An Organotypic Human Lymph Node Model Reveals the Importance of Fibroblastic Reticular Cells for Dendritic Cell Function.
Dendritic cells
Fibroblastic reticular cells
Human immunology
Lymph nodes
Organotypic models
Journal
Tissue engineering and regenerative medicine
ISSN: 2212-5469
Titre abrégé: Tissue Eng Regen Med
Pays: Korea (South)
ID NLM: 101699923
Informations de publication
Date de publication:
19 Dec 2023
19 Dec 2023
Historique:
received:
14
07
2023
accepted:
22
10
2023
revised:
19
10
2023
medline:
20
12
2023
pubmed:
20
12
2023
entrez:
20
12
2023
Statut:
aheadofprint
Résumé
Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited. Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed. FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.
Sections du résumé
BACKGROUND
BACKGROUND
Human lymph node (HuLN) models have emerged with invaluable potential for immunological research and therapeutic application given their fundamental role in human health and disease. While fibroblastic reticular cells (FRCs) are instrumental to HuLN functioning, their inclusion and recognition of importance for organotypic in vitro lymphoid models remain limited.
METHODS
METHODS
Here, we established an in vitro three-dimensional (3D) model in a collagen-fibrin hydrogel with primary FRCs and a dendritic cell (DC) cell line (MUTZ-3 DC). To study and characterise the cellular interactions seen in this 3D FRC-DC organotypic model compared to the native HuLN; flow cytometry, immunohistochemistry, immunofluorescence and cytokine/chemokine analysis were performed.
RESULTS
RESULTS
FRCs were pivotal for survival, proliferation and localisation of MUTZ-3 DCs. Additionally, we found that CD1a expression was absent on MUTZ-3 DCs that developed in the presence of FRCs during cytokine-induced MUTZ-3 DC differentiation, which was also seen with primary monocyte-derived DCs (moDCs). This phenotype resembled HuLN-resident DCs, which we detected in primary HuLNs, and these CD1a
CONCLUSION
CONCLUSIONS
This 3D FRC-DC organotypic model highlights the influence and importance of FRCs for DC functioning in a more realistic HuLN microenvironment. As such, this work provides a starting point for the development of an in vitro HuLN.
Identifiants
pubmed: 38114886
doi: 10.1007/s13770-023-00609-x
pii: 10.1007/s13770-023-00609-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : HORIZON EUROPE Marie Sklodowska-Curie Actions
ID : 847551
Informations de copyright
© 2023. Korean Tissue Engineering and Regenerative Medicine Society.
Références
Roozendaal R, Mebius RE, Kraal G. The conduit system of the lymph node. Int Immunol. 2008;20:1483–7.
pubmed: 18824503
doi: 10.1093/intimm/dxn110
Krishnamurty AT, Turley SJ. Lymph node stromal cells: cartographers of the immune system. Nat Immunol. 2020;21:369–80.
pubmed: 32205888
doi: 10.1038/s41590-020-0635-3
Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N, Germain RN. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity. 2006;25:989–1001.
pubmed: 17112751
pmcid: 2692293
doi: 10.1016/j.immuni.2006.10.011
Roozendaal R, Mebius RE. Stromal cell-immune cell interactions. Annu Rev Immunol. 2011;29:23–43.
pubmed: 21073333
doi: 10.1146/annurev-immunol-031210-101357
Rodda LB, Lu E, Bennett ML, Sokol CL, Wang X, Luther SA, et al. Single-cell rna sequencing of lymph node stromal cells reveals niche-associated heterogeneity. Immunity. 2018;48:1014e6-28e6.
doi: 10.1016/j.immuni.2018.04.006
Grasso C, Pierie C, Mebius RE, van Baarsen LGM. Lymph node stromal cells: Subsets and functions in health and disease. Trends Immunol. 2021;42:920–36.
pubmed: 34521601
doi: 10.1016/j.it.2021.08.009
Acton SE, Astarita JL, Malhotra D, Lukacs-Kornek V, Franz B, Hess PR, et al. Podoplanin-rich stromal networks induce dendritic cell motility via activation of the c-type lectin receptor clec-2. Immunity. 2012;37:276–89.
pubmed: 22884313
pmcid: 3556784
doi: 10.1016/j.immuni.2012.05.022
Girard JP, Moussion C, Forster R. Hevs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12:762–73.
pubmed: 23018291
doi: 10.1038/nri3298
Acton SE, Onder L, Novkovic M, Martinez VG, Ludewig B. Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends Immunol. 2021;42:782–94.
