Novel prediction models for pharyngeal-airway volume based on the cranial-base and midsagittal cross-sectional area of the airway in the pharyngeal region: A cephalometric and magnetic resonance imaging study.

airway cephalometry magnetic resonance imaging

Journal

Orthodontics & craniofacial research
ISSN: 1601-6343
Titre abrégé: Orthod Craniofac Res
Pays: England
ID NLM: 101144387

Informations de publication

Date de publication:
07 Dec 2023
Historique:
accepted: 10 11 2023
medline: 7 12 2023
pubmed: 7 12 2023
entrez: 7 12 2023
Statut: aheadofprint

Résumé

The objective of the study was to elucidate the association between cranial base (Bjork-Jarabak analysis), midsagittal cross-sectional area of the airway in the pharyngeal region (MCSA-PR) data and pharyngeal-airway volume (PAV) and develop a model that could help clinicians predict PAV using two-dimensional (2D) data (Bjork polygon and MCSA-PR). Pre-treatment lateral cephalometric radiographs and magnetic resonance imaging (MRI) scans of 82 women were categorized into three anteroposterior skeletal groups based on ANB angle: Class I (n = 29), 1.5° ≤ ANB≤5.1°; Class II (n = 26), ANB >5.1°; Class III (n = 27), ANB <1.5°. The Bjork polygon, MCSA-PR data from cephalograms and PAV data from MRI scans were examined. Intergroup comparisons were performed using the Kruskal-Wallis test and one-way analysis of variance (ANOVA), with pairwise comparisons conducted using the Bonferroni-corrected Mann-Whitney U-test for the Kruskal-Wallis test and Bonferroni-corrected multiple comparison test for one-way ANOVA. Forward multiple linear regression was used to create model equations for predicting PAV. MCSA-PR and anterior (N-S) and posterior (S-Ar) cranial-base lengths were positively correlated with the PAV. We developed four models; three operated at the group level, and one encompassed the entire sample. Notably, all models could effectively explain the variance in the PAV data. The model for the Class I group was the strongest (adjusted R Our findings indicate the remarkable potential of the MCSA-PR, N-S and Bjork sum angles (BSA) as predictors of the PAV and the relevance of 2D cephalometric and cranial-base parameters in predicting the three-dimensional (3D) pharyngeal-airway size.

Identifiants

pubmed: 38059557
doi: 10.1111/ocr.12735
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : JSPS KAKENHI

