Visualization of the Dynamics of Photoinduced Crawling Motion of 4-(Methylamino)Azobenzene Crystals via Diffracted X-ray Tracking.
azobenzene
diffracted X-ray tracking
micromanipulation
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
14 Dec 2023
14 Dec 2023
Historique:
received:
31
10
2023
revised:
12
12
2023
accepted:
12
12
2023
medline:
23
12
2023
pubmed:
23
12
2023
entrez:
23
12
2023
Statut:
epublish
Résumé
The photoinduced crawling motion of crystals is a continuous motion that azobenzene molecular crystals exhibit under light irradiation. Such motion enables object manipulation at the microscale with a simple setup of fixed LED light sources. Transportation of nano-/micromaterials using photoinduced crawling motion has recently been reported. However, the details of the motion mechanism have not been revealed so far. Herein, we report visualization of the dynamics of fine particles in 4-(methylamino)azobenzene (4-MAAB) crystals under light irradiation via diffracted X-ray tracking (DXT). Continuously repeated melting and recrystallization of 4-MAAB crystals under light irradiation results in the flow of liquid 4-MAAB. Zinc oxide (ZnO) particles were introduced inside the 4-MAAB crystals to detect diffracted X-rays. The ZnO particles rotate with the flow of liquid 4-MAAB. By using white X-rays with a wide energy width, the rotation of each zinc oxide nanoparticle was detected as the movement of a bright spot in the X-ray diffraction pattern. It was clearly shown that the ZnO particles rotated increasingly as the irradiation light intensity increased. Furthermore, we also found anisotropy in the rotational direction of ZnO particles that occurred during the crawling motion of 4-MAAB crystals. It has become clear that the flow perpendicular to the supporting film of 4-MAAB crystals is enhanced inside the crystal during the crawling motion. DXT provides a unique means to elucidate the mechanism of photoinduced crawling motion of crystals.
Identifiants
pubmed: 38139291
pii: ijms242417462
doi: 10.3390/ijms242417462
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Japan Society for the Promotion of Science
ID : JP21K18860 JP22K14531 JP23H04610
Organisme : Japan Science and Technology Agency
ID : JPMJFS2106