Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins.
Body mass index (BMI)
Changes in BMI
Longitudinal twin study
Metabolome
Multi-omics
Polygenic risk scores
Proteome
Transcriptome
Journal
BMC medicine
ISSN: 1741-7015
Titre abrégé: BMC Med
Pays: England
ID NLM: 101190723
Informations de publication
Date de publication:
21 Dec 2023
21 Dec 2023
Historique:
received:
03
07
2023
accepted:
27
11
2023
medline:
22
12
2023
pubmed:
22
12
2023
entrez:
22
12
2023
Statut:
epublish
Résumé
The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks. We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.
Sections du résumé
BACKGROUND
BACKGROUND
The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers.
METHODS
METHODS
Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks.
RESULTS
RESULTS
We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers.
CONCLUSIONS
CONCLUSIONS
Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.
Identifiants
pubmed: 38129841
doi: 10.1186/s12916-023-03198-7
pii: 10.1186/s12916-023-03198-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
508Informations de copyright
© 2023. The Author(s).
Références
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288–98.
pubmed: 30814686
doi: 10.1038/s41574-019-0176-8
World Obesity Federation, World Obesity Atlas 2023. https://data.worldobesity.org/publications/?cat=19 (2023). Accessed February 2023.
Kivimäki M, Strandberg T, Pentti J, et al. Body-mass index and risk of obesity-related complex multimorbidity: an observational multicohort study. Lancet Diabetes Endocrinol. 2022;10(4):253–63.
pubmed: 35248171
pmcid: 8938400
doi: 10.1016/S2213-8587(22)00033-X
Huang J, Huffman JE, Huang Y, et al. Genomics and phenomics of body mass index reveals a complex disease network. Nat Commun. 2022;13(1):7973.
pubmed: 36581621
pmcid: 9798356
doi: 10.1038/s41467-022-35553-2
Paczkowska-Abdulsalam M, Kretowski A. Obesity, metabolic health and omics: current status and future directions. World J Diabetes. 2021;12(4):420–36.
pubmed: 33889288
pmcid: 8040086
doi: 10.4239/wjd.v12.i4.420
Silventoinen K, Jelenkovic A, Sund R, et al. Differences in genetic and environmental variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis of 40 twin cohorts. Am J Clin Nutr. 2017;106(2):457–66.
pubmed: 28679550
pmcid: 5525120
doi: 10.3945/ajcn.117.153643
Klok MD, Jakobsdottir S, Drent ML. The role of leptin and ghrelin in the regulation of food intake and body weight in humans: a review. Obes Rev. 2007;8(1):21–34.
pubmed: 17212793
doi: 10.1111/j.1467-789X.2006.00270.x
Atalayer D, Gibson C, Konopacka A, Geliebter A. Ghrelin and eating disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2013;40:70–82.
pubmed: 22960103
doi: 10.1016/j.pnpbp.2012.08.011
Masood A, Benabdelkamel H, Alfadda AA. Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity. High Throughput. 2018;7(3):27.
pubmed: 30213114
pmcid: 6164994
doi: 10.3390/ht7030027
Bao X, Xu B, Yin S, et al. Proteomic Profiles of Body Mass Index and Waist-to-Hip Ratio and Their Role in Incidence of Diabetes. J Clin Endocrinol Metab. 2022;107(7):e2982–90.
pubmed: 35294966
pmcid: 9202718
doi: 10.1210/clinem/dgac140
Goudswaard LJ, Bell JA, Hughes DA, et al. Effects of adiposity on the human plasma proteome: observational and Mendelian randomisation estimates. Int J Obes (Lond). 2021;45(10):2221–9.
pubmed: 34226637
doi: 10.1038/s41366-021-00896-1
Zaghlool SB, Sharma S, Molnar M, et al. Revealing the role of the human blood plasma proteome in obesity using genetic drivers. Nat Commun. 2021;12(1):1279.