Informations de copyright

© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Al Maaitah EF, Alomari S, Al-Khateeb SN, Abu Alhaija ES. Cranial base measurements in different anteroposterior skeletal relationships using Bjork-Jarabak analysis. Angle Orthod. 2022;92(5):613-618.
Kamak H, Senel B, Çatalbas B. Cranial base features between sagittal skeletal malocclusions in Anatolian Turkish adults: is there a difference? J Orthod Res. 2013;1(2):52-56.
Ikoma M, Arai K. Craniofacial morphology in women with class I occlusion and severe maxillary anterior crowding. Am J Orthod Dentofacial Orthop. 2018;153(1):36-45.
Rodriguez-Cardenas YA, Arriola-Guillen LE, Flores-Mir C. Björk-Jarabak cephalometric analysis on CBCT synthesized cephalograms with different dentofacial sagittal skeletal patterns. Dental Press J Orthod. 2014;19(6):46-53.
Wilhelm BM, Beck FM, Lidral AC, Vig KWL. A comparison of cranial base growth in class I and class II skeletal patterns. Am J Orthod Dentofacial Orthop. 2001;119(4):401-405.
Polat ÖÖ, Kaya B. Changes in cranial base morphology in different malocclusions. Orthod Craniofac Res. 2007;10(4):216-221.
Banabilh SM, Suzina AH, Dinsuhaimi S, Singh GD. Cranial base and airway morphology in adult Malays with obstructive sleep apnoea. Aust Orthod J. 2007;23(2):89-95.
Neelapu BC, Kharbanda OP, Sardana HK, et al. Craniofacial and upper airway morphology in adult obstructive sleep apnea patients: a systematic review and meta-analysis of cephalometric studies. Sleep Med Rev. 2017;31:79-90.
Steinberg B, Fraser B. The cranial base in obstructive sleep apnea. J Oral Maxillofac Surg. 1995;53(10):1150-1154.
Pirilä-Parkkinen K, Löppönen H, Nieminen P, Tolonen U, Pääkkö E, Pirttiniemi P. Validity of upper airway assessment in children : a clinical, cephalometric, and MRI study. Angle Orthod. 2011;81(3):433-439.
Maspero C, Abate A, Bellincioni F, et al. Comparison of a tridimensional cephalometric analysis performed on 3T-MRI compared with CBCT: a pilot study in adults. Prog Orthod. 2019;20(1):40.
Moss ML, Salentijn L. The primary role of functional matrices in facial growth. Am J Orthod. 1969;55(6):566-577.
El H, Palomo JM. Airway volume for different dentofacial skeletal patterns. Am J Orthod Dentofacial Orthop. 2011;139(6):e511-e521.
Petdachai S, Chuenchompoonut V. Prediction of airway volume from lateral cephalograms and correlation among 2D and 3D measurements: a preliminary study. Orthod Waves. 2017;76(1):31-39.
Martin O, Muelas L, Viñas MJ. Comparative study of nasopharyngeal soft-tissue characteristics in patients with class III malocclusion. Am J Orthod Dentofacial Orthop. 2011;139(2):242-251.
Claudino LV, Mattos CT, Ruellas ACDO, Sant Anna EF. Pharyngeal airway characterization in adolescents related to facial skeletal pattern: a preliminary study. Am J Orthod Dentofacial Orthop. 2013;143(6):799-809.
Habumugisha J, Mohamed AS, Cheng B, Liu L, Zou R, Wang F. Analysis of maxillary arch morphology and its relationship with upper airway in mouth breathing subjects with different sagittal growth patterns. J Stomatol Oral Maxillofac Surg. 2023;124(1S):101386.
Chen YJ, Chen HH, Hsu LF, et al. Airway increase after open bite closure with temporary anchorage devices for intrusion of the upper posteriors: evidence from 2D cephalometric measurements and 3D magnetic resonance imaging. J Oral Rehabil. 2018;45(12):939-947.
Avci S, Lakadamyali H, Lakadamyali H, Aydin E, Tekindal MA. Relationships among retropalatal airway, pharyngeal length, and craniofacial structures determined by magnetic resonance imaging in patients with obstructive sleep apnea. Sleep Breath. 2019;23(1):103-115.
Pandis N. Sample calculations for comparison of 2 means. Am J Orthod Dentofacial Orthop. 2012;141(4):519-521.
Tseng YC, Tsai FC, Chou ST, Hsu CY, Cheng JH, Chen CM. Evaluation of pharyngeal airway volume for different dentofacial skeletal patterns using cone-beam computed tomography. J Dent Sci. 2021;16(1):51-57.
Miyajima K, McNamara JA, Kimura T, Murata S, Iizuka T. Craniofacial structure of Japanese and European-American adults with normal occlusions and well-balanced faces. Am J Orthod Dentofacial Orthop. 1996;110(4):431-438.
Yoshida S, Ota S, Kobayashi S. Influence of mandibular incisor agenesis and growth pattern on symphysis characteristics: a retrospective cephalometric study. Orthod Craniofac Res. 2023;26(3):393-401.
Battagel JM, Johal A, Smith AM, Kotecha B. Postural variation in oropharyngeal dimensions in subjects with sleep disordered breathing: a cephalometric study. Eur J Orthod. 2002;24(3):263-276.
Cabral M, de Queiroz Ribeiro LRB, Cardeal CM, Bittencourt MAV, Crusoé-Rebello IM, Souza-Machado A. Evaluation of the oropharynx in class I and II skeletal patterns by CBCT. Oral Maxillofac Surg. 2017;21:27-31.
Dahlberg G. Statistical Methods for Medical and Biological Students. Interscience Publications; 1940.
Jayaratne YSN, Zwahlen RA. The oropharyngeal airway in young adults with skeletal class II and class III deformities: a 3-D morphometric analysis. PloS One. 2016;11(2):0148086.
Trenouth MJ, Timms DJ. Relationship of the functional oropharynx to craniofacial morphology. Angle Orthod. 1999;69(5):419-423.
Ning R, Guo J, Li Q, Martin D. Maxillary width and hard palate thickness in men and women with different vertical and sagittal skeletal patterns. Am J Orthod Dentofacial Orthop. 2021;159(5):564-573.
Chang HP, Hsieh SH, Tseng YC, Chou TM. Cranial-base morphology in children with class III malocclusion. Kaohsiung J Med Sci. 2005;21(4):159-165.
Wolfe SM, Araujo E, Behrents RG, Buschang PH. Craniofacial growth of class III subjects six to sixteen years of age. Angle Orthod. 2011;81(2):211-216.

Auteurs

Janvier Habumugisha (J)

Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Masahiro Nakamura (M)

Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Kana Kono (K)

Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Kenta Uchida (K)

Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Megumi Konko (M)

Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Takashi Izawa (T)

Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Hiroshi Kamioka (H)

Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.

Classifications MeSH