pubmed: 34362676
doi: 10.1016/j.it.2021.07.003
Collin M, Bigley V. Human dendritic cell subsets: An update. Immunology. 2018;154:3–20.
pubmed: 29313948
pmcid: 5904714
doi: 10.1111/imm.12888
Gerner MY, Kastenmuller W, Ifrim I, Kabat J, Germain RN. Histo-cytometry: a method for highly multiplex quantitative tissue imaging analysis applied to dendritic cell subset microanatomy in lymph nodes. Immunity. 2012;37:364–76.
pubmed: 22863836
pmcid: 3514885
doi: 10.1016/j.immuni.2012.07.011
Gerner MY, Casey KA, Kastenmuller W, Germain RN. Dendritic cell and antigen dispersal landscapes regulate t cell immunity. J Exp Med. 2017;214:3105–22.
pubmed: 28847868
pmcid: 5626399
doi: 10.1084/jem.20170335
Baptista AP, Gola A, Huang Y, Milanez-Almeida P, Torabi-Parizi P, Urban JF Jr, et al. The chemoattractant receptor ebi2 drives intranodal naive cd4(+) t cell peripheralization to promote effective adaptive immunity. Immunity. 2019;50:1188e6-201e6.
doi: 10.1016/j.immuni.2019.04.001
van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, van Leeuwen PA, Lougheed SM, et al. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to t-cell activation. Blood. 2011;118:2502–10.
pubmed: 21750314
doi: 10.1182/blood-2011-03-344838
Segura E, Soumelis V. Of human dc migrants and residents. Immunity. 2017;46:342–4.
pubmed: 28329699
doi: 10.1016/j.immuni.2017.03.006
Novkovic M, Onder L, Cupovic J, Abe J, Bomze D, Cremasco V, et al. Topological small-world organization of the fibroblastic reticular cell network determines lymph node functionality. PLoS Biol. 2016;14:e1002515.
pubmed: 27415420
pmcid: 4945005
doi: 10.1371/journal.pbio.1002515
Kapoor VN, Muller S, Keerthivasan S, Brown M, Chalouni C, Storm EE, et al. Gremlin 1(+) fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat Immunol. 2021;22:571–85.
pubmed: 33903764
doi: 10.1038/s41590-021-00920-6
Ozulumba T, Montalbine AN, Ortiz-Cardenas JE, Pompano RR. New tools for immunologists: models of lymph node function from cells to tissues. Front Immunol. 2023;14:1183286.
pubmed: 37234163
pmcid: 10206051
doi: 10.3389/fimmu.2023.1183286
Goyal G, Prabhala P, Mahajan G, Bausk B, Gilboa T, Xie L, et al. Ectopic lymphoid follicle formation and human seasonal influenza vaccination responses recapitulated in an organ-on-a-chip. Adv Sci (Weinh). 2022;9:e2103241.
pubmed: 35289122
doi: 10.1002/advs.202103241
Wagar LE, Salahudeen A, Constantz CM, Wendel BS, Lyons MM, Mallajosyula V, et al. Modeling human adaptive immune responses with tonsil organoids. Nat Med. 2021;27:125–35.
pubmed: 33432170
pmcid: 7891554
doi: 10.1038/s41591-020-01145-0
Belanger MC, Ball AG, Catterton MA, Kinman AWL, Anbaei P, Groff BD, et al. Acute lymph node slices are a functional model system to study immunity ex vivo. ACS Pharmacol Transl Sci. 2021;4:128–42.
pubmed: 33615167
pmcid: 7887751
doi: 10.1021/acsptsci.0c00143
Knoblich K, Cruz Migoni S, Siew SM, Jinks E, Kaul B, Jeffery HC, et al. The human lymph node microenvironment unilaterally regulates t-cell activation and differentiation. PLoS Biol. 2018;16:e2005046.
pubmed: 30180168
pmcid: 6122729
doi: 10.1371/journal.pbio.2005046
Braham MVJ, van Binnendijk RS, Buisman AM, Mebius RE, de Wit J, van Els C. A synthetic human 3d in vitro lymphoid model enhancing b-cell survival and functional differentiation. iScience. 2023;26:105741.
pubmed: 36590159
doi: 10.1016/j.isci.2022.105741
Kwee BJ, Akue A, Sung KE. On-chip human lymph node stromal network for evaluating dendritic cell and t-cell trafficking. BIORXIV. 2023;03:533042.