pubmed: 33627659
pmcid: 7904950
doi: 10.1038/s41467-021-21542-4
Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-omics integration in complex disease primary tissues. Trends Genet. 2023;39(1):46–58.
pubmed: 36137835
doi: 10.1016/j.tig.2022.08.005
Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.
pubmed: 28476144
pmcid: 5418815
doi: 10.1186/s13059-017-1215-1
Zhang Q, Meng XH, Qiu C, et al. Integrative analysis of multi-omics data to detect the underlying molecular mechanisms for obesity in vivo in humans. Hum Genomics. 2022;16(1):15.
pubmed: 35568907
pmcid: 9107154
doi: 10.1186/s40246-022-00388-x
Wahl S, Vogt S, Stückler F, et al. Multi-omic signature of body weight change: results from a population-based cohort study. BMC Med. 2015;13:48.
pubmed: 25857605
pmcid: 4367822
doi: 10.1186/s12916-015-0282-y
Pietiläinen KH, Sysi-Aho M, Rissanen A, et al. Acquired obesity is associated with changes in the serum lipidomic profile independent of genetic effects–a monozygotic twin study. PLoS ONE. 2007;2(2): e218.
pubmed: 17299598
pmcid: 1789242
doi: 10.1371/journal.pone.0000218
Watanabe K, Wilmanski T, Diener C, et al. Multiomic signatures of body mass index identify heterogeneous health phenotypes and responses to a lifestyle intervention. Nat Med. 2023. https://doi.org/10.1038/s41591-023-02248-0 .
doi: 10.1038/s41591-023-02248-0
pubmed: 36941332
pmcid: 10115644
Piening BD, Zhou W, Contrepois K, et al. Integrative Personal Omics Profiles during Periods of Weight Gain and Loss. Cell Syst. 2018;6(2):157-170.e8.
pubmed: 29361466
pmcid: 6021558
doi: 10.1016/j.cels.2017.12.013
Lapatto HAK, Kuusela M, Heikkinen A, et al. Nicotinamide riboside improves muscle mitochondrial biogenesis, satellite cell differentiation, and gut microbiota in a twin study. Sci Adv. 2023;9(2):eadd5163.
pubmed: 36638183
pmcid: 9839336
doi: 10.1126/sciadv.add5163
Gallego-Paüls M, Hernández-Ferrer C, Bustamante M, et al. Variability of multi-omics profiles in a population-based child cohort. BMC Med. 2021;19(1):166.
pubmed: 34289836
pmcid: 8296694
doi: 10.1186/s12916-021-02027-z
Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17(2):95–107.
pubmed: 26696565
doi: 10.1111/obr.12334
Figarska SM, Rigdon J, Ganna A, et al. Proteomic profiles before and during weight loss: Results from randomized trial of dietary intervention. Sci Rep. 2020;10(1):7913.
pubmed: 32404980
pmcid: 7220904
doi: 10.1038/s41598-020-64636-7
Lind L, Figarska S, Sundström J, Fall T, Ärnlöv J, Ingelsson E. Changes in Proteomic Profiles are Related to Changes in BMI and Fat Distribution During 10 Years of Aging. Obesity (Silver Spring). 2020;28(1):178–86.
pubmed: 31804015
doi: 10.1002/oby.22660
Geyer PE, Wewer Albrechtsen NJ, Tyanova S, et al. Proteomics reveals the effects of sustained weight loss on the human plasma proteome. Mol Syst Biol. 2016;12(12):901.
pubmed: 28007936
pmcid: 5199119
doi: 10.15252/msb.20167357
Carayol J, Chabert C, Di Cara A, et al. Protein quantitative trait locus study in obesity during weight-loss identifies a leptin regulator. Nat Commun. 2017;8(1):2084.
pubmed: 29234017
pmcid: 5727191
doi: 10.1038/s41467-017-02182-z
Vijay A, Valdes AM. The Metabolomic Signatures of Weight Change. Metabolites. 2019;9(4):67.
