Mechanical Ablation of Larval Zebra Fish Spinal Cord.
Regeneration
Spinal cord injury
Tungsten needle fabrication
Zebra fish
Journal
Methods in molecular biology (Clifton, N.J.)
ISSN: 1940-6029
Titre abrégé: Methods Mol Biol
Pays: United States
ID NLM: 9214969
Informations de publication
Date de publication:
2024
2024
Historique:
medline:
10
12
2023
pubmed:
10
12
2023
entrez:
9
12
2023
Statut:
ppublish
Résumé
Unlike mammals, adult and larval zebra fish exhibit robust regeneration following traumatic spinal cord injury. This remarkable regenerative capacity, combined with exquisite imaging capabilities and an abundance of powerful genetic techniques, has established the zebra fish as an important vertebrate model for the study of neural regeneration. Here, we describe a protocol for the complete mechanical ablation of the larval zebra fish spinal cord. With practice, this protocol can be used to reproducibly injure upward of 100 samples per hour, facilitating the high-throughput screening of factors involved in spinal cord regeneration and repair.
Identifiants
pubmed: 38070078
doi: 10.1007/978-1-0716-3585-8_3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
47-56Informations de copyright
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Alizadeh A, Dyck SM, Karimi-Abdolrezaee (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282
doi: 10.3389/fneur.2019.00282
pmcid: 6439316
pubmed: 30967837
Houweling DA, Bär PR, Gispen WH, Joosten EA (1998) Spinal cord injury: bridging the lesion and the role of neurotrophic factors in repair. Prog Brain Res 117:455–471
doi: 10.1016/S0079-6123(08)64032-7
pubmed: 9932425
Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y, Okada S (2017) Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med 23(7):818–828
doi: 10.1038/nm.4354
pubmed: 28628111
Dias DO, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlén M, Göritz C, Frisén J (2018) Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173(1):153–165
doi: 10.1016/j.cell.2018.02.004
pmcid: 5871719
pubmed: 29502968
Bradbury EJ, Burnside ER (2019) Moving beyond the glial scar for spinal cord repair. Nat Commun 10(1):3879
doi: 10.1038/s41467-019-11707-7
pmcid: 6713740
pubmed: 31462640
Bernstein JJ (1964) Relation of spinal cord regeneration to age in adult goldfish. Exp Neurol 9:161–174
doi: 10.1016/0014-4886(64)90014-7
pubmed: 14126124
Butler EG, Ward MB (1967) Reconstitution of the spinal cord after ablation in adult Triturus. Dev Biol 15(5):464–486
doi: 10.1016/0012-1606(67)90038-3
pubmed: 6032488
Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10(10):713–723
doi: 10.1038/nrn2707
pubmed: 19763104
Becker CG, Becker T (2015) Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook! Dev Cell 32(4):516–527
doi: 10.1016/j.devcel.2015.01.001
pubmed: 25710537
Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377(4):577–595
doi: 10.1002/(SICI)1096-9861(19970127)377:4<577::AID-CNE8>3.0.CO;2-#
pubmed: 9007194
van Raamsdonk W, Maslam S, de Jong DH, Smit-Onel MJ, Velzing E (1998) Long term effects of spinal cord transection in zebrafish: swimming performances, and metabolic properties of the neuromuscular system. Acta Histochem 100(2):117–131
doi: 10.1016/S0065-1281(98)80021-4
pubmed: 9587624
Reimer MM, Kuscha V, Wyatt C, Sörensen I, Frank RE, Knüwer M, Becker T, Becker CG (2009) Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J Neurosci 29(48):15073–15082
doi: 10.1523/JNEUROSCI.4748-09.2009
pmcid: 2841428
pubmed: 19955358
Goldshmit Y, Sztal TE, Jusuf PR, Hall TE, Nguyen-Chi M, Currie PD (2012) Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci 32(22):7477–7492
doi: 10.1523/JNEUROSCI.0758-12.2012
pmcid: 6703582
pubmed: 22649227
Dias TB, Yang YJ, Ogai K, Becker T, Becker CG (2012) Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32(9):3245–3252
doi: 10.1523/JNEUROSCI.6398-11.2012
pmcid: 6622036
pubmed: 22378895
Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DY, Poss KD (2016) Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354(6312):630–634
doi: 10.1126/science.aaf2679
pmcid: 5114142
pubmed: 27811277
Goldshmit Y, Tang JKKY, Siegel AL, Nguyen PD, Kaslin J, Currie PD, Jusuf PR (2018) Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish. Neural Dev 13(1):24
doi: 10.1186/s13064-018-0122-9
pmcid: 6240426
pubmed: 30447699
Briona LK, Poulain FE, Mosimann C, Dorsky RI (2015) Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury. Dev Biol 403(1):15–21
doi: 10.1016/j.ydbio.2015.03.025
pmcid: 4469497
pubmed: 25888075
Vandestadt C, Vanwalleghem GC, Khabooshan MA, Douek AM, Castillo HA, Li M, Schulze K, Don E, Stamatis SA, Ratnadiwakara M, Änkö ML, Scott EK, Kaslin J (2021) RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish. Dev Cell 56(16):2364–2380
doi: 10.1016/j.devcel.2021.07.021
pubmed: 34428400
Alper SR, Dorsky RI (2022) Unique advantages of zebrafish larvae as a model for spinal cord regeneration. Front Mol Neurosci 15:983336
doi: 10.3389/fnmol.2022.983336
pmcid: 9489991
pubmed: 36157068