Transient fertilization of a post-Sturtian Snowball ocean margin with dissolved phosphate by clay minerals.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
18 Dec 2023
Historique:
received: 03 08 2023
accepted: 05 12 2023
medline: 19 12 2023
pubmed: 19 12 2023
entrez: 18 12 2023
Statut: epublish

Résumé

Marine sedimentary rocks deposited across the Neoproterozoic Cryogenian Snowball interval, ~720-635 million years ago, suggest that post-Snowball fertilization of shallow continental margin seawater with phosphorus accelerated marine primary productivity, ocean-atmosphere oxygenation, and ultimately the rise of animals. However, the mechanisms that sourced and delivered bioavailable phosphate from land to the ocean are not fully understood. Here we demonstrate a causal relationship between clay mineral production by the melting Sturtian Snowball ice sheets and a short-lived increase in seawater phosphate bioavailability by at least 20-fold and oxygenation of an immediate post-Sturtian Snowball ocean margin. Bulk primary sediment inputs and inferred dissolved seawater phosphate dynamics point to a relatively low marine phosphate inventory that limited marine primary productivity and seawater oxygenation before the Sturtian glaciation, and again in the later stages of the succeeding interglacial greenhouse interval.

Identifiants

pubmed: 38110448
doi: 10.1038/s41467-023-44240-9
pii: 10.1038/s41467-023-44240-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8418

Subventions

Organisme : EC | EC Seventh Framework Programm | FP7 Ideas: European Research Council (FP7-IDEAS-ERC - Specific Programme: "Ideas" Implementing the Seventh Framework Programme of the European Community for Research, Technological Development and Demonstration Activities (2007 to 2013))
ID : 336092

Informations de copyright

© 2023. The Author(s).