Kosten IJ, Spiekstra SW, de Gruijl TD, Gibbs S. Mutz-3 derived langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol. 2015;287:35–42.
pubmed: 26028481
doi: 10.1016/j.taap.2015.05.017
Koning JJ, Rodrigues Neves CT, Schimek K, Thon M, Spiekstra SW, Waaijman T, et al. A multi-organ-on-chip approach to investigate how oral exposure to metals can cause systemic toxicity leading to langerhans cell activation in skin. Front Toxicol. 2021;3:824825.
pubmed: 35295125
doi: 10.3389/ftox.2021.824825
Kosten IJ, Buskermolen JK, Spiekstra SW, de Gruijl TD, Gibbs S. Gingiva equivalents secrete negligible amounts of key chemokines involved in langerhans cell migration compared to skin equivalents. J Immunol Res. 2015;2015:627125.
pubmed: 26539556
pmcid: 4619927
doi: 10.1155/2015/627125
Fletcher AL, Malhotra D, Acton SE, Lukacs-Kornek V, Bellemare-Pelletier A, Curry M, et al. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells. Front Immunol. 2011;2:35.
pubmed: 22566825
pmcid: 3342056
doi: 10.3389/fimmu.2011.00035
Masterson AJ, Sombroek CC, De Gruijl TD, Graus YM, van der Vliet HJ, Lougheed SM, et al. Mutz-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from cd34+ precursors. Blood. 2002;100:701–3.
pubmed: 12091369
doi: 10.1182/blood.V100.2.701
Michielon E, Lopez Gonzalez M, Burm JLA, Waaijman T, Jordanova ES, de Gruijl TD, Gibbs S. Micro-environmental cross-talk in an organotypic human melanoma-in-skin model directs m2-like monocyte differentiation via il-10. Cancer Immunol Immunother. 2020;69:2319–31.
pubmed: 32507967
pmcid: 7568725
doi: 10.1007/s00262-020-02626-4
Roet JEG, Mikula AM, Kok Md, Chadick CH, Vallejo JJG, Roest HP, et al. Unbiased method for spectral analysis of cells with great diversity of autofluorescence spectra. BIORXIV. 2023;07:550943.
Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. Idisco: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.
pubmed: 25417164
doi: 10.1016/j.cell.2014.10.010
Larsson K, Lindstedt M, Borrebaeck CA. Functional and transcriptional profiling of mutz-3, a myeloid cell line acting as a model for dendritic cells. Immunology. 2006;117:156–66.
pubmed: 16423051
pmcid: 1782214
doi: 10.1111/j.1365-2567.2005.02274.x
Eom J, Park SM, Feisst V, Chen CJ, Mathy JE, McIntosh JD, et al. Distinctive subpopulations of stromal cells are present in human lymph nodes infiltrated with melanoma. Cancer Immunol Res. 2020;8:990–1003.
pubmed: 32580941
doi: 10.1158/2326-6066.CIR-19-0796
Freynet O, Marchal-Somme J, Jean-Louis F, Mailleux A, Crestani B, Soler P, Michel L. Human lung fibroblasts may modulate dendritic cell phenotype and function: results from a pilot in vitro study. Respir Res. 2016;17:36.
pubmed: 27044262
pmcid: 4820963
doi: 10.1186/s12931-016-0345-4
Seguier S, Tartour E, Guerin C, Couty L, Lemitre M, Lallement L, et al. Inhibition of the differentiation of monocyte-derived dendritic cells by human gingival fibroblasts. PLoS ONE. 2013;8:e70937.
pubmed: 23936476
pmcid: 3732252
doi: 10.1371/journal.pone.0070937
Saalbach A, Klein C, Sleeman J, Sack U, Kauer F, Gebhardt C, et al. Dermal fibroblasts induce maturation of dendritic cells. J Immunol. 2007;178:4966–74.
pubmed: 17404278
doi: 10.4049/jimmunol.178.8.4966
Engering A, van Vliet SJ, Hebeda K, Jackson DG, Prevo R, Singh SK, et al. Dynamic populations of dendritic cell-specific icam-3 grabbing nonintegrin-positive immature dendritic cells and liver/lymph node-specific icam-3 grabbing nonintegrin-positive endothelial cells in the outer zones of the paracortex of human lymph nodes. Am J Pathol. 2004;164:1587–95.
pubmed: 15111305
pmcid: 1615649
doi: 10.1016/S0002-9440(10)63717-0
Askmyr D, Abolhalaj M, Gomez Jimenez D, Greiff L, Lindstedt M, Lundberg K. Pattern recognition receptor expression and maturation profile of dendritic cell subtypes in human tonsils and lymph nodes. Hum Immunol. 2021;82:976–81.
