Detection, Monitoring, and Mitigation of Drug-Induced Nephrotoxicity: A Pragmatic Approach.

Acute kidney injury Biomarkers Chronic kidney disease Creatinine Drug development Drug-induced nephrotoxicity Glomerular filtration rate Monitoring Nephrotoxicity

Journal

Therapeutic innovation & regulatory science
ISSN: 2168-4804
Titre abrégé: Ther Innov Regul Sci
Pays: Switzerland
ID NLM: 101597411

Informations de publication

Date de publication:
18 Dec 2023
Historique:
received: 28 07 2023
accepted: 14 11 2023
medline: 19 12 2023
pubmed: 19 12 2023
entrez: 19 12 2023
Statut: aheadofprint

Résumé

The kidneys play a pivotal role in elimination of most drugs; therefore, a comprehensive understanding of renal physiology and pathology is important for those involved in drug development. High filtration capacity and metabolic activity make the kidneys vulnerable to drug-induced nephrotoxicity (DIN). Acute DIN may manifest on a background of renal impairment that has resulted from underlying disease, previously administered nephrotoxic medications, congenital renal abnormalities, or the natural aging process. The ability of the kidneys to compensate for DIN depends on the degree of pre-insult renal function. Therefore, it can be difficult to identify. The discovery and development of novel biomarkers that can diagnose kidney damage earlier and more accurately than current clinical measures and may be effective in detecting DIN. The goal of this manuscript is to provide a pragmatic and evidence-based supportive guidance for the early identification and management of DIN during the drug development process for clinical trial participants of all ages. The overall objective is to minimize the impact of DIN on kidney function and to collect renal safety data enabling risk analysis and mitigation.

Identifiants

pubmed: 38110788
doi: 10.1007/s43441-023-00599-x
pii: 10.1007/s43441-023-00599-x
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s).