pubmed: 30987392
pmcid: 6523676
doi: 10.3390/metabo9040067
Wahl S, Yu Z, Kleber M, et al. Childhood obesity is associated with changes in the serum metabolite profile. Obes Facts. 2012;5(5):660–70.
pubmed: 23108202
doi: 10.1159/000343204
Freedman DS, Wang J, Maynard LM, et al. Relation of BMI to fat and fat-free mass among children and adolescents. Int J Obes (Lond). 2005;29(1):1–8. https://doi.org/10.1038/sj.ijo.0802735 .
doi: 10.1038/sj.ijo.0802735
pubmed: 15278104
Kaprio J. Twin studies in Finland 2006. Twin Res Hum Genet. 2006;9(6):772–7.
pubmed: 17254406
doi: 10.1375/twin.9.6.772
Rose RJ, Salvatore JE, Aaltonen S, Barr PB, Bogl LH, Byers HA, et al. FinnTwin12 Cohort: An Updated Review. Twin Res Hum Genet. 2019;22(5):302–11.
pubmed: 31640839
pmcid: 7108792
doi: 10.1017/thg.2019.83
Ligthart L, van Beijsterveldt CEM, Kevenaar ST, et al. The Netherlands Twin Register: Longitudinal Research Based on Twin and Twin-Family Designs. Twin Res Hum Genet. 2019;22(6):623–36.
pubmed: 31666148
doi: 10.1017/thg.2019.93
Willemsen G, de Geus EJ, Bartels M, et al. The Netherlands Twin Register biobank: a resource for genetic epidemiological studies. Twin Res Hum Genet. 2010;13(3):231–45.
pubmed: 20477721
doi: 10.1375/twin.13.3.231
Aleksei Afonin, Aino-Kaisa Piironen, Izaque de Sousa Maciel, et al. Proteomic insights into mental health status: plasma markers in young adults. bioRxiv 2023.06.07.544039. https://doi.org/10.1101/2023.06.07.544039
Callister SJ, Barry RC, Adkins JN, et al. Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. J Proteome Res. 2006;5(2):277–86.
pubmed: 16457593
pmcid: 1992440
doi: 10.1021/pr050300l
Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28(6):882–3.
pubmed: 22257669
pmcid: 3307112
doi: 10.1093/bioinformatics/bts034
Jansen R, Batista S, Brooks AI, et al. Sex differences in the human peripheral blood transcriptome. BMC Genomics. 2014;15:33.
pubmed: 24438232
pmcid: 3904696
doi: 10.1186/1471-2164-15-33
Wright FA, Sullivan PF, Brooks AI, et al. Heritability and genomics of gene expression in peripheral blood. Nat Genet. 2014;46(5):430–7.
pubmed: 24728292
pmcid: 4012342
doi: 10.1038/ng.2951
Vink JM, Jansen R, Brooks A, et al. Differential gene expression patterns between smokers and non-smokers: cause or consequence? Addict Biol. 2017;22(2):550–60.
pubmed: 26594007
doi: 10.1111/adb.12322
Würtz P, Kangas AJ, Soininen P, Lawlor DA, Davey Smith G, Ala-Korpela M. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic Technologies. Am J Epidemiol. 2017;186(9):1084–96.
pubmed: 29106475
pmcid: 5860146
doi: 10.1093/aje/kwx016
Soininen P, Kangas AJ, Würtz P, Suna T, Ala-Korpela M. Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet. 2015;8(1):192–206.
pubmed: 25691689
doi: 10.1161/CIRCGENETICS.114.000216
Whipp AM, Heinonen-Guzejev M, Pietiläinen KH, van Kamp I, Kaprio J. Branched-chain amino acids linked to depression in young adults. Front Neurosci. 2022;16:935858.
pubmed: 36248643
pmcid: 9561956
doi: 10.3389/fnins.2022.935858
Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.
pubmed: 4337382
doi: 10.1093/clinchem/18.6.499
Hagenbeek FA, Pool R, van Dongen J, et al. Heritability estimates for 361 blood metabolites across 40 genome-wide association studies. Nat Commun. 2020;11(1):39.