pubmed: 34511272
doi: 10.1016/j.humimm.2021.08.007
Min J, Yang D, Kim M, Haam K, Yoo A, Choi JH, et al. Inflammation induces two types of inflammatory dendritic cells in inflamed lymph nodes. Exp Mol Med. 2018;50:e458.
pubmed: 29546878
pmcid: 5898896
doi: 10.1038/emm.2017.292
Park SJ, Nakagawa T, Kitamura H, Atsumi T, Kamon H, Sawa S, et al. Il-6 regulates in vivo dendritic cell differentiation through stat3 activation. J Immunol. 2004;173:3844–54.
pubmed: 15356132
doi: 10.4049/jimmunol.173.6.3844
Kirkling ME, Cytlak U, Lau CM, Lewis KL, Resteu A, Khodadadi-Jamayran A, et al. Notch signaling facilitates in vitro generation of cross-presenting classical dendritic cells. Cell Rep. 2018;23:3658e6-72e6.
doi: 10.1016/j.celrep.2018.05.068
Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI. Regulation of dendritic-cell differentiation by bone marrow stroma via different notch ligands. Blood. 2007;109:507–15.
pubmed: 16973960
pmcid: 1766374
doi: 10.1182/blood-2006-05-025601
Fasnacht N, Huang HY, Koch U, Favre S, Auderset F, Chai Q, et al. Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct notch-regulated immune responses. J Exp Med. 2014;211:2265–79.
pubmed: 25311507
pmcid: 4203954
doi: 10.1084/jem.20132528
van Pul KM, Vuylsteke R, van de Ven R, Te Velde EA, Rutgers EJT, van den Tol PM, et al. Selectively hampered activation of lymph node-resident dendritic cells precedes profound t cell suppression and metastatic spread in the breast cancer sentinel lymph node. J Immunother Cancer. 2019;7:133.
pubmed: 31118093
pmcid: 6530094
doi: 10.1186/s40425-019-0605-1
van Pul KM, Fransen MF, van de Ven R, de Gruijl TD. Immunotherapy goes local: the central role of lymph nodes in driving tumor infiltration and efficacy. Front Immunol. 2021;12:643291.
pubmed: 33732264
pmcid: 7956978
doi: 10.3389/fimmu.2021.643291
Angel CE, Chen CJ, Horlacher OC, Winkler S, John T, Browning J, et al. Distinctive localization of antigen-presenting cells in human lymph nodes. Blood. 2009;113:1257–67.
pubmed: 18987360
pmcid: 2687552
doi: 10.1182/blood-2008-06-165266
Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human cd141+ (bdca-3)+ dendritic cells (dcs) represent a unique myeloid dc subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–60.
pubmed: 20479116
pmcid: 2882828
doi: 10.1084/jem.20092140
Saalbach A, Klein C, Schirmer C, Briest W, Anderegg U, Simon JC. Dermal fibroblasts promote the migration of dendritic cells. J Invest Dermatol. 2010;130:444–54.
pubmed: 19710690
doi: 10.1038/jid.2009.253
Hoves S, Krause SW, Schutz C, Halbritter D, Scholmerich J, Herfarth H, Fleck M. Monocyte-derived human macrophages mediate anergy in allogeneic t cells and induce regulatory t cells. J Immunol. 2006;177:2691–8.
pubmed: 16888031
doi: 10.4049/jimmunol.177.4.2691
Ugur M, Labios RJ, Fenton C, Knopper K, Jobin K, Imdahl F, et al. Lymph node medulla regulates the spatiotemporal unfolding of resident dendritic cell networks. Immunity. 2023;56:1778e10-93e10.
doi: 10.1016/j.immuni.2023.06.020
Hernandez-Lopez C, Valencia J, Hidalgo L, Martinez VG, Zapata AG, Sacedon R, et al. Cxcl12/cxcr4 signaling promotes human thymic dendritic cell survival regulating the bcl-2/bax ratio. Immunol Lett. 2008;120:72–8.
pubmed: 18692524
doi: 10.1016/j.imlet.2008.07.006
Tiberio L, Del Prete A, Schioppa T, Sozio F, Bosisio D, Sozzani S. Chemokine and chemotactic signals in dendritic cell migration. Cell Mol Immunol. 2018;15:346–52.
pubmed: 29563613
pmcid: 6052805
doi: 10.1038/s41423-018-0005-3
Sixt M, Kanazawa N, Selg M, Samson T, Roos G, Reinhardt DP, et al. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the t cell area of the lymph node. Immunity. 2005;22:19–29.
