An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function.

Dendritic cells Fibroblastic reticular cells Human immunology Lymph nodes Organotypic models

Journal

Tissue engineering and regenerative medicine
ISSN: 2212-5469
Titre abrégé: Tissue Eng Regen Med
Pays: Korea (South)
ID NLM: 101699923

Informations de publication

Date de publication:
19 Dec 2023
Historique:
received: 14 07 2023
accepted: 22 10 2023
revised: 19 10 2023
medline: 20 12 2023
pubmed: 20 12 2023
entrez: 20 12 2023
Statut: aheadofprint

Résumé

Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited. Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed. FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.

Sections du résumé

BACKGROUND BACKGROUND
Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited.
METHODS METHODS
Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed.
RESULTS RESULTS
FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a
CONCLUSION CONCLUSIONS
This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.

Identifiants

pubmed: 38114886
doi: 10.1007/s13770-023-00609-x
pii: 10.1007/s13770-023-00609-x
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : HORIZON EUROPE Marie Sklodowska-Curie Actions
ID : 847551

Informations de copyright

© 2023. Korean Tissue Engineering and Regenerative Medicine Society.

Références

Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–7.
pubmed: 18824503 doi: 10.1093/intimm/dxn110
Krishnamurty AT, Turley SJ. Lymph node stromal cells: cartographers of the immune system. Nat Immunol. 2020;21:369–80.
pubmed: 32205888 doi: 10.1038/s41590-020-0635-3
Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 2006;25:989–1001.
pubmed: 17112751 pmcid: 2692293 doi: 10.1016/j.immuni.2006.10.011
Roozendaal R, Mebius RE. Stromal cell-immune cell interactions. Annu Rev Immunol. 2011;29:23–43.
pubmed: 21073333 doi: 10.1146/annurev-immunol-031210-101357
Rodda LB, Lu E, Bennett ML, Sokol CL, Wang X, Luther SA, et al. Single-cell rna sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity. 2018;48:1014e6-28e6.
doi: 10.1016/j.immuni.2018.04.006
Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: Subsets and functions in health and disease. Trends Immunol. 2021;42:920–36.
pubmed: 34521601 doi: 10.1016/j.it.2021.08.009
Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the c-type lectin receptor clec-2. Immunity. 2012;37:276–89.
pubmed: 22884313 pmcid: 3556784 doi: 10.1016/j.immuni.2012.05.022
Girard JP, Moussion C, Forster R. Hevs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12:762–73.
pubmed: 23018291 doi: 10.1038/nri3298
Acton SE, Onder L, Novkovic M, Martinez VG, Ludewig B. Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends Immunol. 2021;42:782–94.
pubmed: 34362676 doi: 10.1016/j.it.2021.07.003
Collin M, Bigley V. Human dendritic cell subsets: An update. Immunology. 2018;154:3–20.
pubmed: 29313948 pmcid: 5904714 doi: 10.1111/imm.12888
Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012;37:364–76.
pubmed: 22863836 pmcid: 3514885 doi: 10.1016/j.immuni.2012.07.011
Gerner MY, Casey KA, Kastenmuller W, Germain RN. Dendritic cell and antigen dispersal landscapes regulate t cell immunity. J Exp Med. 2017;214:3105–22.
pubmed: 28847868 pmcid: 5626399 doi: 10.1084/jem.20170335
Baptista AP, Gola A, Huang Y, Milanez-Almeida P, Torabi-Parizi P, Urban JF Jr, et al. The chemoattractant receptor ebi2 drives intranodal naive cd4(+) t cell peripheralization to promote effective adaptive immunity. Immunity. 2019;50:1188e6-201e6.
doi: 10.1016/j.immuni.2019.04.001