pubmed: 31911595
pmcid: 6946682
doi: 10.1038/s41467-019-13770-6
Kujala UM, Palviainen T, Pesonen P, et al. Polygenic Risk Scores and Physical Activity. Med Sci Sports Exerc. 2020;52(7):1518–24.
pubmed: 32049886
pmcid: 7292502
doi: 10.1249/MSS.0000000000002290
Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–9.
pubmed: 30124842
pmcid: 6488973
doi: 10.1093/hmg/ddy271
Pulit SL, Stoneman C, Morris AP, et al. Meta-analysis of genome-wide association studies for body fat distribution in 694 649 individuals of European ancestry. Hum Mol Genet. 2019;28(1):166–74.
pubmed: 30239722
doi: 10.1093/hmg/ddy327
Nikpay M, Goel A, Won HH, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30.
pubmed: 26343387
pmcid: 4589895
doi: 10.1038/ng.3396
Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38(8):904–9.
pubmed: 16862161
doi: 10.1038/ng1847
Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–75.
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Auton A, Brooks LD, 1000 Genomes Project Consortium, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74.
pubmed: 26432245
doi: 10.1038/nature15393
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, Chen WM. Robust relationship inference in genome-wide association studies. Bioinformatics. 2010;26(22):2867–73.
pubmed: 20926424
pmcid: 3025716
doi: 10.1093/bioinformatics/btq559
Loh PR, Palamara PF, Price AL. Fast and accurate long-range phasing in a UK Biobank cohort. Nat Genet. 2016;48(7):811–6.
pubmed: 27270109
pmcid: 4925291
doi: 10.1038/ng.3571
Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for thousands of genomes. Nat Methods. 2011;9(2):179–81.
pubmed: 22138821
doi: 10.1038/nmeth.1785
Das S, Forer L, Schönherr S, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48(10):1284–7.
pubmed: 27571263
pmcid: 5157836
doi: 10.1038/ng.3656
Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics. 2016;32(11):1749–51.
pubmed: 26826718
pmcid: 4892413
doi: 10.1093/bioinformatics/btw044
Vilhjálmsson BJ, Yang J, Finucane HK, et al. Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores. Am J Hum Genet. 2015;97(4):576–92.
pubmed: 26430803
pmcid: 4596916
doi: 10.1016/j.ajhg.2015.09.001
Rosseel Y. lavaan: An R Package for Structural Equation Modeling. J Stat Softw. 2012;48(2):1–36.
doi: 10.18637/jss.v048.i02
Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct Equ Model. 1999;6:1–55.
doi: 10.1080/10705519909540118
Xia Y, Yang Y. RMSEA, CFI, and TLI in structural equation modeling with ordered categorical data: The story they tell depends on the estimation methods. Behav Res Methods. 2019;51(1):409–28.
pubmed: 29869222
doi: 10.3758/s13428-018-1055-2
Peterson CM, Su H, Thomas DM, et al. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 2017;171(7):629–36.
pubmed: 28505241
pmcid: 5710345
doi: 10.1001/jamapediatrics.2017.0460
Gul Siraz U, Hatipoglu N, Mazicioglu MM, Ozturk A, Cicek B, Kurtoglu S. Triponderal mass index is as strong as body mass index in the determination of obesity and adiposity. Nutrition. 2023;105: 111846.
pubmed: 36265325
doi: 10.1016/j.nut.2022.111846
Bramante CT, Palzer EF, Rudser KD, et al. BMI metrics and their association with adiposity, cardiometabolic risk factors, and biomarkers in children and adolescents. Int J Obes (Lond). 2022;46(2):359–65.
pubmed: 34718333
doi: 10.1038/s41366-021-01006-x
Kuznetsova A, Brockhoff PB, Christensen RHB. lmerTest Package: Tests in Linear Mixed Effects Models. J Stat Softw. 2017;82(13):1–26.
