External validation of the CHEDDAR score for suspected pulmonary embolism in patients with SARS-CoV-2 infection in an independent cohort.
CHEDDAR score
COVID-19
External validation
Pulmonary embolism
Risk assessment
Journal
Journal of thrombosis and thrombolysis
ISSN: 1573-742X
Titre abrégé: J Thromb Thrombolysis
Pays: Netherlands
ID NLM: 9502018
Informations de publication
Date de publication:
14 Dec 2023
14 Dec 2023
Historique:
accepted:
30
10
2023
medline:
14
12
2023
pubmed:
14
12
2023
entrez:
14
12
2023
Statut:
aheadofprint
Résumé
The accuracy of the classic scores that help stratify the pretest clinical probability of pulmonary embolism (PE) in SARS-CoV-2 infection (COVID-19) is low. Therefore, to estimate the risk of PE in these patients, a new set of guidelines must be established. The recently published CHEDDAR score proposes a new diagnostic strategy to reduce the use of computed tomography pulmonary angiography (CTPA) in non-critically ill SARS-COV-2 patients with suspected PE. According to the nomogram, patients are segregated into low-risk (< 182 points) or high-risk (≥ 182 points) based on the best cut-off value to discard PE in the original cohort. We aimed to externally validate this diagnostic strategy in an independent cohort. We analyzed data from two retrospective cohorts of hospitalized non-critically ill COVID-19 patients who underwent a CTPA due to suspicion for PE. CHEDDAR score was applied. As per the CHEDDAR nomogram, patients were classified as having a low or high clinical pre-test probability. Of the 270 patients included, 69 (25.5%) had PE. Applying the CHEDDAR score, 182 (67.4%) patients could have had PE excluded without imaging. Among 58 patients classified as having high clinical pre-test probability, 39 (67.2%) had PE. Sensitivity, specificity, positive and negative predictive values, and AUC were 56%, 90%, 67%, 85%, and 0.783 (95% CI 0.71-0.85), respectively. We provide external validation of the CHEDDAR score in an independent cohort. Even though the CHEDDAR score showed good discrimination capacity, caution is required in patients classified as having low clinical pre-test probability with a D-dimer value > 3000 ng/mL, and a RALE score ≥ 4.
Identifiants
pubmed: 38095742
doi: 10.1007/s11239-023-02918-3
pii: 10.1007/s11239-023-02918-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Investigateurs
David Brown-Lavalle
(D)
Nuria Muñoz-Rivas
(N)
Eva Moya-Mateo
(E)
María Teresa Bellver-Álvarez
(MT)
Ana Bustamante-Fermosel
(A)
Carmen Campos-Rebollo
(C)
María García-Lorente
(M)
Idoia Pagai-Valcárcel
(I)
Roberto Pedrero-Tomé
(R)
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Klok FA, Kruip MJHA, van der Meer NJM et al (2020) Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res 191:148–150. https://doi.org/10.1016/j.thromres.2020.04.041
doi: 10.1016/j.thromres.2020.04.041
pubmed: 32381264
pmcid: 7192101
Gong X, Yuan B, Yuan Y (2022) Incidence and prognostic value of pulmonary embolism in COVID-19: a systematic review and meta-analysis. PLoS ONE 17:e0263580. https://doi.org/10.1371/journal.pone.0263580
doi: 10.1371/journal.pone.0263580
pubmed: 35286316
pmcid: 8920268
Gonzalez-Fajardo JA, Ansuategui M, Romero C et al (2021) Mortality of COVID-19 patients with vascular thrombotic complications. Med Clin (Engl Ed) 156:112–117. https://doi.org/10.1016/j.medcle.2020.10.008
doi: 10.1016/j.medcle.2020.10.008
pubmed: 33521296
Fabre O, Rebet O, Carjaliu I et al (2020) Severe acute proximal pulmonary embolism and COVID-19: a word of caution. Ann Thorac Surg 110:e409-411. https://doi.org/10.1016/j.athoracsur.2020.04.005