van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, van Leeuwen PA, Lougheed SM, et al. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to t-cell activation. Blood. 2011;118:2502–10.
pubmed: 21750314 doi: 10.1182/blood-2011-03-344838
Segura E, Soumelis V. Of human dc migrants and residents. Immunity. 2017;46:342–4.
pubmed: 28329699 doi: 10.1016/j.immuni.2017.03.006
Novkovic M, Onder L, Cupovic J, Abe J, Bomze D, Cremasco V, et al. Topological small-world organization of the fibroblastic reticular cell network determines lymph node functionality. PLoS Biol. 2016;14:e1002515.
pubmed: 27415420 pmcid: 4945005 doi: 10.1371/journal.pbio.1002515
Kapoor VN, Muller S, Keerthivasan S, Brown M, Chalouni C, Storm EE, et al. Gremlin 1(+) fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat Immunol. 2021;22:571–85.
pubmed: 33903764 doi: 10.1038/s41590-021-00920-6
Ozulumba T, Montalbine AN, Ortiz-Cardenas JE, Pompano RR. New tools for immunologists: models of lymph node function from cells to tissues. Front Immunol. 2023;14:1183286.
pubmed: 37234163 pmcid: 10206051 doi: 10.3389/fimmu.2023.1183286
Goyal G, Prabhala P, Mahajan G, Bausk B, Gilboa T, Xie L, et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv Sci (Weinh). 2022;9:e2103241.
pubmed: 35289122 doi: 10.1002/advs.202103241
Wagar LE, Salahudeen A, Constantz CM, Wendel BS, Lyons MM, Mallajosyula V, et al. Modeling human adaptive immune responses with tonsil organoids. Nat Med. 2021;27:125–35.
pubmed: 33432170 pmcid: 7891554 doi: 10.1038/s41591-020-01145-0
Belanger MC, Ball AG, Catterton MA, Kinman AWL, Anbaei P, Groff BD, et al. Acute lymph node slices are a functional model system to study immunity ex vivo. ACS Pharmacol Transl Sci. 2021;4:128–42.
pubmed: 33615167 pmcid: 7887751 doi: 10.1021/acsptsci.0c00143
Knoblich K, Cruz Migoni S, Siew SM, Jinks E, Kaul B, Jeffery HC, et al. The human lymph node microenvironment unilaterally regulates t-cell activation and differentiation. PLoS Biol. 2018;16:e2005046.
pubmed: 30180168 pmcid: 6122729 doi: 10.1371/journal.pbio.2005046
Braham MVJ, van Binnendijk RS, Buisman AM, Mebius RE, de Wit J, van Els C. A synthetic human 3d in vitro lymphoid model enhancing b-cell survival and functional differentiation. iScience. 2023;26:105741.
pubmed: 36590159 doi: 10.1016/j.isci.2022.105741
Kwee BJ, Akue A, Sung KE. On-chip human lymph node stromal network for evaluating dendritic cell and t-cell trafficking. BIORXIV. 2023;03:533042.
Kosten IJ, Spiekstra SW, de Gruijl TD, Gibbs S. Mutz-3 derived langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol. 2015;287:35–42.
pubmed: 26028481 doi: 10.1016/j.taap.2015.05.017
Koning JJ, Rodrigues Neves CT, Schimek K, Thon M, Spiekstra SW, Waaijman T, et al. A multi-organ-on-chip approach to investigate how oral exposure to metals can cause systemic toxicity leading to langerhans cell activation in skin. Front Toxicol. 2021;3:824825.
pubmed: 35295125 doi: 10.3389/ftox.2021.824825
Kosten IJ, Buskermolen JK, Spiekstra SW, de Gruijl TD, Gibbs S. Gingiva equivalents secrete negligible amounts of key chemokines involved in langerhans cell migration compared to skin equivalents. J Immunol Res. 2015;2015:627125.
pubmed: 26539556 pmcid: 4619927 doi: 10.1155/2015/627125
Fletcher AL, Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A, Curry M, et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front Immunol. 2011;2:35.
pubmed: 22566825 pmcid: 3342056 doi: 10.3389/fimmu.2011.00035