Références

Reidy KJ, Rosenblum ND. Cell and molecular biology of kidney development. Semin Nephrol. 2009;29(4):321–37.
doi: 10.1016/j.semnephrol.2009.03.009 pubmed: 19615554 pmcid: 2789488
Antonucci R, Fanos V. NSAIDs, prostaglandins and the neonatal kidney. J Matern Fetal Neonatal Med. 2009;22(Suppl 3):23–6.
doi: 10.1080/14767050903184447 pubmed: 19701861
Perazella MA. Pharmacology behind Common Drug Nephrotoxicities. Clin J Am Soc Nephrol. 2018;13(12):1897–908.
doi: 10.2215/CJN.00150118 pubmed: 29622670 pmcid: 6302342
Choudhury D, Ahmed Z. Drug-associated renal dysfunction and injury. Nat Clin Pract Nephrol. 2006;2(2):80–91.
doi: 10.1038/ncpneph0076 pubmed: 16932399
Longo D, Fauci A, Kasper D, et al. Harrison’s Principles of Internal Medicine. 18th ed. New York: McGraw-Hill Professional; 2011.
Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.
doi: 10.1186/cc2872 pubmed: 15312219 pmcid: 522841
Mehta RL, Kellum JA, Shah SV, et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care. 2007;11(2):R31.
doi: 10.1186/cc5713 pubmed: 17331245 pmcid: 2206446
Kidney Disease: Improving Global Outcomes (KDIGO). Acute Kidney Injury Work Group. KDIGO clinical practice guidelines for acute kidney injury. Kidney Int Suppl. 2012;2:1.
Bagshaw SM, Gibney RT. Conventional markers of kidney function. Crit Care Med. 2008;36(4 Suppl):S152–8.
doi: 10.1097/CCM.0b013e318168c613 pubmed: 18382187
Leblanc M, Kellum JA, Gibney RT, Lieberthal W, Tumlin J, Mehta R. Risk factors for acute renal failure: inherent and modifiable risks. Curr Opin Crit Care. 2005;11(6):533–6.
doi: 10.1097/01.ccx.0000183666.54717.3d pubmed: 16292055
Shemesh O, Golbetz H, Kriss JP, Myers BD. Limitations of creatinine as a filtration marker in glomerulopathic patients. Kidney Int. 1985;28(5):830–8.
doi: 10.1038/ki.1985.205 pubmed: 2418254
Ribichini F, Gambaro G, Graziani MS, et al. Comparison of serum creatinine and cystatin C for early diagnosis of contrast-induced nephropathy after coronary angiography and interventions. Clin Chem. 2012;58(2):458–64.
doi: 10.1373/clinchem.2011.170464 pubmed: 22166252
Abrahamson M, Olafsson I, Palsdottir A, et al. Structure and expression of the human cystatin C gene. Biochem J. 1990;268(2):287–94.
doi: 10.1042/bj2680287 pubmed: 2363674 pmcid: 1131430
Han WK, Bonventre JV. Biologic markers for the early detection of acute kidney injury. Curr Opin Crit Care. 2004;10(6):476–82.
doi: 10.1097/01.ccx.0000145095.90327.f2 pubmed: 15616389
Herget-Rosenthal S, Marggraf G, Hüsing J, et al. Early detection of acute renal failure by serum cystatin C. Kidney Int. 2004;66(3):1115–22.
doi: 10.1111/j.1523-1755.2004.00861.x pubmed: 15327406
Knight EL, Verhave JC, Spiegelman D, et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 2004;65(4):1416–21.
doi: 10.1111/j.1523-1755.2004.00517.x pubmed: 15086483
Dieterle F, Sistare F, Goodsaid F, et al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat Biotechnol. 2010;28(5):455–62.
doi: 10.1038/nbt.1625 pubmed: 20458315
Sayer J, McCarthy MP, Schmidt JD. Identification and significance of dysmorphic versus isomorphic hematuria. J Urol. 1990;143(3):545–8.
doi: 10.1016/S0022-5347(17)40015-2 pubmed: 1689397
Inker LA, Eneanya ND, Coresh J, et al. New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med. 2021;385(19):1737–49.
doi: 10.1056/NEJMoa2102953 pubmed: 34554658 pmcid: 8822996
Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate [published correction appears in Ann Intern Med. 2011 Sep 20;155(6):408]. Ann Intern Med. 2009;150(9):604–612.
Schwartz GJ, Haycock GB, Edelmann CM Jr, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976;58(2):259–63.
doi: 10.1542/peds.58.2.259 pubmed: 951142
Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child. 1976;51(11):875–8.
doi: 10.1136/adc.51.11.875 pubmed: 1008594 pmcid: 1546071
Schwartz GJ, Muñoz A, Schneider MF, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37.
doi: 10.1681/ASN.2008030287 pubmed: 19158356 pmcid: 2653687
Vaidya VS, Ferguson MA, Bonventre JV. Biomarkers of acute kidney injury. Annu Rev Pharmacol Toxicol. 2008;48:463–93.
doi: 10.1146/annurev.pharmtox.48.113006.094615 pubmed: 17937594 pmcid: 2742480
Akcan-Arikan A, Zappitelli M, Loftis LL, et al. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 2007;71(10):1028–35.
doi: 10.1038/sj.ki.5002231 pubmed: 17396113
Sutherland SM, Byrnes JJ, Kothari M, et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol. 2015;10(4):554–61.
doi: 10.2215/CJN.01900214 pubmed: 25649155 pmcid: 4386245
Flynn JT, Kaelber DC, Baker-Smith CM, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents [published correction appears in Pediatrics. 2017;140(6):e20173035] [published correction appears in Pediatrics. 2018;142(3):e20181739]. Pediatrics. 2017;140(3):e20171904.
Launay-Vacher V, Chatelut E, Lichtman SM, et al. Renal insufficiency in elderly cancer patients: International Society of Geriatric Oncology clinical practice recommendations. Ann Oncol. 2007;18(8):1314–21.
doi: 10.1093/annonc/mdm011 pubmed: 17631561
Aapro M, Launay-Vacher V. Importance of monitoring renal function in patients with cancer. Cancer Treat Rev. 2012;38(3):235–40.
doi: 10.1016/j.ctrv.2011.05.001 pubmed: 21605937
Xiong Y, Wang Q, Liu Y, et al. Renal adverse reactions of tyrosine kinase inhibitors in the treatment of tumours: a Bayesian network meta-analysis. Front Pharmacol. 2022;13:1023660.
doi: 10.3389/fphar.2022.1023660 pubmed: 36408227 pmcid: 9669664
Baxmann AC, Ahmed MS, Marques NC, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008;3(2):348–54.
doi: 10.2215/CJN.02870707 pubmed: 18235143 pmcid: 2390952
Carroll MF, Temte JL. Proteinuria in adults: a diagnostic approach. Am Fam Phys. 2000;62(6):1333–40.
Baum N, Dichoso CC, Carlton CE. Blood urea nitrogen and serum creatinine. Physiology and interpretations. Urology. 1975;5(5):583–8.
doi: 10.1016/0090-4295(75)90105-3 pubmed: 1093306

Auteurs

Nicola Antognini (N)

Novartis Pharma AG, Basel, Switzerland.

Ronald Portman (R)

Novartis Pharmaceuticals, East Hanover, NJ, USA.

Victor Dong (V)

Novartis Pharmaceuticals, East Hanover, NJ, USA.

Nicholas J Webb (NJ)

Novartis Pharma AG, Basel, Switzerland.

Deepa H Chand (DH)

Novartis Pharmaceuticals, East Hanover, NJ, USA. deepa.chand@novartis.com.
University of Illinois College of Medicine-Peoria, Children's Hospital of Illinois, Peoria, IL, USA. deepa.chand@novartis.com.

Classifications MeSH