A liquid chromatography-mass spectrometry method for the enantioselective multiresidue determination of nine chiral agrochemicals in urine using an enrichment procedure based on graphitized carbon black.

Carbon-based sorbents Chiral pesticides Enantioselective separations HPLC–MS/MS Solid-phase extraction Urine

Journal

Analytical and bioanalytical chemistry
ISSN: 1618-2650
Titre abrégé: Anal Bioanal Chem
Pays: Germany
ID NLM: 101134327

Informations de publication

Date de publication:
18 Dec 2023
Historique:
received: 07 11 2023
accepted: 06 12 2023
revised: 02 12 2023
medline: 18 12 2023
pubmed: 18 12 2023
entrez: 18 12 2023
Statut: aheadofprint

Résumé

Many agrochemicals are chiral molecules, and most of them are marketed as racemates or diastereomeric mixtures. Stereoisomers that are not the active enantiomer have little or no pesticidal activity and can exert serious toxic effects towards non-target organisms. Thus, investigating the possible exposure to different isomers of chiral pesticides is an urgent need. The present work was aimed at developing a new enantioselective high-performance liquid chromatography-mass spectrometry method for the simultaneous determination of nine chiral pesticides in urine. Two solid-phase extraction (SPE) procedures, based on different carbon-based sorbents (graphitized carbon black (GCB) and buckypaper (BP)), were developed and compared. By using GCB, all analytes were recovered with yields ranging from 60 to 97%, while BP allowed recoveries greater than 54% for all pesticides except those with acid characteristics. Baseline separation was achieved for the enantiomers of all target agrochemicals on a Lux Cellulose-2 column within 24 min under reversed-phase mode. The developed method was then validated according to the FDA guidelines for bioanalytical methods. Besides recovery, the other evaluated parameters were precision (7-15%), limits of detection (0.26-2.21 µg/L), lower limits of quantitation (0.43-3.68 µg/L), linear dynamic range, and sensitivity. Finally, the validated method was applied to verify the occurrence of the pesticide enantiomers in urine samples from occupationally exposed workers.

Identifiants

pubmed: 38108844
doi: 10.1007/s00216-023-05098-4
pii: 10.1007/s00216-023-05098-4
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Sapienza University of Rome, Start-up research project
ID : AR1221814C70F4A4

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.