Masterson AJ, Sombroek CC, De Gruijl TD, Graus YM, van der Vliet HJ, Lougheed SM, et al. Mutz-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from cd34+ precursors. Blood. 2002;100:701–3.
pubmed: 12091369 doi: 10.1182/blood.V100.2.701
Michielon E, Lopez Gonzalez M, Burm JLA, Waaijman T, Jordanova ES, de Gruijl TD, Gibbs S. Micro-environmental cross-talk in an organotypic human melanoma-in-skin model directs m2-like monocyte differentiation via il-10. Cancer Immunol Immunother. 2020;69:2319–31.
pubmed: 32507967 pmcid: 7568725 doi: 10.1007/s00262-020-02626-4
Roet JEG, Mikula AM, Kok Md, Chadick CH, Vallejo JJG, Roest HP, et al. Unbiased method for spectral analysis of cells with great diversity of autofluorescence spectra. BIORXIV. 2023;07:550943.
Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. Idisco: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.
pubmed: 25417164 doi: 10.1016/j.cell.2014.10.010
Larsson K, Lindstedt M, Borrebaeck CA. Functional and transcriptional profiling of mutz-3, a myeloid cell line acting as a model for dendritic cells. Immunology. 2006;117:156–66.
pubmed: 16423051 pmcid: 1782214 doi: 10.1111/j.1365-2567.2005.02274.x
Eom J, Park SM, Feisst V, Chen CJ, Mathy JE, McIntosh JD, et al. Distinctive subpopulations of stromal cells are present in human lymph nodes infiltrated with melanoma. Cancer Immunol Res. 2020;8:990–1003.
pubmed: 32580941 doi: 10.1158/2326-6066.CIR-19-0796
Freynet O, Marchal-Somme J, Jean-Louis F, Mailleux A, Crestani B, Soler P, Michel L. Human lung fibroblasts may modulate dendritic cell phenotype and function: results from a pilot in vitro study. Respir Res. 2016;17:36.
pubmed: 27044262 pmcid: 4820963 doi: 10.1186/s12931-016-0345-4
Seguier S, Tartour E, Guerin C, Couty L, Lemitre M, Lallement L, et al. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts. PLoS ONE. 2013;8:e70937.
pubmed: 23936476 pmcid: 3732252 doi: 10.1371/journal.pone.0070937
Saalbach A, Klein C, Sleeman J, Sack U, Kauer F, Gebhardt C, et al. Dermal fibroblasts induce maturation of dendritic cells. J Immunol. 2007;178:4966–74.
pubmed: 17404278 doi: 10.4049/jimmunol.178.8.4966
Engering A, van Vliet SJ, Hebeda K, Jackson DG, Prevo R, Singh SK, et al. Dynamic populations of dendritic cell-specific icam-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific icam-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am J Pathol. 2004;164:1587–95.
pubmed: 15111305 pmcid: 1615649 doi: 10.1016/S0002-9440(10)63717-0
Askmyr D, Abolhalaj M, Gomez Jimenez D, Greiff L, Lindstedt M, Lundberg K. Pattern recognition receptor expression and maturation profile of dendritic cell subtypes in human tonsils and lymph nodes. Hum Immunol. 2021;82:976–81.
pubmed: 34511272 doi: 10.1016/j.humimm.2021.08.007
Min J, Yang D, Kim M, Haam K, Yoo A, Choi JH, et al. Inflammation induces two types of inflammatory dendritic cells in inflamed lymph nodes. Exp Mol Med. 2018;50:e458.
pubmed: 29546878 pmcid: 5898896 doi: 10.1038/emm.2017.292
Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, et al. Il-6 regulates in vivo dendritic cell differentiation through stat3 activation. J Immunol. 2004;173:3844–54.
pubmed: 15356132 doi: 10.4049/jimmunol.173.6.3844
Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, Khodadadi-Jamayran A, et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep. 2018;23:3658e6-72e6.
doi: 10.1016/j.celrep.2018.05.068
Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. Regulation of dendritic-cell differentiation by bone marrow stroma via different notch ligands. Blood. 2007;109:507–15.
pubmed: 16973960 pmcid: 1766374 doi: 10.1182/blood-2006-05-025601