doi: 10.1016/j.athoracsur.2020.04.005
pubmed: 32305287
pmcid: 7162739
Zuin M, Barco S, Giannakoulas G et al (2023) Risk of venous thromboembolic events after COVID-19 infection: a systematic review and meta-analysis. J Thromb Thrombolysis 55(3):490–498. https://doi.org/10.1007/s11239-022-02766-7
doi: 10.1007/s11239-022-02766-7
pubmed: 36652137
pmcid: 9845812
Gul MH, Htun ZM, de Jesus PV et al (2023) Predictors and outcomes of acute pulmonary embolism in COVID-19; insights from US National COVID cohort collaborative. Respir Res 24(1):59. https://doi.org/10.1186/s12931-023-02369-7
doi: 10.1186/s12931-023-02369-7
pubmed: 36810085
pmcid: 9942071
Van Dam LF, Kroft LJM, van der Wal LI et al (2020) Clinical and computed tomography characteristics of COVID-19 associated acute pulmonary embolism: a different phenotype of thrombotic disease? Thromb Res 193:86–89. https://doi.org/10.1016/j.thromres.2020.06.010
doi: 10.1016/j.thromres.2020.06.010
pubmed: 32531548
pmcid: 7274953
Tan BK, Mainbourg S, Friggeri A et al (2021) Arterial and venous thromboembolism in COVID-19: a study-level meta-analysis. Thorax 76(10):970–979. https://doi.org/10.1136/thoraxjnl-2020-215383
doi: 10.1136/thoraxjnl-2020-215383
pubmed: 33622981
Suh YJ, Hong H, Ohana M et al (2021) Pulmonary embolism and deep vein thrombosis in COVID-19: a systematic review and meta-analysis. Radiology 298:70–80. https://doi.org/10.1148/radiol.2020203557
doi: 10.1148/radiol.2020203557
Ackermann M, Verleden SE, Kuehnel M et al (2020) Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med 383(2):120–128. https://doi.org/10.1056/NEJMoa2015432
doi: 10.1056/NEJMoa2015432
pubmed: 32437596
pmcid: 7412750
Kahn SR, de Wit K (2022) Pulmonary embolism. N Engl J Med 387:45–57. https://doi.org/10.1056/NEJMcp2116489
doi: 10.1056/NEJMcp2116489
pubmed: 35793208
Righini M, Robert-Ebadi H, Le Gal G (2017) Diagnosis of acute pulmonary embolism. J Thromb Haemost 15(7):1251–1261. https://doi.org/10.1111/jth.13694
doi: 10.1111/jth.13694
pubmed: 28671347
Franco-Moreno AI, Bustamante-Fermosel A, Ruiz-Giardin JM et al (2023) Utility of probability scores for the diagnosis of pulmonary embolism in patients with SARS-CoV-2 infection: a systematic review. Rev Clin Esp (Barc) 223(1):40–49. https://doi.org/10.1016/j.rceng.2022.07.004
doi: 10.1016/j.rceng.2022.07.004
pubmed: 36241500
Rostami M, Mansouritorghabeh H (2020) D-dimer level in COVID-19 infection: a systematic review. Expert Rev Hematol 13:1265–1275. https://doi.org/10.1080/17474086.2020.1831383
doi: 10.1080/17474086.2020.1831383
pubmed: 32997543
Franco-Moreno A, Brown-Lavalle D, Rodríguez-Ramírez N et al (2023) Clinical prediction model for pulmonary thrombosis diagnosis in hospitalized patients with SARS-CoV-2 infection. J Clin Transl Res 9(2):59–68
pubmed: 37034002
pmcid: 10075091
von Elm E, Altman DG, Egger M et al (2007) STROBE initiative. strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 335:806–808. https://doi.org/10.1136/bmj.39335.541782.AD
doi: 10.1136/bmj.39335.541782.AD
Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293. https://doi.org/10.1126/science.3287615
doi: 10.1126/science.3287615
pubmed: 3287615
Dronkers CEA, van der Hulle T, Le Gal G et al (2017) Subcommittee on predictive and diagnostic variables in thrombotic disease. Towards a tailored diagnostic standard for future diagnostic studies in pulmonary embolism: communication from the SSC of the ISTH. J Thromb Haemost 15(5):1040–1043. https://doi.org/10.1111/jth.13654
doi: 10.1111/jth.13654
pubmed: 28296048