Références

Massey A. Editorial: Silent Spring: can we fix wicked problems? Public Money Manag. 2022;42:53–4. https://doi.org/10.1080/09540962.2022.2003595 .
doi: 10.1080/09540962.2022.2003595
Huang Y, Luo X, Liu D, Du S, Yan A, Tang L. Pest control ability, technical guidance, and pesticide overuse: evidence from rice farmers in rural China. Environ Sci Pollut Res. 2021;28:39587–97. https://doi.org/10.1007/s11356-021-13607-0 .
doi: 10.1007/s11356-021-13607-0
U. States, E.P. Agency, A.P. Report, Environmental Protection Agency FISCAL YEAR 2020, (2021). https://nepis.epa.gov/Exe/ZyNET.exe/P100YLI1.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2016+Thru+2020&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C16thru20%5CTxt%5C00000017%5CP100YLI1.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL . Accessed Oct 2023.
Jeschke P. Current status of chirality in agrochemicals. Pest Manag Sci. 2018;74:2389–404. https://doi.org/10.1002/ps.5052 .
doi: 10.1002/ps.5052 pubmed: 29704299
Lucci E, Dal Bosco C, Antonelli L, Fanali C, Fanali S, Gentili A, Chankvetadze B. Enantioselective high-performance liquid chromatographic separations to study occurrence and fate of chiral pesticides in soil, water, and agricultural products. J Chromatogr A. 2022;1685: 463595. https://doi.org/10.1016/j.chroma.2022.463595 .
doi: 10.1016/j.chroma.2022.463595 pubmed: 36323104
Liu W, Tang M. Enantioselective activity and toxicity of chiral herbicides, in: M.N. Hasaneen (Ed.), Herbic. Mech. Mode Action, InTech, Rijeka. 2011: 63–80.
Joseph N, Propper CR, Goebel M, Henry S, Roy I, Kolok AS. Investigation of relationships between the geospatial distribution of cancer incidence and estimated pesticide use in the U.S. West. GeoHealth. 2022;6:1–15. https://doi.org/10.1029/2021GH000544 .
doi: 10.1029/2021GH000544
Facts and figures about toxic chemicals in agriculture 2022, 2022. https://eu.boell.org/PesticideAtlas . Accessed x Oct 2024.
Blair A, Zahm SH. Agricultural exposures and cancer. Environ Health Perspect. 1995;103:205–8. https://doi.org/10.1289/ehp.95103s8205 .
doi: 10.1289/ehp.95103s8205 pubmed: 8741784 pmcid: 1518967
Su LJ, Young SG, Collins J, Matich E, Hsu PC, Chiang TC. Geospatial assessment of pesticide concentration in ambient air and colorectal cancer incidence in Arkansas, 2013–2017, Int. J Environ Res Public Health. 2022;19. https://doi.org/10.3390/ijerph19063258 .
Omidakhsh N, Heck JE, Cockburn M, Ling C, Hershman JM, Harari A. Thyroid cancer and pesticide use in a central california agricultural area: a case control study. J Clin Endocrinol Metab. 2022;107:e3574–82. https://doi.org/10.1210/clinem/dgac413 .
doi: 10.1210/clinem/dgac413 pubmed: 35881539
de Albuquerque NCP, Carrão DB, Habenschus MD, de Oliveira ARM. Metabolism studies of chiral pesticides: a critical review. J Pharm Biomed Anal. 2018;147:89–109. https://doi.org/10.1016/j.jpba.2017.08.011 .
doi: 10.1016/j.jpba.2017.08.011 pubmed: 28844369
Gentili A, Marchese S, Perret D. MS techniques for analyzing phenols, their metabolites and transformation products of environmental interest. TrAC Trends in Anal Chem. 2008;27:888–903. https://doi.org/10.1016/j.trac.2008.07.008 .
doi: 10.1016/j.trac.2008.07.008
Chankvetadze B. Recent developments on polysaccharide-based chiral stationary phases for liquid-phase separation of enantiomers. J Chromatogr A. 2012;1269:26–51. https://doi.org/10.1016/j.chroma.2012.10.033 .
doi: 10.1016/j.chroma.2012.10.033 pubmed: 23141986
Chankvetadze B, Ikai T, Yamamoto C, Okamoto Y. High-performance liquid chromatographic enantioseparations on monolithic silica columns containing a covalently attached 3,5-dimethylphenylcarbamate derivative of cellulose. J Chromatogr A. 2004;1042:55–60. https://doi.org/10.1016/j.chroma.2004.05.011 .
doi: 10.1016/j.chroma.2004.05.011 pubmed: 15296388
Zhang H, Wang X, Wang X, Qian M, Xu M, Xu H, ... Zhuang S. Enantioselective determination of carboxyl acid amide fungicide mandipropamid in vegetables and fruits by chiral LC coupled with MS/MS. J Sep Sci. 2014;37(3): 211-218.
Li Y, Nie J, Zhang J, Xu G, Zhang H, Liu M, ... Yin N. Chiral fungicide penconazole: absolute configuration, bioactivity, toxicity, and stereoselective degradation in apples. Sci Total Environ. 2022;808: 152061.
Marchese S, Perret D, Gentili A, D’Ascenzo G, Faberi A. Determination of phenoxyacid herbicides and their phenolic metabolites in surface and drinking water. Rapid Commun Mass Spectrom. 2002;16:134–41. https://doi.org/10.1002/rcm.557 .