doi: 10.18637/jss.v082.i13
Posthuma D, Beem AL, de Geus EJ, et al. Theory and practice in quantitative genetics. Twin Res. 2003;6(5):361–76.
pubmed: 14624720
doi: 10.1375/136905203770326367
Boomsma D, Busjahn A, Peltonen L. Classical twin studies and beyond. Nat Rev Genet. 2002;3(11):872–82.
pubmed: 12415317
doi: 10.1038/nrg932
Rijsdijk FV, Sham PC. Analytic approaches to twin data using structural equation models. Brief Bioinform. 2002;3(2):119–33. https://doi.org/10.1093/bib/3.2.119 .
doi: 10.1093/bib/3.2.119
pubmed: 12139432
Hagenbeek FA, van Dongen J, Pool R, et al. Heritability of Urinary Amines, Organic Acids, and Steroid Hormones in Children. Metabolites. 2022;12(6):474.
pubmed: 35736407
pmcid: 9228478
doi: 10.3390/metabo12060474
Neale MC, Hunter MD, Pritikin JN, et al. OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika. 2016;81(2):535–49.
pubmed: 25622929
doi: 10.1007/s11336-014-9435-8
Pritikin JN, Hunter MD, Boker SM. Modular open-source software for Item Factor Analysis. Educ Psychol Measur. 2015;75(3):458–74.
pubmed: 27065479
doi: 10.1177/0013164414554615
Hunter MD. State Space Modeling in an Open Source, Modular, Structural Equation Modeling Environment. Struct Equ Model. 2018;25(2):307–24.
doi: 10.1080/10705511.2017.1369354
Boker SM, Neale MC, Maes HH, et al. OpenMx 2.21.1 User Guide. 2023.
Verhulst B, Prom-Wormley E, Keller M, Medland S, Neale MC. Type I Error Rates and Parameter Bias in Multivariate Behavioral Genetic Models. Behav Genet. 2019;49(1):99–111.
pubmed: 30569348
doi: 10.1007/s10519-018-9942-y
Castro-de-Araujo LFS, Singh M, Zhou Y, et al. MR-DoC2: Bidirectional Causal Modeling with Instrumental Variables and Data from Relatives. Behav Genet. 2023;53(1):63–73.
pubmed: 36322200
doi: 10.1007/s10519-022-10122-x
Cominetti O, Núñez Galindo A, Corthésy J, et al. Obesity shows preserved plasma proteome in large independent clinical cohorts. Sci Rep. 2018;8(1):16981.
pubmed: 30451909
pmcid: 6242904
doi: 10.1038/s41598-018-35321-7
Oller Moreno S, Cominetti O, Núñez Galindo A, et al. The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention. Proteomics Clin Appl. 2018;12(1). https://doi.org/10.1002/prca.201600150 .
Mesinovic J, Jansons P, Zengin A, et al. Exercise attenuates bone mineral density loss during diet-induced weight loss in adults with overweight and obesity: A systematic review and meta-analysis. J Sport Health Sci. 2021;10(5):550–9.
pubmed: 34004388
pmcid: 8500851
doi: 10.1016/j.jshs.2021.05.001
Spoel SH. Orchestrating the proteome with post-translational modifications. J Exp Bot. 2018;69(19):4499–503.
pubmed: 30169870
pmcid: 6117579
doi: 10.1093/jxb/ery295
Wu L, Candille SI, Choi Y, et al. Variation and genetic control of protein abundance in humans. Nature. 2013;499(7456):79–82.
pubmed: 23676674
pmcid: 3789121
doi: 10.1038/nature12223
Riuzzi F, Chiappalupi S, Arcuri C, Giambanco I, Sorci G, Donato R. S100 proteins in obesity: liaisons dangereuses. Cell Mol Life Sci. 2020;77(1):129–47.
pubmed: 31363816
doi: 10.1007/s00018-019-03257-4
Catalán V, Gómez-Ambrosi J, Rodríguez A, et al. Increased levels of calprotectin in obesity are related to macrophage content: impact on inflammation and effect of weight loss. Mol Med. 2011;17(11–12):1157–67.
