N
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
06 Dec 2023
06 Dec 2023
Historique:
received:
25
01
2023
accepted:
31
10
2023
pubmed:
7
12
2023
medline:
7
12
2023
entrez:
6
12
2023
Statut:
aheadofprint
Résumé
In vitro-transcribed (IVT) mRNAs are modalities that can combat human disease, exemplified by their use as vaccines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IVT mRNAs are transfected into target cells, where they are translated into recombinant protein, and the biological activity or immunogenicity of the encoded protein exerts an intended therapeutic effect
Identifiants
pubmed: 38057663
doi: 10.1038/s41586-023-06800-3
pii: 10.1038/s41586-023-06800-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s).
Références
Hogan, M. J. & Pardi, N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu. Rev. Med. 73, 17–39 (2022).
doi: 10.1146/annurev-med-042420-112725
pubmed: 34669432
Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).
doi: 10.1038/s41573-021-00283-5
pmcid: 8386155
Anderson, B. R. et al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res. 38, 5884–5892 (2010).
doi: 10.1093/nar/gkq347
pubmed: 20457754
pmcid: 2943593
Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006).
doi: 10.1182/blood-2006-04-015024
pubmed: 16940422
Andries, O. et al. N
doi: 10.1016/j.jconrel.2015.08.051
pubmed: 26342664
Boo, S. H. & Kim, Y. K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med. 52, 400–408 (2020).
doi: 10.1038/s12276-020-0407-z
pubmed: 32210357
pmcid: 7156397
Squires, J. E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).
doi: 10.1093/nar/gks144
pubmed: 22344696
pmcid: 3367185
Argoudelis, A. D. & Mizsak, S. A. 1-methylpseudouridine, a metabolite of Streptomyces platensis. J. Antibiot. 29, 818–823 (1976).
doi: 10.7164/antibiotics.29.818
Pang, H. et al. Structure of a modified nucleoside in archaebacterial tRNA which replaces ribosylthymine. 1-Methylpseudouridine. J. Biol. Chem. 257, 3589–3592 (1982).
doi: 10.1016/S0021-9258(18)34820-8
pubmed: 7061499
Brand, R. C., Klootwijk, J., Planta, R. J. & Maden, B. E. Biosynthesis of a hypermodified nucleotide in Saccharomyces carlsbergensis 17S and HeLa-cell 18S ribosomal ribonucleic acid. Biochem. J. 169, 71–77 (1978).
doi: 10.1042/bj1690071
pubmed: 629754
pmcid: 1184195
Li, B., Luo, X. & Dong, Y. Effects of chemically modified messenger RNA on protein expression. Bioconjugate Chem. 27, 849–853 (2016).
doi: 10.1021/acs.bioconjchem.6b00090
Zangi, L. et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat. Biotechnol. 31, 898–907 (2013).
doi: 10.1038/nbt.2682
pubmed: 24013197
pmcid: 4058317
Stadler, C. R. et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat. Med. 23, 815–817 (2017).
doi: 10.1038/nm.4356
pubmed: 28604701
Pardi, N. et al. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat. Commun. 9, 3361 (2018).
doi: 10.1038/s41467-018-05482-0
pubmed: 30135514
pmcid: 6105651
Licht, K. et al. Inosine induces context-dependent recoding and translational stalling. Nucleic Acids Res. 47, 3–14 (2019).
doi: 10.1093/nar/gky1163
pubmed: 30462291
Hoernes, T. P. et al. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res. 44, 852–862 (2016).
doi: 10.1093/nar/gkv1182
pubmed: 26578598
Karijolich, J. & Yu, Y. T. Converting nonsense codons into sense codons by targeted pseudouridylation. Nature 474, 395–398 (2011).
doi: 10.1038/nature10165
pubmed: 21677757
pmcid: 3381908
Eyler, D. E. et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc. Natl Acad. Sci. USA 116, 23068–23074 (2019).
doi: 10.1073/pnas.1821754116
pubmed: 31672910
pmcid: 6859337
Kim, K. Q. et al. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep. 40, 111300 (2022).
doi: 10.1016/j.celrep.2022.111300
pubmed: 35988540
pmcid: 9376333
Svitkin, Y. V. et al. N1-methyl-pseudouridine in mRNA enhances translation through eIF2α-dependent and independent mechanisms by increasing ribosome density. Nucleic Acids Res. 45, 6023–6036 (2017).