Références

Planavsky, N. J. et al. The evolution of the marine phosphate reservoir. Nature 467, 1088–1090 (2010).
pubmed: 20981096 doi: 10.1038/nature09485
Reinhard, C. T. et al. Evolution of the global phosphate cycle. Nature 541, 386–389 (2017).
pubmed: 28002400 doi: 10.1038/nature20772
Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).
pubmed: 24553238 doi: 10.1038/nature13068
Gerard, F. Clay minerals, iron/aluminium oxides, and their contribution to phosphate adsorption in soils — a myth revisited. Geoderma 262, 213–226 (2016).
doi: 10.1016/j.geoderma.2015.08.036
Hao, W. et al. The kaolinite shuttle: A mechanistic link between the Great Oxidation Event and Earth’s largest carbon burial event. Nat. Comm. 12, 2944 (2021).
doi: 10.1038/s41467-021-23304-8
Froelich, P. N. Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism 1. Limnol. Oceanogr. 33, 649–668 (1988).
Hoffman, P. F. et al. Snowball Earth climate dynamics and Cryogenian geology-geobiology. Sci. Adv. 3, e1600983 (2017).
pubmed: 29134193 pmcid: 5677351 doi: 10.1126/sciadv.1600983
Hawkings, J. et al. The Greenland ice sheet as a hot spot of phosphorus weathering and export in the Arctic. Glob. Biogeochem. Cycles 30, 191–210 (2015).
doi: 10.1002/2015GB005237
Mavris, C. et al. Clay mineral evolution along a soil chronosequence in an Alpine proglacial area. Geoderma 165, 106–117 (2011).
doi: 10.1016/j.geoderma.2011.07.010
Violante, A. & Pigna, M. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J. 66, 1788–1796 (2002).
doi: 10.2136/sssaj2002.1788
Némery, J. & Garnier, J. The typical features of particulate phosphorus in the Seine Estuary (France). Hydrobiologia 588, 271–290 (2007).
doi: 10.1007/s10750-007-0669-7
Ajmal, Z. et al. Phosphate removal from aqueous solution using iron oxides: adsorption, desorption and regeneration characteristics. J. Colloid Inter. Sci. 528, 145–155 (2018).
doi: 10.1016/j.jcis.2018.05.084
Daou, T. J. et al. Phosphate adsorption properties of magnetite-based nanoparticles. Chem. Mat. 19, 4494–4505 (2007).
doi: 10.1021/cm071046v
Kim, J., Li, W., Philips, B. L. & Grey, C. P. Phosphate adsorption on the iron oxyhydroxides goethite (a-FeOOH), akaganeite (b-FeOOH), and lepidocrocite (g-FeOOH): a
doi: 10.1039/c1ee02093e
Liu, J. et al. Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite. Geoderma 383, 114799 (2021).
doi: 10.1016/j.geoderma.2020.114799
Liang, X. et al. Competitive adsorption geometries for the arsenate As(V) and phosphate P(V) oxyanions on magnetite surfaces: Experiments and theory. Am. Min. 106, 374–388 (2021).
doi: 10.2138/am-2020-7350
Warr, L. N. Earth’s clay mineral inventory and its climate interaction: A quantitative assessment. Earth-Sci. Rev. 234, 104198 (2022).
doi: 10.1016/j.earscirev.2022.104198
Arnaud, E. & Fairchild, I. J. The Port Askaig Formation, Dalradian Supergroup, Scotland. Geol. Soc. Lond. Mem. 36, 635–642 (2011).
doi: 10.1144/M36.62
Brasier, M. D. & Shields, G. Neoproterozoic chemostratigraphy and correlation of the Port Askaig glaciation, Dalradian Supergroup of Scotland. J. Geol. Soc. Lond. 157, 909–914 (2000).
doi: 10.1144/jgs.157.5.909
Thomas, C. W., Graham, C. M., Ellam, R. M. & Fallick, A. E.
doi: 10.1144/0016-764903-001
Fairchild, I. J. et al. Tonian-Cryogenian boundary sections of Argyll, Scotland. Pre. Res. 319, 37–64 (2018).
doi: 10.1016/j.precamres.2017.09.020
Prave, T., Fallick, A. E., Thomas, C. W. & Graham, C. M. A composite C-isotope profile for the Neoproterozoic Dalradian Supergroup of Scotland and Ireland. J. Geol. Soc. 166, 845–857 (2009).
doi: 10.1144/0016-76492008-131
Sawaki, Y. et al.
doi: 10.1016/j.precamres.2010.02.021
Skelton, A. D. L., Valley, J. V., Graham, C. M., Bickle, M. J. & Fallick, A. E. The correlation of reaction and isotope fronts and the mechanism of metamorphic fluid flow. Contrib. Min. Petrol. 138, 364–375 (2000).
doi: 10.1007/s004100050569
Pecoits, E. et al. Petrography and geochemistry of the Dales Gorge banded iron formation: Paragenetic sequence, source and implications for palaeo-ocean chemistry. Pre. Res. 172, 163–187 (2009).
doi: 10.1016/j.precamres.2009.03.014
Galan E. Genesis of clay minerals. In handbook of clay science (Edited by F. Bergaya, B. K. G. Theng and G. Lagaly. Developments in Clay Science, Vol. 1 Elsevier Ltd (2006).
Konhauser, K. O. et al. Aerobic bacteria pyrite oxidation and acid rock drainage during the Great Oxidation Event. Nature 478, 369–373 (2011).