doi: 10.1002/rcm.557 pubmed: 11754259
D’Ascenzo G, Gentili A, Marchese S, Perret D. Development of a method based on liquid chromatography-electrospray mass spectrometry for analyzing imidazolinone herbicides in environmental water at part-per-trillion levels. J Chromatogr A. 1998;800:109–19. https://doi.org/10.1016/S0021-9673(97)00860-1 .
doi: 10.1016/S0021-9673(97)00860-1 pubmed: 9561758
Tomai P, Martinelli A, Morosetti S, Curini R, Fanali S, Gentili A. Oxidized buckypaper for stir-disc solid phase extraction: evaluation of several classes of environmental pollutants recovered from surface water samples. Anal Chem. 2018;90:6827–34. https://doi.org/10.1021/acs.analchem.8b00927 .
doi: 10.1021/acs.analchem.8b00927 pubmed: 29706074
Hennion M-C. Graphitized carbons for solid-phase extraction. J Chromatogr A. 2000;885:73–95. https://doi.org/10.1016/s0021-9673(00)00085-6 .
doi: 10.1016/s0021-9673(00)00085-6 pubmed: 10941668
Lahaye J. The chemistry of carbon surfaces. Fuel. 1998;77:543–7. https://doi.org/10.1016/S0016-2361(97)00099-9 .
doi: 10.1016/S0016-2361(97)00099-9
Boehm HP. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon N Y. 1994;32:759–69. https://doi.org/10.1016/0008-6223(94)90031-0 .
doi: 10.1016/0008-6223(94)90031-0
Pérez-Fernández V, Gentili A, Martinelli A, Caretti F, Curini R. Evaluation of oxidized buckypaper as material for the solid phase extraction of cobalamins from milk: its efficacy as individual and support sorbent of a hydrophilic-lipophilic balance copolymer. J Chromatogr A. 2016;1428:255–66. https://doi.org/10.1016/j.chroma.2015.07.109 .
doi: 10.1016/j.chroma.2015.07.109 pubmed: 26265001
Bogialli S, Curini R, Di Corcia A, Laganà A, Stabile A, Sturchio E. Development of a multiresidue method for analyzing herbicide and fungicide residues in bovine milk based on solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2006;1102:1–10. https://doi.org/10.1016/j.chroma.2005.10.011 .
doi: 10.1016/j.chroma.2005.10.011 pubmed: 16257003
Crescenzi C, Di Corcia A, Passariello G, Samperi R, Carou MIT. Evaluation of two new examples of graphitized carbon blacks for use in solid-phase extraction cartridges. J Chromatogr A. 1996;733:41–55. https://doi.org/10.1016/0021-9673(95)00782-2 .
doi: 10.1016/0021-9673(95)00782-2
Zwir-Ferenc A, Biziuk M. Solid phase extraction technique - trends, opportunities and applications, Polish. J Environ Stud. 2006;15:677–90.
Curini R, Gentili A, Marchese S, Marino A, Perret D. Solid-phase extraction followed by high-performance liquid chromatography-ionspray interface-mass spectrometry for monitoring of herbicides in environmental water. J Chromatogr A. 2000;874:187–98. https://doi.org/10.1016/S0021-9673(00)00097-2 .
doi: 10.1016/S0021-9673(00)00097-2 pubmed: 10817357
Di Corcia A, Marchetti M, Samperi R, Marcomini A. Liquid chromatographic determination of linear alkylbenzenesulfonates in aqueous environmental samples. Anal Chem. 1991;63:1179–82. https://doi.org/10.1021/ac00011a023 .
doi: 10.1021/ac00011a023 pubmed: 1883072
Martinelli A, Carru GA, D’Ilario L, Caprioli F, Chiaretti M, Crisante F, Francolini I, Piozzi A. Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue. ACS Appl Mater Interfaces. 2013;5:4340–9. https://doi.org/10.1021/am400543s .
doi: 10.1021/am400543s pubmed: 23635074
Fenoxaprop-P, https://www.chemicalbook.com/ProductChemicalPropertiesCB5399815_EN.htm . Accessed November 2023.
Quizalofop (Ref: CGA 287422), https://sitem.herts.ac.uk/aeru/iupac/Reports/1093.htm . Accessed November 2023.
Lux HPLC Columns, Tips for Care and Use, https://phenomenex.blob.core.windows.net/documents/c827ef28-5adb-46b0-a94d-88fa80ddfa7d.pdf . Accessed November 2023.

Auteurs

Elena Lucci (E)

Department of Chemistry, Sapienza University, Rome, Italy.

Lorenzo Antonelli (L)

Department of Chemistry, Sapienza University, Rome, Italy.

Monica Gherardi (M)

INAIL-DiMEILA, Chemical Risk Laboratory, Monte Porzio Catone Research Centre, Rome, Italy.

Chiara Fanali (C)

Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, Rome, Italy.

Salvatore Fanali (S)

School in Nanoscience and Advanced Technologies, University of Verona, Verona, Italy.

Anita Scipioni (A)

Department of Chemistry, Sapienza University, Rome, Italy.

Paolo Lupattelli (P)

Department of Chemistry, Sapienza University, Rome, Italy.

Alessandra Gentili (A)

Department of Chemistry, Sapienza University, Rome, Italy. alessandra.gentili@uniroma1.it.

Bezhan Chankvetadze (B)

Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia.

Classifications MeSH