni W. Long COVID: to investigate immunological mechanisms and sex/gender related aspects as fundamental steps for tailored therapy. Eur Respir J. 2022;59(2):2102245. doi:10.1183/13993003.02245-2021
Rao S, Lee GM, Razzaghi H, et al. Clinical features and burden of postacute sequelae of SARS-CoV-2 infection in children and adolescents. JAMA Pediatr. 2022;176(10):1000-1009. doi:10.1001/jamapediatrics.2022.2800
Lopez-Leon S, Wegman-Ostrosky T, Ayuzo del Valle NC, et al. Long-COVID in children and adolescents: a systematic review and meta-analyses. Sci Rep. 2022;12(1):9950. doi:10.1038/s41598-022-13495-5
Kikkenborg Berg S, Palm P, Nygaard U, et al. Long COVID symptoms in SARS-CoV-2-positive children aged 0-14 years and matched controls in Denmark (LongCOVIDKidsDK): a national, cross-sectional study. Lancet Child Adolesc Health. 2022;6(9):614-623. doi:10.1016/S2352-4642(22)00154-7
Michelen M, Manoharan L, Elkheir N, et al. Characterising long COVID: a living systematic review. BMJ Glob Health. 2021;6(9):e005427. doi:10.1136/bmjgh-2021-005427
Funk AL, Kuppermann N, Florin TA, et al. Post-COVID-19 conditions among children 90 days after sars-cov-2 infection. JAMA Netw Open. 2022;5(7):e2223253. doi:10.1001/jamanetworkopen.2022.23253
Su Y, Yuan D, Chen DG, et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell. 2022;185(5):881-895.e20. doi:10.1016/j.cell.2022.01.014
Grandjean L, Saso A, Torres Ortiz A, et al. Long-term persistence of spike protein antibody and predictive modeling of antibody dynamics after infection with severe acute respiratory syndrome coronavirus 2. Clin Infect Dis. 2022;74(7):1220-1229. doi:10.1093/cid/ciab607
Choutka J, Jansari V, Hornig M, Iwasaki A. Unexplained post-acute infection syndromes. Nat Med. 2022;28(5):911-923. doi:10.1038/s41591-022-01810-6
Koczulla A, Ankermann T, Behrends U, et al. S1-Leitlinie Post-COVID/Long-COVID. Pneumologie. 2021;75(11):869-900. doi:10.1055/a-1551-9734
Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021;9(2):129. doi:10.1016/S2213-2600(21)00031-X
Brasseler M, Schönecker A, Steindor M, et al. Development of restrictive eating disorders in children and adolescents with long-COVID-associated smell and taste dysfunction. Front Pediatr. 2022;10:1022669. doi:10.3389/fped.2022.1022669
Thieme CJ, Anft M, Paniskaki K, et al. Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 proteins is not associated with recovery in critical COVID-19 patients. Cell Rep Med. 2020;1(6):100092. doi:10.1016/j.xcrm.2020.100092
Paniskaki K, Anft M, Meister TL, et al. Immune response in moderate to critical breakthrough COVID-19 infection after mRNA vaccination. Front Immunol. 2022;13:816220. doi:10.3389/fimmu.2022.816220
Anft M, Paniskaki K, Blazquez-Navarro A, et al. COVID-19-induced ARDS is associated with decreased frequency of activated memory/effector T cells expressing CD11a++. Mol Ther. 2020;28(12):2691-2702. doi:10.1016/j.ymthe.2020.10.001
Bacher P, Rosati E, Esser D, et al. Low-avidity CD4+ T cell responses to SARS-CoV-2 in unexposed individuals and humans with severe COVID-19. Immunity. 2020;53(6):1258-1271.e5. doi:10.1016/j.immuni.2020.11.016
Loyal L, Braun J, Henze L, et al. Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science. 2021;374:eabh1823. doi:10.1126/science.abh1823
Paniskaki K, Konik MJ, Anft M, et al. Superior humoral immunity in vaccinated SARS-CoV-2 convalescence as compared to SARS-COV-2 infection or vaccination. Front Immunol. 2022;13:1031254. doi:10.3389/fimmu.2022.1031254
Kent SJ, Khoury DS, Reynaldi A, et al. Disentangling the relative importance of T cell responses in COVID-19: leading actors or supporting cast? Nat Rev Immunol. 2022;22(6):387-397. doi:10.1038/s41577-022-00716-1