Fasnacht N, Huang HY, Koch U, Favre S, Auderset F, Chai Q, et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct notch-regulated immune responses. J Exp Med. 2014;211:2265–79.
pubmed: 25311507 pmcid: 4203954 doi: 10.1084/jem.20132528
van Pul KM, Vuylsteke R, van de Ven R, Te Velde EA, Rutgers EJT, van den Tol PM, et al. Selectively hampered activation of lymph node-resident dendritic cells precedes profound t cell suppression and metastatic spread in the breast cancer sentinel lymph node. J Immunother Cancer. 2019;7:133.
pubmed: 31118093 pmcid: 6530094 doi: 10.1186/s40425-019-0605-1
van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy. Front Immunol. 2021;12:643291.
pubmed: 33732264 pmcid: 7956978 doi: 10.3389/fimmu.2021.643291
Angel CE, Chen CJ, Horlacher OC, Winkler S, John T, Browning J, et al. Distinctive localization of antigen-presenting cells in human lymph nodes. Blood. 2009;113:1257–67.
pubmed: 18987360 pmcid: 2687552 doi: 10.1182/blood-2008-06-165266
Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human cd141+ (bdca-3)+ dendritic cells (dcs) represent a unique myeloid dc subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–60.
pubmed: 20479116 pmcid: 2882828 doi: 10.1084/jem.20092140
Saalbach A, Klein C, Schirmer C, Briest W, Anderegg U, Simon JC. Dermal fibroblasts promote the migration of dendritic cells. J Invest Dermatol. 2010;130:444–54.
pubmed: 19710690 doi: 10.1038/jid.2009.253
Hoves S, Krause SW, Schutz C, Halbritter D, Scholmerich J, Herfarth H, Fleck M. Monocyte-derived human macrophages mediate anergy in allogeneic t cells and induce regulatory t cells. J Immunol. 2006;177:2691–8.
pubmed: 16888031 doi: 10.4049/jimmunol.177.4.2691
Ugur M, Labios RJ, Fenton C, Knopper K, Jobin K, Imdahl F, et al. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity. 2023;56:1778e10-93e10.
doi: 10.1016/j.immuni.2023.06.020
Hernandez-Lopez C, Valencia J, Hidalgo L, Martinez VG, Zapata AG, Sacedon R, et al. Cxcl12/cxcr4 signaling promotes human thymic dendritic cell survival regulating the bcl-2/bax ratio. Immunol Lett. 2008;120:72–8.
pubmed: 18692524 doi: 10.1016/j.imlet.2008.07.006
Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol. 2018;15:346–52.
pubmed: 29563613 pmcid: 6052805 doi: 10.1038/s41423-018-0005-3
Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the t cell area of the lymph node. Immunity. 2005;22:19–29.
pubmed: 15664156 doi: 10.1016/j.immuni.2004.11.013
van Tienderen GS, van Beek MEA, Schurink IJ, Rosmark O, Roest HP, Tieleman J, et al. Modelling metastatic colonization of cholangiocarcinoma organoids in decellularized lung and lymph nodes. Front Oncol. 2022;12:1101901.
pubmed: 36741736 doi: 10.3389/fonc.2022.1101901
Morgado FN, da Silva AVA, Porrozzi R. Infectious diseases and the lymphoid extracellular matrix remodeling: a focus on conduit system. Cells. 2020;9:725.
pubmed: 32187985 pmcid: 7140664 doi: 10.3390/cells9030725
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: a mutually dependent relationship. Science. 2023;379:eabp8964.
pubmed: 36795835 doi: 10.1126/science.abp8964
Choi YS, Jeong E, Lee JS, Kim SK, Jo SH, Kim YG, et al. Immunomodulatory scaffolds derived from lymph node extracellular matrices. ACS Appl Mater Interfaces. 2021;13:14037–49.
pubmed: 33745275 doi: 10.1021/acsami.1c02542
Rasaiyaah J, Noursadeghi M, Kellam P, Chain B. Transcriptional and functional defects of dendritic cells derived from the mutz-3 leukaemia line. Immunology. 2009;127:429–41.
pubmed: 19538250 pmcid: 2712111 doi: 10.1111/j.1365-2567.2008.03018.x