doi: 10.1093/nar/gkx135
pubmed: 28334758
Bartok, O. et al. Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature 590, 332–337 (2021).
doi: 10.1038/s41586-020-03054-1
pubmed: 33328638
Folegatti, P. M. et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396, 467–478 (2020).
doi: 10.1016/S0140-6736(20)31604-4
pubmed: 32702298
pmcid: 7445431
Bhatt, P. R. et al. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 372, 1306–1313 (2021).
doi: 10.1126/science.abf3546
pubmed: 34029205
pmcid: 8168617
Champagne, J., Mordente, K., Nagel, R. & Agami, R. Slippy-Sloppy translation: a tale of programmed and induced-ribosomal frameshifting. Trends Genet. 38, 1123–1133 (2022).
doi: 10.1016/j.tig.2022.05.009
pubmed: 35641342
Chen, T. H., Potapov, V., Dai, N., Ong, J. L. & Roy, B. N
doi: 10.1038/s41598-022-17249-1
pubmed: 35906281
pmcid: 9335462
Simms, C. L., Yan, L. L., Qiu, J. K. & Zaher, H. S. Ribosome collisions result in +1 frameshifting in the absence of no-go decay. Cell Rep. 28, 1679–1689 (2019).
doi: 10.1016/j.celrep.2019.07.046
pubmed: 31412239
pmcid: 6701860
Juszkiewicz, S. & Hegde, R. S. Initiation of quality control during poly(A) translation requires site-specific ribosome ubiquitination. Mol. Cell 65, 743–750 (2017).
doi: 10.1016/j.molcel.2016.11.039
pubmed: 28065601
pmcid: 5316413
O’Connor, M. Imbalance of tRNA(Pro) isoacceptors induces +1 frameshifting at near-cognate codons. Nucleic Acids Res. 30, 759–765 (2002).
doi: 10.1093/nar/30.3.759
pubmed: 11809889
pmcid: 100296
Stoneley, M. et al. Unresolved stalled ribosome complexes restrict cell-cycle progression after genotoxic stress. Mol. Cell 82, 1557–1572 (2022).
doi: 10.1016/j.molcel.2022.01.019
pubmed: 35180429
pmcid: 9098122
Lareau, L. F., Hite, D. H., Hogan, G. J. & Brown, P. O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. Elife 3, e01257 (2014).
doi: 10.7554/eLife.01257
pubmed: 24842990
pmcid: 4052883
Prokhorova, I. et al. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proc. Natl Acad. Sci. USA 114, E10899–E10908 (2017).
doi: 10.1073/pnas.1715501114
pubmed: 29208708
pmcid: 5754804
Tuite, M. F. & McLaughlin, C. S. The effects of paromomycin on the fidelity of translation in a yeast cell-free system. Biochim. Biophys. Acta 783, 166–170 (1984).
doi: 10.1016/0167-4781(84)90009-5
Jacks, T., Madhani, H. D., Masiarz, F. R. & Varmus, H. E. Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55, 447–458 (1988).
doi: 10.1016/0092-8674(88)90031-1
pubmed: 2846182
pmcid: 7133365
Devaraj, A. & Fredrick, K. Short spacing between the Shine-Dalgarno sequence and P codon destabilizes codon-anticodon pairing in the P site to promote +1 programmed frameshifting. Mol. Microbiol. 78, 1500–1509 (2010).
doi: 10.1111/j.1365-2958.2010.07421.x
pubmed: 21143320
pmcid: 3071715
Svitkin Y. V. & Sonenberg N. in mRNA Processing and Metabolism Vol. 257 (eds Schoenberg, D. R.) 155–170 (Humana, 2004).
Rosenfeld, J., Capdevielle, J., Guillemot, J. C. & Ferrara, P. In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem. 203, 173–179 (1992).
doi: 10.1016/0003-2697(92)90061-B
pubmed: 1524213
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635
pubmed: 23104886
Payne, R. P. et al. Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell 184, 5699–5714 (2021).
doi: 10.1016/j.cell.2021.10.011
pubmed: 34735795
pmcid: 8519781
Mulroney, T. E. RNA-seq_mutations. GitHub https://github.com/tom-mulroney/rna-seq_mutations (accessed 23 January 2023).