The potential of emerging bio-based products to reduce environmental impacts.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 Dec 2023
21 Dec 2023
Historique:
received:
01
07
2022
accepted:
20
11
2023
medline:
22
12
2023
pubmed:
22
12
2023
entrez:
21
12
2023
Statut:
epublish
Résumé
The current debate on the sustainability of bio-based products questions the environmental benefits of replacing fossil- by bio-resources. Here, we analyze the environmental trade-offs of 98 emerging bio-based materials compared to their fossil counterparts, reported in 130 studies. Although greenhouse gas life cycle emissions for emerging bio-based products are on average 45% lower (-52 to -37%; 95% confidence interval), we found a large variation between individual bio-based products with none of them reaching net-zero emissions. Grouped in product categories, reductions in greenhouse gas emissions ranged from 19% (-52 to 35%) for bioadhesives to 73% (-84 to -54%) for biorefinery products. In terms of other environmental impacts, we found evidence for an increase in eutrophication (369%; 163 to 737%), indicating that environmental trade-offs should not be overlooked. Our findings imply that the environmental sustainability of bio-based products should be evaluated on an individual product basis and that more radical product developments are required to reach climate-neutral targets.
Identifiants
pubmed: 38129383
doi: 10.1038/s41467-023-43797-9
pii: 10.1038/s41467-023-43797-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8521Subventions
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
ID : 016.Vici.170.190
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
ID : 016.Vici.170.190
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
ID : 016.Vici.170.190
Informations de copyright
© 2023. The Author(s).
Références
Global Bioeconomy Summit 2020. Expanding the Sustainable Bioeconomy – Vision and Way Forward. in Communiqué of the Global Bioeconomy Summit 2020 1–28 (2020).
European Commission. A sustainable Bioeconomy for Europe: strengthening the connection between economy, society and the environment. https://doi.org/10.2777/478385 (2018).
European Commission. Communication from the Commission to the European parliament, the European council, the council, the European economic and social committee and the committee of the regions the European green deal. (European Commission, 2019).
Rosenboom, J. G., Langer, R. & Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 7, 117–137 (2022).
pubmed: 35075395
pmcid: 8771173
doi: 10.1038/s41578-021-00407-8
Walker, S. & Rothman, R. Life cycle assessment of bio-based and fossil-based plastic: a review. J. Clean. Prod. 261, (2020).
Atiwesh, G., Mikhael, A., Parrish, C. C., Banoub, J. & Le, T. A. T. Environmental impact of bioplastic use: a review. Heliyon 7, (2021).
Ögmundarson, Ó., Herrgård, M. J., Forster, J., Hauschild, M. Z. & Fantke, P. Addressing environmental sustainability of biochemicals. Nat. Sustain 3, 167–174 (2020).
doi: 10.1038/s41893-019-0442-8
Kajaste, R. Chemicals from biomass - Managing greenhouse gas emissions in biorefinery production chains - a review. J. Clean. Prod. 75, 1–10 (2014).
doi: 10.1016/j.jclepro.2014.03.070
Arias, A. et al. Recent developments in bio-based adhesives from renewable natural resources. J. Clean. Prod. 314, 127892 (2021).
doi: 10.1016/j.jclepro.2021.127892
Eisen, A., Bussa, M. & Röder, H. A review of environmental assessments of biobased against petrochemical adhesives. J. Clean. Prod. 277, 124277 (2020).
doi: 10.1016/j.jclepro.2020.124277
Thonemann, N., Schulte, A. & Maga, D. How to conduct prospective life cycle assessment for emerging technologies? A systematic review and methodological guidance. Sustainability 12, 1192 (2020).
doi: 10.3390/su12031192
Moni, S. M., Mahmud, R., High, K. & Carbajales-Dale, M. Life cycle assessment of emerging technologies: a review. J. Ind. Ecol. 24, 52–63 (2020).
doi: 10.1111/jiec.12965
Aryapratama, R. & Janssen, M. Prospective life cycle assessment of bio-based adipic acid production from forest residues. J. Clean. Prod. 164, 434–443 (2017).
doi: 10.1016/j.jclepro.2017.06.222
Pachón, E. R., Mandade, P. & Gnansounou, E. Conversion of vine shoots into bioethanol and chemicals: prospective LCA of biorefinery concept. Bioresour. Technol. 303, 122946 (2020).