Lundberg K, Albrekt AS, Nelissen I, Santegoets S, de Gruijl TD, Gibbs S, Lindstedt M. Transcriptional profiling of human dendritic cell populations and models–unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS One. 2013;8:e52875.
pubmed: 23341914 pmcid: 3544800 doi: 10.1371/journal.pone.0052875
Santegoets SJ, van den Eertwegh AJ, van de Loosdrecht AA, Scheper RJ, de Gruijl TD. Human dendritic cell line models for dc differentiation and clinical dc vaccination studies. J Leukoc Biol. 2008;84:1364–73.
pubmed: 18664532 doi: 10.1189/jlb.0208092
Santegoets SJ, Schreurs MW, Masterson AJ, Liu YP, Goletz S, Baumeister H, et al. In vitro priming of tumor-specific cytotoxic t lymphocytes using allogeneic dendritic cells derived from the human mutz-3 cell line. Cancer Immunol Immunother. 2006;55:1480–90.
pubmed: 16468034 doi: 10.1007/s00262-006-0142-x
Santegoets SJ, Masterson AJ, van der Sluis PC, Lougheed SM, Fluitsma DM, van den Eertwegh AJ, et al. A cd34(+) human cell line model of myeloid dendritic cell differentiation: evidence for a cd14(+)cd11b(+) langerhans cell precursor. J Leukoc Biol. 2006;80:1337–44.
pubmed: 16959899 doi: 10.1189/jlb.0206111
Santegoets SJ, Bontkes HJ, Stam AG, Bhoelan F, Ruizendaal JJ, van den Eertwegh AJ, et al. Inducing antitumort cell immunity: comparative functional analysis of interstitial versus langerhans dendritic cells in a human cell line model. J Immunol. 2008;180:4540–9.
pubmed: 18354176 doi: 10.4049/jimmunol.180.7.4540
Ouwehand K, Spiekstra SW, Waaijman T, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. Ccl5 and ccl20 mediate immigration of langerhans cells into the epidermis of full thickness human skin equivalents. Eur J Cell Biol. 2012;91:765–73.
pubmed: 22857950 doi: 10.1016/j.ejcb.2012.06.004
Ouwehand K, Oosterhoff D, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. Irritant-induced migration of langerhans cells coincides with an il-10-dependent switch to a macrophage-like phenotype. J Invest Dermatol. 2011;131:418–25.
pubmed: 21068755 doi: 10.1038/jid.2010.336
Park SM, Angel CE, McIntosh JD, Brooks AE, Middleditch M, Chen CJ, et al. Sphingosine-1-phosphate lyase is expressed by cd68+ cells on the parenchymal side of marginal reticular cells in human lymph nodes. Eur J Immunol. 2014;44:2425–36.
pubmed: 24825162 doi: 10.1002/eji.201344158

Auteurs

Andrew I Morrison (AI)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.

Aleksandra M Mikula (AM)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.

Sander W Spiekstra (SW)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.

Michael de Kok (M)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.

Alsya J Affandi (AJ)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
Cancer Center Amsterdam, Amsterdam, The Netherlands.

Henk P Roest (HP)

Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands.

Luc J W van der Laan (LJW)

Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015GD, Rotterdam, The Netherlands.

Charlotte M de Winde (CM)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
Cancer Center Amsterdam, Amsterdam, The Netherlands.

Jasper J Koning (JJ)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.

Susan Gibbs (S)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.
Department Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.

Reina E Mebius (RE)

Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands. r.mebius@amsterdamumc.nl.
Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands. r.mebius@amsterdamumc.nl.

Classifications MeSH