pubmed: 22012395 doi: 10.1038/nature10511
Chi Fru, E. et al. The rise of oxygen-driven arsenic cycling at ca. 2.48 Ga. Geology 47, 243–246 (2019).
doi: 10.1130/G45676.1
Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of result. J. Paleolim. 25, 101–110 (2015).
doi: 10.1023/A:1008119611481
Ruttenberg, K. & Berner, R. A. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments. Geochim. Cosmo. Acta 57, 991–1007 (1993).
doi: 10.1016/0016-7037(93)90035-U
Dodd, M. S. et al. Development of carbonate-associated phosphate (CAP) as a proxy for reconstructing ancient ocean phosphate levels. Geochim. Cosmo. Acta 301, 46–68 (2021).
doi: 10.1016/j.gca.2021.02.038
Akcil, A. & Koldas, S. Acid Mine Drainage (AMD): causes, treatment and case studies. J. Clean. Prod. 14, 1139–1144 (2006).
doi: 10.1016/j.jclepro.2004.09.006
Panahi, A. & Young, G. M. A geochemical investigation into the provenance of the Neoproterozoic Port Askaig Tillite, Dalradian Supergroup, western Scotland. Pre. Res. 85, 81–96 (1997).
doi: 10.1016/S0301-9268(97)00033-8
Raiswell, R. et al. The iron paleoredox proxies: A guide to the pitfalls, problems and proper practice. Am. J. Sci. 318, 491–526 (2018).
doi: 10.2475/05.2018.03
Poulton, S. W. & Canfield, D. E. Development of a sequential extraction procedure for iron: Implications for iron partitioning in continentally derived particulates. Chem. Geol. 214, 209–221 (2005).
doi: 10.1016/j.chemgeo.2004.09.003
Poulton, S. W. & Canfield, D. E. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).
doi: 10.2113/gselements.7.2.107
Feely, R. A., Trefry, J. H., Lebon, G. T. & German, C. R. The relationship between P/Fe and V/Fe ratios in hydrothermal precipitates and dissolved phosphate in seawater. Geophys. Res. Lett. 25, 2253–2256 (1998).
doi: 10.1029/98GL01546
Bjerrum, C. J. & Canfield, D. E. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417, 159–162 (2002).
pubmed: 12000956 doi: 10.1038/417159a
Wheat, C. G., Feely, R. A. & Mottl, M. J. Phosphate removal by oceanic hydrothermal processes: An update of the phosphorus budget in the oceans. Geochim. Cosmo. Acta 60, 3593–3608 (1996).
doi: 10.1016/0016-7037(96)00189-5
Thompson, J. et al. Development of a modified SEDEX phosphorus speciation method for ancient rocks and modern iron-rich sediments. Chem. Geol. 524, 383–395 (2019).
doi: 10.1016/j.chemgeo.2019.07.003
Lyons, T. W. & Severman, S. A critical look at iron paleoredox proxies: New insights from modern euxinic marine basins. Geochim. Cosmo. Acta 70, 5698–5722 (2006).
doi: 10.1016/j.gca.2006.08.021
Lyons, T. W., Werne, J. P., Hollander, D. J. & Murray, R. W. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem. Geol. 195, 131–157 (2003).
doi: 10.1016/S0009-2541(02)00392-3
Hepburn, L. E., Butler, I. B., Boyce, A. & Schröder, C. The use of operationally-defined sequential Fe extraction methods for mineralogical applications: A cautionary tale from Mössbauer spectroscopy. Chem. Geol. 543, 119584 (2020).
doi: 10.1016/j.chemgeo.2020.119584
Han, Z. et al. Using Zn and Ni behavior during magnetite precipitation in banded iron formations to determine its biological or abiotic origin. Earth Plan. Sci. Letts. 568, 117052 (2022).
doi: 10.1016/j.epsl.2021.117052
Halama, M., Swanner, E. D., Konhauser, K. O. & Kappler, A. Evaluation of siderite and magnetite formation in BIFs by pressure–temperature experiments of Fe(III) minerals and microbial biomass. Earth Planet. Sci. Lett. 450, 243–253 (2016).
doi: 10.1016/j.epsl.2016.06.032
Halevy, I., Alesker, M., Schuster, E. M., Popovitzbiro, R. & Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 10, 135–139 (2017).
doi: 10.1038/ngeo2878
Han, X. et al. Effect of microbial biomass and humic acids on abiotic and biotic magnetite formation. Environ. Sci. Technol. 54, 4121–4130 (2020).
pubmed: 32129607 doi: 10.1021/acs.est.9b07095
Konhauser, K. O., Newman, D. K. & Kappler, A. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3, 167–177 (2005).
doi: 10.1111/j.1472-4669.2005.00055.x
Zegeye, A. et al. Green rust formation controls nutrient availability in a ferruginous water column. Geology 40, 599–602 (2012).
doi: 10.1130/G32959.1
Hansen, C. R. H. & Poulsen, I. F. Interaction of synthetic sulphate “green rust” with phosphate and the crystallization of vivianite. Clays Clay Miner. 47, 312–318 (1999).
doi: 10.1346/CCMN.1999.0470307