pubmed: 32058905
doi: 10.1016/j.biortech.2020.122946
Gonzalez-Garcia, S., Gullón, B. & Moreira, M. T. Environmental assessment of biorefinery processes for the valorization of lignocellulosic wastes into oligosaccharides. J. Clean. Prod. 172, 4066–4073 (2018).
doi: 10.1016/j.jclepro.2017.02.164
Moretti, C. et al. Review of life cycle assessments of lignin and derived products: lessons learned. Sci. Total Environ. 770, 144656 (2021).
pubmed: 33508665
doi: 10.1016/j.scitotenv.2020.144656
Piccinno, F., Hischier, R., Seeger, S. & Som, C. Predicting the environmental impact of a future nanocellulose production at industrial scale: application of the life cycle assessment scale-up framework. J. Clean. Prod. 174, 283–295 (2018).
doi: 10.1016/j.jclepro.2017.10.226
Zuiderveen, E. A. R., Ansovini, D., Gruter, G.-J. M. & Shen, L. Ex-ante life cycle assessment of polyethylenefuranoate (PEF) from bio-based monomers synthesized via a novel electrochemical process. Clean Environ. Syst. 2, 100036 (2021).
doi: 10.1016/j.cesys.2021.100036
Guest, G., Cherubini, F. & Strømman, A. H. Global warming potential of carbon dioxide emissions from biomass stored in the anthroposphere and used for bioenergy at end of life. J. Ind. Ecol. 17, 20–30 (2013).
doi: 10.1111/j.1530-9290.2012.00507.x
Brandão, M. et al. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int. J. Life Cycle Assess. 18, 230–240 (2013).
doi: 10.1007/s11367-012-0451-6
Galán-Martín, Á. et al. Sustainability footprints of a renewable carbon transition for the petrochemical sector within planetary boundaries. One Earth 4, 565–583 (2021).
doi: 10.1016/j.oneear.2021.04.001
Cespi, D., Passarini, F., Vassura, I. & Cavani, F. Butadiene from biomass, a life cycle perspective to address sustainability in the chemical industry. Green. Chem. 18, 1625–1638 (2016).
doi: 10.1039/C5GC02148K
Ren, T., Patel, M. & Blok, K. Olefins from conventional and heavy feedstocks: energy use in steam cracking and alternative processes. Energy 31, 425–451 (2006).
doi: 10.1016/j.energy.2005.04.001
Zheng, J. & Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang. 9, 374–378 (2019).
doi: 10.1038/s41558-019-0459-z
Meys, R. et al. Towards a circular economy for plastic packaging wastes – the environmental potential of chemical recycling. Resour. Conserv. Recycl. 162, 105010 (2020).
doi: 10.1016/j.resconrec.2020.105010
Moncada B, J., Aristizábal, M, V. & Cardona A, C. A. Design strategies for sustainable biorefineries. Biochem. Eng. J. 116, 122–134 (2016).
doi: 10.1016/j.bej.2016.06.009
Guiton, M. et al. Comparative Life Cycle Assessment of a microalgae-based oil metal working fluid with its petroleum-based and vegetable-based counterparts. J. Clean. Prod. 338, 130506 (2022).
doi: 10.1016/j.jclepro.2022.130506
Escobar, N. & Laibach, N. Sustainability check for bio-based technologies: a review of process-based and life cycle approaches. Renew. Sustain. Energy Rev. 135 (2021).
Bello, S., Salim, I., Feijoo, G. & Moreira, M. T. Inventory review and environmental evaluation of first- and second-generation sugars through life cycle assessment. Environ. Sci. Pollut. Res. 28, 27345–27361 (2021).
doi: 10.1007/s11356-021-12405-y
Akkari, M. El, Rechauchère, O., Bispo, A., reports, B. G.-S. & 2018, undefined. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes. nature.com.