pubmed: 21738950
pmcid: 3321803
doi: 10.2119/molmed.2011.00144
Sekimoto R, Kishida K, Nakatsuji H, Nakagawa T, Funahashi T, Shimomura I. High circulating levels of S100A8/A9 complex (calprotectin) in male Japanese with abdominal adiposity and dysregulated expression of S100A8 and S100A9 in adipose tissues of obese mice. Biochem Biophys Res Commun. 2012;419(4):782–9.
pubmed: 22390934
doi: 10.1016/j.bbrc.2012.02.102
Grand A, Rochette E, Dutheil F, et al. Body Mass Index and Calprotectin Blood Level Correlation in Healthy Children: An Individual Patient Data Meta-Analysis. J Clin Med. 2020;9(3):857.
pubmed: 32245056
pmcid: 7141538
doi: 10.3390/jcm9030857
Chen N, Miao L, Lin W, et al. Integrated DNA Methylation and Gene Expression Analysis Identified S100A8 and S100A9 in the Pathogenesis of Obesity. Front Cardiovasc Med. 2021;8:631650.
pubmed: 34055926
pmcid: 8163519
doi: 10.3389/fcvm.2021.631650
Drouard G, Silventoinen K, Latvala A, Kaprio J. Genetic and environmental factors underlying parallel changes in body mass index and alcohol consumption: a 36-year longitudinal study of adult twins. Obes Facts. 2023. https://doi.org/10.1159/000529835 .
doi: 10.1159/000529835
pubmed: 36882010
Liu Y, Buil A, Collins BC, et al. Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol. 2015;11(1):786.
pubmed: 25652787
pmcid: 4358658
doi: 10.15252/msb.20145728
Haj AK, Hasan H, Raife TJ. Heritability of Protein and Metabolite Biomarkers Associated with COVID-19 Severity: A Metabolomics and Proteomics Analysis. Biomolecules. 2022;13(1):46.
pubmed: 36671431
pmcid: 9855380
doi: 10.3390/biom13010046
Behbodikhah J, Ahmed S, Elyasi A, et al. Apolipoprotein B and Cardiovascular Disease: Biomarker and Potential Therapeutic Target. Metabolites. 2021;11(10):690.
pubmed: 34677405
pmcid: 8540246
doi: 10.3390/metabo11100690
Sniderman AD, Thanassoulis G, Glavinovic T, et al. Apolipoprotein B Particles and Cardiovascular Disease: A Narrative Review. JAMA Cardiol. 2019;4(12):1287–95.
pubmed: 31642874
pmcid: 7369156
doi: 10.1001/jamacardio.2019.3780
Gottesman O, Drill E, Lotay V, Bottinger E, Peter I. Can genetic pleiotropy replicate common clinical constellations of cardiovascular disease and risk? PLoS ONE. 2012;7(9):e46419.
pubmed: 23029515
pmcid: 3460880
doi: 10.1371/journal.pone.0046419
Rankinen T, Sarzynski MA, Ghosh S, Bouchard C. Are there genetic paths common to obesity, cardiovascular disease outcomes, and cardiovascular risk factors? Circ Res. 2015;116(5):909–22.
pubmed: 25722444
pmcid: 4416656
doi: 10.1161/CIRCRESAHA.116.302888
Auwerx C, Sadler MC, Woh T, Reymond A, Kutalik Z, Porcu E. Exploiting the mediating role of the metabolome to unravel transcript-to-phenotype associations. Elife. 2023;12: e81097.
pubmed: 36891970
pmcid: 9998083
doi: 10.7554/eLife.81097
Sadler MC, Auwerx C, Lepik K, Porcu E, Kutalik Z. Quantifying the role of transcript levels in mediating DNA methylation effects on complex traits and diseases. Nat Commun. 2022;13(1):7559.
pubmed: 36477627
pmcid: 9729239
doi: 10.1038/s41467-022-35196-3