Chi Fru, E., Hemmingsson, C., Holm, M., Chiu, B. & Iñiguez, E. Arsenic-induced phosphate limitation under experimental Early Proterozoic oceanic conditions. Earth Plan. Sci. Lett. 434, 52–63 (2016).
doi: 10.1016/j.epsl.2015.11.009
Hemmingsson, C., Pitcairn, I. & Chi Fru, E. Evaluation of phosphate-uptake mechanisms by Fe(III) (oxyhydr)oxides in Early Proterozoic oceanic conditions. Environ. Chem. 15, 18–28 (2018).
doi: 10.1071/EN17124
Barthélémy, K., Naille, S., Despas, C., Ruby, C. & Mallet, M. Carbonated ferric green rust as a new material for efficient phosphate removal. J. Colloid Interface Sci. 384, 121–127 (2012).
pubmed: 22818797 doi: 10.1016/j.jcis.2012.06.038
Konhauser, K. O., Lalonde, S., Amskold, L. & Holland, H. D. Was there really an Archean phosphate crisis? Science 315, 1234 (2007).
pubmed: 17332403 doi: 10.1126/science.1136328
Frost, C. D., von Blanckenburg, F., Schoenberg, R., Frost, B. R. & Swapp, S. M. Preservation of Fe isotope heterogeneities during diagenesis and metamorphism of banded iron formation. Contrib. Miner. Petrol. 153, 211–235 (2007).
doi: 10.1007/s00410-006-0141-0
Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Miner. 90, 1473 (2005).
doi: 10.2138/am.2005.1871
Rasmussen, B. & Muhling, J. R. Making magnetite late again: evidence for widespread magnetite growth by thermal decomposition of siderite in Hamersley banded iron formations. Pre. Res. 306, 64–93 (2018).
doi: 10.1016/j.precamres.2017.12.017
Hopwood, M. J. et al. Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347–1383 (2020).
doi: 10.5194/tc-14-1347-2020
Boyle, E. A., Edmond, J. M. & Sholkovitz, E. R. Mechanism of iron removal in estuaries, 1477. Geochim. Cosmochim. Acta 4, 1313–1324 (1977).
doi: 10.1016/0016-7037(77)90075-8
Planavsky, N. et al. Iron isotope composition of some Archean and Proterozoic iron formations. Geochim. Cosmochim. Acta 80, 158–169 (2012).
doi: 10.1016/j.gca.2011.12.001
Gnanaprakash, G. et al. Effect of initial pH and temperature of iron salt solutions on formation of magnetite nanoparticles. Mat. Chem. Phy. 103, 168–175 (2007).
doi: 10.1016/j.matchemphys.2007.02.011
Pang, S. C., Chin, S. F. & Anderson, M. A. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential. J. Colloid Inter. Sci. 311, 94–101 (2007).
doi: 10.1016/j.jcis.2007.02.058
Clarkson, M. O., Poulton, S. W., Guilbaud, R. & Wood, R. A. Assessing the utility of Fe/Al and Fe-speciation to record water column redox conditions in carbonate-rich sediments. Chem. Geol. 382, 111–122 (2014).
doi: 10.1016/j.chemgeo.2014.05.031
Alcott, L. J., Mills, J. W. & Poulton, S. W. Stepwise Earth oxygenation is an inherent property of global biogeochemical cycling. Science 6471, 1333–1337 (2019).
doi: 10.1126/science.aax6459
Slomp, C. P. & Van Cappellen, P. The global marine phosphorus cycle: sensitivity to the oceanic circulation. Biogeosciences 4, 155–171 (2007).
doi: 10.5194/bg-4-155-2007
Macdonald, M. L., Wadham, J. L., Telling, J. & Skidmore, M. L. Glacial erosion liberates lithologic energy sources for microbes and acidity for chemical weathering beneath glaciers and ice sheets. Front. Earth Sci. 6, 212 (2018).
doi: 10.3389/feart.2018.00212
Huang, K. J. et al. Episode of intense chemical weathering during the termination of the 635 Ma Marinoan glaciation. Proc. Natl Acad. Sci. Usa. 113, 14904–14909 (2016).
pubmed: 27956606 pmcid: 5206532 doi: 10.1073/pnas.1607712113
Smith, E. A., Mayfield, C. I. & Wong, P. T. S. Physical and chemical characterization of selected natural apatites in synthetic and natural aqueous solutions. Water Air Soil Pollut. 8, 401–415 (1977).
doi: 10.1007/BF00228655
Moore D. M., Reynolds Jr R. C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd edition. Oxford University Press, New York. (1997).
Johns, W. D., Grim, R. E. & Bradley, W. F. Quantitative estimations of clay minerals by diffraction methods. J. Sed. Petrol. 24, 242–251 (1954).
Chi Fru, E. et al. Early Neoproterozoic oxygenation dynamics along the northern margin of the West African Craton, Anti-Atlas Mountains, Morocco. Chem. Geol. 581, 120404 (2021).
doi: 10.1016/j.chemgeo.2021.120404
Wojdyr, M. Fityk: a general-purpose peak fitting program. J. Appl. Crystallogr. 43, 1126–1128 (2010).
doi: 10.1107/S0021889810030499
Tribovillard, N., Algeo, T. J., Lyons, T. & Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol. 232, 12–32 (2006).
doi: 10.1016/j.chemgeo.2006.02.012
Rudnick R. L. & Gao S. Composition of the continental crust. In The Crust, vol. 3 (ed. Rudnick R. L.). Elsevier, 1-64 (2003).