Hanssen, S. V. et al. The climate change mitigation potential of bioenergy with carbon capture and storage. Nat. Clim. Chang. 10, 1023–1029 (2020).
doi: 10.1038/s41558-020-0885-y
Harper, A. B. et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 9, 1–13 (2018).
doi: 10.1038/s41467-018-05340-z
Khoo, H. H., Ee, W. L. & Isoni, V. Bio-chemicals from lignocellulose feedstock: sustainability, LCA and the green conundrum. Green. Chem. 18, 1912–1922 (2016).
doi: 10.1039/C5GC02065D
Ita-Nagy, D., Vázquez-Rowe, I., Kahhat, R., Chinga-Carrasco, G. & Quispe, I. Reviewing environmental life cycle impacts of biobased polymers: current trends and methodological challenges. Int. J. Life Cycle Assess. 25, 2169–2189 (2020).
doi: 10.1007/s11367-020-01829-2
van der Hulst, M. K. et al. A systematic approach to assess the environmental impact of emerging technologies: a case study for the GHG footprint of CIGS. Sol. Photovolt. laminate. J. Ind. Ecol. 24, 1234–1249 (2020).
doi: 10.1111/jiec.13027
Harvey, M. & Pilgrim, S. The new competition for land: food, energy, and climate change. Food Policy 36, S40–S51 (2011).
doi: 10.1016/j.foodpol.2010.11.009
de Jong, E., Stichnothe, H., Bell, G. & Jørgensen, H. Bio-Based Chemicals. (2020).
Cherubini, F. & Strømman, A. H. Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour. Technol. 102, 437–451 (2011).
pubmed: 20832298
doi: 10.1016/j.biortech.2010.08.010
European Commission. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf (2020).
Cucurachi, S. et al. Prospective LCA methodology for Novel and Emerging Technologies for BIO-based products - The PLANET BIO project. https://doi.org/10.2760/695092 (2022).
Meng, F. et al. Planet-compatible pathways for transitioning the chemical industry. Proc. Natl Acad. Sci. USA 120, e2218294120 (2023).
pubmed: 36787351
pmcid: 9974437
doi: 10.1073/pnas.2218294120
Stegmann, P., Daioglou, V., Londo, M., van Vuuren, D. P. & Junginger, M. Plastic futures and their CO
pubmed: 36477132
doi: 10.1038/s41586-022-05422-5
Keijer, T., Bakker, V. & Slootweg, J. C. Circular chemistry to enable a circular economy. Nat. Chem. 11, 190–195 (2019).
pubmed: 30792512
doi: 10.1038/s41557-019-0226-9
Rufí-Salís, M. et al. and circularity assessments in complex production systems: the case of urban agriculture. Resour. Conserv. Recycl. 166, 105359 (2021).
doi: 10.1016/j.resconrec.2020.105359
Lokesh, K. et al. Hybridised sustainability metrics for use in life cycle assessment of bio-based products: resource efficiency and circularity. Green. Chem. 22, 803–813 (2020).
doi: 10.1039/C9GC02992C
EMF (Ellen Macarthur Foundation) and Granta. Circularity Indicators - An approach to measuring circularity - Methodology. https://ellenmacarthurfoundation.org/material-circularity-indicator (2019).
Adrianto, L. R. et al. How can LCA include prospective elements to assess emerging technologies and system transitions? The 76th LCA Discussion Forum on Life Cycle Assessment, 19 November 2020. Int. J. Life Cycle Assess. 26, 1541–1544 (2021).
doi: 10.1007/s11367-021-01934-w
Piccinno, F., Hischier, R., Seeger, S. & Som, C. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. J. Clean. Prod. 135, 1085–1097 (2016).
doi: 10.1016/j.jclepro.2016.06.164
Verdade, L. M., Piña, C. I. & Rosalino, L. M. Biofuels and biodiversity: Challenges and opportunities. Environ. Dev. 15, 64–78 (2015).
doi: 10.1016/j.envdev.2015.05.003
Meys, R. et al. Achieving net-zero greenhouse gas emission plastics by a circular carbon economy. Sci. (80). 374, 71–76 (2021).
doi: 10.1126/science.abg9853
Cherubini, F., Peters, G. P., Berntsen, T., Strømman, A. H. & Hertwich, E. CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy 3, 413–426 (2011).
doi: 10.1111/j.1757-1707.2011.01102.x
Huijbregts, M. A. J. et al. ReCiPe2016: a harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 22, 138–147 (2017).
doi: 10.1007/s11367-016-1246-y
Ecoinvent. Ecoinvent database (Version 3.8). https://v37.ecoquery.ecoinvent.org/ (2020).
Zuiderveen, E. A. R. et al. The Potential of Emerging Bio-based Products to Reduce Environmental Impacts Dataset. figshare (2023) https://doi.org/10.6084/m9.figshare.22795184 .
R Core Team. R: A Language and Environment for Statistical Computing (version 4.1.3). (2022).
Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 (2015).
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
doi: 10.18637/jss.v082.i13
Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).
doi: 10.1002/wics.147