pubmed: 15664156
doi: 10.1016/j.immuni.2004.11.013
van Tienderen GS, van Beek MEA, Schurink IJ, Rosmark O, Roest HP, Tieleman J, et al. Modelling metastatic colonization of cholangiocarcinoma organoids in decellularized lung and lymph nodes. Front Oncol. 2022;12:1101901.
pubmed: 36741736
doi: 10.3389/fonc.2022.1101901
Morgado FN, da Silva AVA, Porrozzi R. Infectious diseases and the lymphoid extracellular matrix remodeling: a focus on conduit system. Cells. 2020;9:725.
pubmed: 32187985
pmcid: 7140664
doi: 10.3390/cells9030725
Sutherland TE, Dyer DP, Allen JE. The extracellular matrix and the immune system: a mutually dependent relationship. Science. 2023;379:eabp8964.
pubmed: 36795835
doi: 10.1126/science.abp8964
Choi YS, Jeong E, Lee JS, Kim SK, Jo SH, Kim YG, et al. Immunomodulatory scaffolds derived from lymph node extracellular matrices. ACS Appl Mater Interfaces. 2021;13:14037–49.
pubmed: 33745275
doi: 10.1021/acsami.1c02542
Rasaiyaah J, Noursadeghi M, Kellam P, Chain B. Transcriptional and functional defects of dendritic cells derived from the mutz-3 leukaemia line. Immunology. 2009;127:429–41.
pubmed: 19538250
pmcid: 2712111
doi: 10.1111/j.1365-2567.2008.03018.x
Lundberg K, Albrekt AS, Nelissen I, Santegoets S, de Gruijl TD, Gibbs S, Lindstedt M. Transcriptional profiling of human dendritic cell populations and models–unique profiles of in vitro dendritic cells and implications on functionality and applicability. PLoS One. 2013;8:e52875.
pubmed: 23341914
pmcid: 3544800
doi: 10.1371/journal.pone.0052875
Santegoets SJ, van den Eertwegh AJ, van de Loosdrecht AA, Scheper RJ, de Gruijl TD. Human dendritic cell line models for dc differentiation and clinical dc vaccination studies. J Leukoc Biol. 2008;84:1364–73.
pubmed: 18664532
doi: 10.1189/jlb.0208092
Santegoets SJ, Schreurs MW, Masterson AJ, Liu YP, Goletz S, Baumeister H, et al. In vitro priming of tumor-specific cytotoxic t lymphocytes using allogeneic dendritic cells derived from the human mutz-3 cell line. Cancer Immunol Immunother. 2006;55:1480–90.
pubmed: 16468034
doi: 10.1007/s00262-006-0142-x
Santegoets SJ, Masterson AJ, van der Sluis PC, Lougheed SM, Fluitsma DM, van den Eertwegh AJ, et al. A cd34(+) human cell line model of myeloid dendritic cell differentiation: evidence for a cd14(+)cd11b(+) langerhans cell precursor. J Leukoc Biol. 2006;80:1337–44.
pubmed: 16959899
doi: 10.1189/jlb.0206111
Santegoets SJ, Bontkes HJ, Stam AG, Bhoelan F, Ruizendaal JJ, van den Eertwegh AJ, et al. Inducing antitumort cell immunity: comparative functional analysis of interstitial versus langerhans dendritic cells in a human cell line model. J Immunol. 2008;180:4540–9.
pubmed: 18354176
doi: 10.4049/jimmunol.180.7.4540
Ouwehand K, Spiekstra SW, Waaijman T, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. Ccl5 and ccl20 mediate immigration of langerhans cells into the epidermis of full thickness human skin equivalents. Eur J Cell Biol. 2012;91:765–73.
pubmed: 22857950
doi: 10.1016/j.ejcb.2012.06.004
Ouwehand K, Oosterhoff D, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. Irritant-induced migration of langerhans cells coincides with an il-10-dependent switch to a macrophage-like phenotype. J Invest Dermatol. 2011;131:418–25.
pubmed: 21068755
doi: 10.1038/jid.2010.336
Park SM, Angel CE, McIntosh JD, Brooks AE, Middleditch M, Chen CJ, et al. Sphingosine-1-phosphate lyase is expressed by cd68+ cells on the parenchymal side of marginal reticular cells in human lymph nodes. Eur J Immunol. 2014;44:2425–36.
pubmed: 24825162
doi: 10.1002/eji.201344158