Auteurs

Ernest Chi Fru (EC)

College of Physical and Engineering Sciences, School of Earth and Environmental Sciences, Centre for Geobiology and Geochemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK. ChiFruE@Cardiff.ac.uk.

Jalila Al Bahri (JA)

College of Physical and Engineering Sciences, School of Earth and Environmental Sciences, Centre for Geobiology and Geochemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK.

Christophe Brosson (C)

College of Physical and Engineering Sciences, School of Earth and Environmental Sciences, Centre for Geobiology and Geochemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK.

Olabode Bankole (O)

Université de Poitiers UMR 7285-CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers - 5, rue Albert Turpin (Bât B35), 86073, Poitiers, cedex, France.

Jérémie Aubineau (J)

Géosciences Environnement Toulouse, CNRS UMR 5563 (CNRS/UPS/IRD/CNES), Université de Toulouse, Observatoire Midi-Pyrénées, Toulouse, France.

Abderrazzak El Albani (A)

Université de Poitiers UMR 7285-CNRS, Institut de Chimie des Milieux et Matériaux de Poitiers - 5, rue Albert Turpin (Bât B35), 86073, Poitiers, cedex, France.

Alexandra Nederbragt (A)

College of Physical and Engineering Sciences, School of Earth and Environmental Sciences, Centre for Geobiology and Geochemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK.

Anthony Oldroyd (A)

College of Physical and Engineering Sciences, School of Earth and Environmental Sciences, Centre for Geobiology and Geochemistry, Cardiff University, Cardiff, CF10 3AT, Wales, UK.

Alasdair Skelton (A)

Department of Geological Sciences, Stockholm University, 106 91, Stockholm, Sweden.

Linda Lowhagen (L)

Department of Geological Sciences, Stockholm University, 106 91, Stockholm, Sweden.

David Webster (D)

Department of Geological Sciences, Stockholm University, 106 91, Stockholm, Sweden.

Wilson Y Fantong (WY)

Institute of Geological and Mining Research (IRGM), Box 4110, Yaoundé, Cameroon.

Benjamin J W Mills (BJW)

School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

Lewis J Alcott (LJ)

School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

Kurt O Konhauser (KO)

Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3, Canada.

Timothy W Lyons (TW)

Department of Earth and Planetary Sciences, University of California, Riverside, CA, 92521, USA.

Classifications MeSH