Finlay JB, Brann DH, Abi Hachem R, et al. Persistent post-COVID-19 smell loss is associated with immune cell infiltration and altered gene expression in olfactory epithelium. Sci Transl Med. 2022;14:eadd0484. doi:10.1126/scitranslmed.add0484
Cheon IS, Li C, Son YM, et al. Immune signatures underlying post-acute COVID-19 lung sequelae. Sci Immunol. 2021;6:eabk1741. doi:10.1126/sciimmunol.abk1741
Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210-216. doi:10.1038/s41590-021-01113-x
Littlefield KM, Watson RO, Schneider JM, et al. SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2. PLoS Pathog. 2022;18(5):e1010359. doi:10.1371/journal.ppat.1010359
Lanzer KG, Cookenham T, Reiley WW, Blackman MA. Virtual memory cells make a major contribution to the response of aged influenza-naïve mice to influenza virus infection. Immun Ageing. 2018;15:17. doi:10.1186/s12979-018-0122-y
Wynberg E, Han AX, Boyd A, et al. The effect of SARS-CoV-2 vaccination on post-acute sequelae of COVID-19 (PASC): a prospective cohort study. Vaccine. 2022;40(32):4424-4431. doi:10.1016/j.vaccine.2022.05.090
Deuel JW, Lauria E, Lovey T, et al. Persistence, prevalence, and polymorphism of sequelae after COVID-19 in unvaccinated, young adults of the swiss armed forces: a longitudinal, cohort study (LoCoMo). Lancet Infect Dis. 2022;22(12):1694-1702. doi:10.1016/S1473-3099(22)00449-2
Paniskaki K, Konik MJ, Anft M, et al. Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19. Front Microbiol. 2023;14:1196721. doi:10.3389/fmicb.2023.1196721
Durazo FA, Nicholas AA, Mahaffey JJ, et al. Post-Covid-19 cholangiopathy-a new indication for liver transplantation: a case report. Transplant Proc. 2021;53:1132-1137. doi:10.1016/j.transproceed.2021.03.007
Roth NC, Kim A, Vitkovski T, et al. Post-COVID-19 cholangiopathy: a novel entity. Am J Gastroenterol. 2021;116(5):1077-1082. doi:10.14309/ajg.0000000000001154
Cooper S, Tobar A, Konen O, et al. Long COVID-19 liver manifestation in children. J Pediatr Gastroenterol Nutr. 2022;75(3):244-251. doi:10.1097/MPG.0000000000003521
Acosta-Ampudia Y, Monsalve DM, Rojas M, et al. Persistent autoimmune activation and proinflammatory state in post-coronavirus disease 2019 syndrome. J Infect Dis. 2022;225(12):2155-2162. doi:10.1093/infdis/jiac017
Lee CH, Giuliani F. The role of inflammation in depression and fatigue. Front Immunol. 2019;10:1696. doi:10.3389/fimmu.2019.01696
Klimas NG, Broderick G, Fletcher MA. Biomarkers for chronic fatigue. Brain Behav Immun. 2012;26(8):1202-1210. doi:10.1016/j.bbi.2012.06.006
Raison CL, Lin JMS, Reeves WC. Association of peripheral inflammatory markers with chronic fatigue in a population-based sample. Brain Behav Immun. 2009;23(3):327-337. doi:10.1016/j.bbi.2008.11.005
Pedraz-Petrozzi B, Neumann E, Sammer G. Pro-inflammatory markers and fatigue in patients with depression: a case-control study. Sci Rep. 2020;10(1):9494. doi:10.1038/s41598-020-66532-6
Fernández-Castañeda A, Lu P, Geraghty AC, et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell. 2022;185(14):2452-2468.e16. doi:10.1016/j.cell.2022.06.008
Etter MM, Martins TA, Kulsvehagen L, et al. Severe neuro-COVID is associated with peripheral immune signatures, autoimmunity and neurodegeneration: a prospective cross-sectional study. Nat Commun. 2022;13(1):6777. doi:10.1038/s41467-022-34068-0
Kiho S, Rameen J, Abhiroop C, et al. Circulating anti-nuclear autoantibodies in COVID-19 survivors predict long COVID symptoms. Eur Respir J. 2023;61(1):2200970. doi:10.1183/13993003.00970-2022
Brodin P, Casari G, Townsend L, et al. Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nat Med. 2022;28(5):879-882. doi:10.1038/s41591-022-01766-7
Swank Z, Senussi Y, Manickas-Hill Z, et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin Infect Dis. 2023;76(3):e487-e490. doi:10.1093/cid/ciac722